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Abstract
In the present study, the role of the stochastic model in processing GNSS observations and determining the horizontal dis-
placement parameters is investigated. Stochastic modeling has been evaluated using two approaches; (1) nominal weight 
and (2) estimated weight. The former is based on the experimental fixed values, meanwhile the latter is based on the least-
square variance components estimation (LS-VCE) method, which is implemented for GNSS observations to estimate the 
components of variance of observations directly. In this research showed that the stochastic model plays an important role 
in detecting small displacements. For this purpose, a high-precision displacement simulator which can move accurately at 
short distances in one direction as well as on a horizontal plane was used. A simulated displacement motion experiment 
was performed. Derived displacements were compared with simulated (real) displacements along with their accuracy in 
two modes using only GPS and multi-GNSS as well as the two weighting modes provided. The results of the coordinate 
comparison show that the stochastic model based on the LS-VCE in the PPP method gives a difference of 0 and − 1.9 mm 
for the east–west and north–south components, while the use of nominal weight, a difference of − 1.9 and − 1.1 mm. Also, 
the maximum accuracy improvement in this case for these two coordinate components is 7.8 and 4 mm, respectively, also 
considering the combination of multi-GNSS observations, the accuracy of the coordinate components and the horizontal 
component in the weight estimation model has provided an improvement of 5.8 and 5.3 mm. In general, the combination of 
observations has increased the accuracy of the displacement component compared to the single system.

Keywords Deformation monitoring · Precise point positioning (PPP) · Variance component estimation (VCE) · Least 
squares estimation (LSE) · Multi-GNSS

Introduction

Monitoring the deformation of engineering structures is an 
important approach to presenting the necessary measures to 
prevent economic and financial damage. For this reason, it is 
necessary to analyze deformation in different structures. The 
monitoring and analysis of deformation in various structures 
are a special branch of geodesy. There are several techniques 

to measure deformation, which are divided into two main 
groups, namely geodetic and non-geodetic ones. Each one 
has its advantages and disadvantages. Geodetic techniques 
allow for the analysis of deformation, as well as statistical 
tests by considering the network of points and observations 
of length, angle, height difference, direction, azimuth, and so 
on. Today, global navigation satellite systems (GNSS) tech-
nology is used in many types of research and industrial fields 
due to the position accuracy, observation availability, and 
development of processing algorithms (Yigit et al. 2016).

Two GNSS positioning methods tend to be used to 
achieve the accuracy required to monitor deformations (Xu 
et al. 2011; Capilla et al. 2016; Erol and Ayan 2003). Each 
of these two methods has advantages and disadvantages. The 
relative method requires two or more receivers, while the 
precise point positioning (PPP) method is a cost-effective 
method that uses only one receiver. This method provides 
displacements according to a global reference framework. 
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The relative positioning method provides more accurate 
results. This is especially the case in short baselines, where 
all common factors such as the satellite and receiver clock, 
atmospheric delays, are eliminated or reduced significantly 
by the double differencing model. One of the disadvantages 
of this technique, widely accepted for precise geodetic and 
geophysical purposes, is the need for simultaneous observa-
tions in known and unknown stations. Also in this method, 
the accuracy of measurements depends on the length of the 
baseline and the duration of observation (Paziewski et al. 
2018; Yigit et al. 2016; Hofmann-Wellenhof et al. 2007; 
Alcay et al. 2019; Fermi et al. 2019; Dabove et al. 2020). 
However, due to advances such as increasing the constella-
tion and augmenting the number of signals with the integer 
ambiguity resolution, the limitations of the PPP method such 
as longer convergence time and its accuracy can be improved 
(Ge et al. 2008; Dabove et al. 2014). In the relative approach, 
1–2 mm for the horizontal component and 3–5 mm for the 
vertical component have been presented by Firuzabadı` and 
King 2012 (provided that four reference stations are uti-
lized). It will also be possible for the PPP method to achieve 
an accuracy of 5 mm should the daily observations be used 
(Gandolfi et al. 2017). Therefore, both methods are used 
for different deformation monitoring applications. The PPP 
method is used in numerous applications such as the earth 
surface changes (Poluzzi et al. 2020; Hu et al. 2014; Mar-
tín et al. 2015; Dabove et al. 2014), detecting of structures 
displacement (Yigit 2016; Roberts et al. 2019), tectonic and 
geophysical studies (Geng et al. 2017), detecting of earth 
subsidence (Chatterjee et al. 2015), and GPS buoy (Savage 
et al. 2004; Hammond and Thatcher 2005; Fund et al. 2013).

One of the important factors in achieving high-qual-
ity results in the PPP method is choosing the appropri-
ate method for processing observations. Each processing 
method consists of two functional models and a stochastic 
model that must be properly modeled. In the PPP method, 
an ionospheric-free (IF) linear combination is generally used 
as a functional model. In the ionospheric-free model, how to 
deal with errors is very important. Many factors cause errors 
in this model. These factors include the limited accuracy 
of the satellite orbit and clock products, the effect of the 
residual errors that have not been modeled, and the effect of 
the utilized stochastic model (in fact, the quality of obser-
vations depends on various effects that affect the accuracy 
of the observation. This is related to the signal propagation 
and the quality of the receiver). The ability to estimate phase 
ambiguity as an integer will also be effective in providing 
PPP accuracy, particularly for the east component. Concern-
ing other parameters such as a reduction in the convergence 
period in the PPP method, several factors such as the num-
ber and geometry of the observed satellites (this factor can 
also improve the quality of the zenith tropospheric delay 
parameter), environment and dynamics of the receiver used, 

quality of observations, sampling rate, and stochastic model 
are effective. By changing these factors, the two parameters 
of accuracy and convergence time will change. Reducing 
all errors in the PPP performance is necessary to achieve 
results with better accuracy. In general, by modeling errors 
(troposphere, relativity, satellite antenna PCO/PCV, solid 
earth tide, phase windup, ocean loading, satellite orbits/
clocks, receiver antenna PCO/PCV), filtering the effect of 
pseudo-range multipath and noise and using the ionosphere-
free linear combination to eliminate the ionosphere effect, 
high accuracy can be achieved in the PPP method (Abou-
Galala et al. 2018; Karimi 2021; Kouba et al. 2017; Mar-
reiros et al. 2012; Ge et al. 2008; Héroux et al. 2004; Bisnath 
and Gao 2009; Beran 2008; Lou et al. 2014).

In association with the stochastic model, it is noted that 
this model has high importance in estimating unknown 
parameters since the minimum variance estimators can be 
achieved in a linear model providing that the weight matrix 
is selected as the inverse of the covariance matrix of the 
observables (Koch 1999; Li et al. 2010). On the other hand, 
in most cases, the empirical stochastic models are used for 
GNSS observations. Estimating the weight matrix using 
the available empirical stochastic models is not valid for 
different types of GNSS receivers and signals. These mod-
els cannot present the real accuracy for all signals due to a 
variety of signals sent from satellites and the development 
of satellite navigation systems. This is because the observa-
tions of satellite systems have different quality. One of the 
reasons for the difference in their quality is the noise level 
of the observations (Quan et al. 2016; Afifi and El-Rabbany, 
2013). Due to the importance of displacement monitoring 
using GNSS observations, several studies have been per-
formed in this field. Among these researches, we can refer to 
Larson (2009), Avallone et al. (2011), and Zangeneh-Nejad 
et al. (2017) in which the GPS is used to study the displace-
ments caused by earthquakes, volcanoes, and tsunamis. In 
researches (Nickitopoulou et al. 2006; Tang et al. 2017; Yu 
et al. 2014), the GNSS system is used to monitor various 
structures, as well as create displacement, also in studies 
(Eueler and Goad 1991; Gerdan 1995; Jin and de Jong 1996) 
the effect of variance of elevation-dependent observations 
was studied and based on that the variance parameter can 
affect the quality of the presented results. This effect was 
investigated in research (Amiri-Simkooei et al. 2013; Zan-
geneh-Nejad et al. 2015; Li 2016; Amiri-Simkooei et al. 
2009) and based on the results presented in these researches 
and similar researches, the accuracy of the coordinate com-
ponents and the convergence time parameter are influenced 
by the selected stochastic model.

Considering that nominal accuracy is usually used for 
code and phase observations, and considering the fixed 
numerical values for these two parameters and using the 
error propagation law, the accuracy of IF observations is 
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calculated. Therefore, in this study, one of the objectives 
is to estimate the variance components for ionosphere-free 
observations using the LS-VCE method instead of using 
experimental fixed values. This is because the accuracy of 
these parameters is different for the signals of each satel-
lite system. On the other hand, there is usually a constant 
ratio between the accuracy of the code observations and the 
phase of the GPS with other satellite systems, which does 
not meet the optimal accuracy in all conditions. Therefore, 
in this study, using multi-GNSS observations, by directly 
including the observations of each system, the code and 
phase variance components are estimated simultaneously by 
the LS-VCE method and are used to detect displacement. 
Finally, the main purpose of the research was to investigate 
the effect of the estimated stochastic model in determin-
ing and measuring horizontal displacement using the PPP 
method. Horizontal displacement was also determined using 
GPS and multi-GNSS observations. It was investigated that 
in the PPP mode and using only one receiver in a short time, 
improving the stochastic model can be effective in determin-
ing small displacements. The contents of this research are as 
follows: at first, presents the stochastic and functional model 
in IF multi-GNSS PPP, as well as a complete description 
of the LS-VCE method. Then, presents the approach used 
to determine horizontal displacement, as well as statistical 
tests for the horizontal displacement significance test. In the 
following, the effect of the stochastic model on the quality 
of results provided by PPP is investigated, as well as the test 
used to detect the minimum displacement using the PPP 
method. Finally, the conclusions have been presented.

Multi‑constellation PPP observation model

The PPP method is a satellite positioning technique, which 
uses two-frequency observations of code and phase from a 
receiver, along with satellite precise ephemeris (clock and 
orbit products) to determine the exact position of the receiver. 
In the PPP method, many errors from different sources such 
as troposphere delay, ionosphere delay, clock receiver, 
multi-path, and measured noise must be carefully handled to 
achieve high-quality results. In this way, the ionospheric-free 
composition is usually used with the help of two-frequency 
measurements to eliminate the effect of the ionosphere. Other 
parameters such as tropospheric delay and receiver clock off-
set are estimated simultaneously with the station coordinates. 
Other sources of error such as relativistic, phase wind-up, 
ocean loading, phase center offset (PCO), and phase center 
variation (PCV) receivers and satellites, and earth tides can 
be corrected through existing models. After eliminating, esti-
mating, and modeling the presented errors, the first part of 
the mathematical model (functional model) can be carefully 
determined. Then, the second part of the mathematical model 

(stochastic model) must also be considered. Now, by choos-
ing a suitable processing method, we can expect that the PPP 
method can provide results with the desired quality (Kouba 
and Héroux 2001; Li and Zhang 2012). Figure 1 shows the 
flowchart of the proposed method.

According to this diagram, first, the model inputs 
including station information (RINEX observation and 
Differential Code Bias (https:// cddis. nasa. gov/ archi ve/ gnss/ 
produ cts/ bias/ 2017/)) and satellite precise ephemeris (Orbit 
and Clock (https:// cddis. nasa. gov/ archi ve/ gnss/ produ cts/ 
mgex/ 1982), and as well as Phase Center Offset (http:// 
www. epncb. oma. be/ ftp/ stati on/ gener al/ old_ calib ratio 
ns/) are prepared. Corrections such as Cycle Slip Detec-
tion (Melbourne 1985), Phase Wind up (Wu et al. 1992), 
Solid Earth Tide, Ocean Tide Loading, and Earth Rotation 
(Kouba and Héroux 2001; Bisnath and Gao 2009) are then 
applied to the observations, then a functional model is con-
structed using an ionospheric-free compound; to complete 
the functional model, a suitable stochastic model must be 
considered. In this research two approaches are used to 
implement the stochastic model. In the first approach, the 
stochastic model is considered based on nominal weight 
and experimental variance for observations. In the second 
approach, a stochastic model is constructed based on the 
LSVCE method. Finally, with two accurate models (func-
tional model and Stochastic model), the RLS method is 
used to solve PPP and estimate unknowns. These unknowns 
include station coordinates, clock receiver error, phase 
ambiguity, tropospheric delay, and time offset between the 
two systems.

Functional model of multi‑GNSS PPP

PPP contains dual frequency measurements of one receiver 
along with precise products of satellite clock and orbit. Since 
in this research, a combination of observations of GPS and 
Galileo systems has been used. The IF equations for this 
combination for code and phase observations are as follows 
(Cai and Gao 2013; Cai et al. 2015; Li et al. 2018):

For code observation:

For phase observation:

In Eq.  (1) and Eq.  (2), PIF = �IFP1 + �IFP2 and 
ΦIF = �IFΦ1 + �IFΦ2 are IF code and phase observations, 

(1)
PG
IF
= �G + cdtG + TG + �

(
PG
IF

)
PE
IF
= �E + cdtG + TE + cdtE
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+ �

(
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)
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(
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)
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r e s p e c t i v e l y ,  �IF =
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N2 , and f1, f2 the frequencies of the two 
signals are used. P1,P2 and Φ1,Φ2 are the pseudo-range code 
observations and the phase observation, respectively. � is the 
geometric distance between the receiver and the satellite, T  
is a tropospheric delay, dt is receiver clock, c is the speed of 
light, N is the correct phase ambiguity and � wavelength, 
and � represents other errors such as observation noise, 
receiver and satellite code, and phase hardware bias. In equa-
tions, a new parameter called cdtE

sys
 is added to the model to 

indicate the time difference between GPS time system rela-
tive to Galileo.

Formulation of the stochastic model

Many stochastic models have been proposed to weight GNSS 
observations that are mostly derived empirically. In most of 
available models, only the altitude angle of satellites is con-
sidered for predefining the weights (Li 2016). However, in 
reality, the statistical conditions governing the observations 

cannot be fully modeled because they change during the 
observation period (Wang et al. 2002; Roberts et al. 2019). 
Therefore, we propose to re-estimate these weights using 
a VCE algorithm. In the following, we describe the nomi-
nal weighting method and the use of experimental models, 
and then the weight estimation method using the LS-VCE 
is presented.

Nominal weight

in the nominal weight, using the error propagation law, the 
IF observation covariance matrix can be introduced for code 
and phase observations as follows (Guo et al. 2021; Rebeyrol 
et al. 2007; Li and Geng 2019):

In Eq. (3), �2

Φ1

 and �2

Φ2

 are the nominal precision of phase 
observations, �2

P1

 and �2

P2

 are the nominal precision of code 
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Fig. 1  Algorithm for formation 
of PPP
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observations, �2

Φ3

 and �2

P2

 are the precision of the IF phase 
and code observations, QE is the elevation-dependent model 
which can be  expressed us ing re la t ionships 
Q1 =

1

sin(E)
,Q2 =

1

sin2(E)
,Q3 = cos(E),Q4 = cos2(E) and Q5 = exp

(
−E

E0

)
 , 

and J is the Jacobian matrix. It is assumed that P1 and P2 as 
well as Φ1 and Φ2 have the same accuracy. E is the satellites 
elevation angle(Units: degree) and E0 = 20 (the constant 
empirical value) for IF observations (Han 1997; Gao 
et al. 2011).

LS‑VCE weights

In this method, the accuracy of code and phase observa-
tions are estimated and used in the construction of weight 
matrices. There are many methods for estimating variance 
components. These methods include MINQUE, BIQUE, 
Helmert, REML, and LS-VCE. In this research, the LSVCE 
method has been used. This method was first introduced by 
Teunissen in 1988 (Teunissen 1988). It was then developed 
in 2007 by Amiri-Simkooei. This method considers a set 
of unbiased estimators that have the property of independ-
ence from the observation distribution function. Since this 
method follows the principle of least squares, it is easily 
possible to do various statistical tests (Amiri-Simkooei 
2007, 2013; Amiri-Simkooei et al. 2009). The model used 
for the observation equations is as follows:

where E is the mathematical expectation; D are disper-
sion operators; A , y , and x are design matrix, observations 
vector, and unknown vector; Q0 is the known part of covari-
ance matrix, �k is variance of unknown unit weight, Qy is 
covariance matrix of observations, and Qk, (k = 1, 2,… , p) 
are known co-factor matrices of models. The LS-VCE equa-
tion in linear model is presented as follows:

In Eq. (5), N is a matrix with dimensions of p × p , l is a 
vector with dimensions of p × 1 , P⟂

A
 is a orthogonal projec-

tion matrix, Qi and Qj in this study are cofactor matrices 
for code and phase observations, ê is a residual vector, and 
�̂ is an unknown variance component. See (Amiri-Sim-
kooei 2007) for more details on formulas.

(4)
E(y) = Ax

D(y) = Qy = Q0 +
∑p

k=1
�kQk

(5)
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N = nij =
1

2
tr(QiQ
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QjQ

−1
y
P⟂

A
)
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2
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QiQ
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2
tr(Q0Q

−1
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Q−1

y
P⟂

A
)

P⟂

A
= I − A(A

T

ATQ−1
y

ê = P⟂

A
y

Implementation of the LS‑VCE method 
in PPP

Considering that in this research, the formation of a sto-
chastic model and reaching the weight matrix has been 
done based on the LS-VCE method, the following is how 
to implement it in PPP positioning. In general, the struc-
ture of the stochastic model can be considered to consist of 
two parts. The first part includes the variance and accuracy 
of IF code and phase observations, and the second part 
presents a relation to express the dependence on the eleva-
tion angle of the satellite (Zangeneh-Nejad et al. 2018; 
Parvazi et al 2020; Qian et al. 2016). Hence, the covari-
ance matrix for an epoch with n satellites will be made as 
follows:

where �2

PIF

 and �2

ΦIF

 are the variances of IF code and 
phase observations, respectively. At this step, we have two 
unknowns for each satellite system in each of the epoch 
with n satellites because the satellite’s elevation-depend-
ence is not considered. This signifies that now there exist 
four unknowns in the model by combining the Galileo and 
GPS systems. The dimensions of the co-factor matrices 
and their structure for observational epochs have been pre-
sented as follows:

In Eq. (7), ΣC is a 2 × 2 matrix whose components (code 
and phase accuracy) are obtained by LS-VCE method. QE is 
the part of the stochastic model that represents the depend-
ence of weight on the elevation angle of the satellite. In this 
study, due to the low sampling rate, the time correlation was 
considered absent. How to calculate this time correlation 
can also be followed in the study of Amiri-Simkooei et al. 
(2013), Bona (2000), and Li et al. (2008).

Recursive least‑squares method and its 
implementation in PPP

In this study, in order to do the precise point positioning, 
we tend to implement the process epoch by epoch using 
RLS method. The RLS method was first proposed by Zan-
geneh-Nejad et al. in 2018 (Zangeneh-Nejad et al., 2018). 
If there is a non-linear relationship between observations 
and unknowns, this model can be presented as follows 
(Zangeneh-Nejad et al. 2018):

(6)ΣC = �2

PIF

Q1 + �2

ΦIF

Q2

(7)(Q)2nk×2nk = ΣC ⊗
(
QE

)
nk×nk
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where D and E are the observations dispersion and math-
ematical expectation operators respectively. F1 and F2 are 
the nonlinear vector functions from Rm1 → Rn1 and 
Rm2 → Rn2 , respectively. x̂(1)

1
 is an estimate of x1 and Q

x̂
(1)

1

 
covariance matrix of the first category of observations. By 
simplifying the equations as well as their linearization, the 
unknowns of both groups can be calculated as follows:

w h e r e  x̂
(1)

1
=
(
AT
11
Q−1

1
A11

)−1
AT
11
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1
y1  , 

Q
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21
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1
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 a n d 
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22
= �x2F2

(
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1
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2

)
 are Jacobian matrices, and �x1 represents 

the vector gradient relative to the vector. Ai design matrix, 
yi observations vector, xi unknown vector, and Qi covariance 
variance matrix. Index i specifies the group of observations. 
x0
1
, x0

2
 the initial values are related to the taylor expansion. 

Then unknowns will be updated using the relations 
x̂
(2)

1
= x0

1
+ �x̂

(2)

1
 and x̂2 = x0

2
+ �x̂2 . The same process is 

repeated by replacing x0
1
 with x̂2

1
 and x0

2
 with x̂2 , and the itera-

tion will continue until the convergence is achieved. The 
unknown vectors are defined as x1 =

(
xr, yr, zr,NIF

)
 and 

x2 =
(
cdtr,Tr

)
 . For more details on the equations presented 

and their proofs, please refer to Zangeneh-Nejad et  al. 
(2018).

The procedure for horizontal deformation 
analysis

The deformation analysis is, in fact, a method of determining 
the displacement of fixed points, as well as significant dis-
placements in geodetic networks (Amiri-Simkooei et al. 2017, 
2012; Kalkan et al. 2016). The false assumptions about the 
assumed fixed points in a geodetic network can have serious 
consequences in interpreting the displacements of points or 
predicting the displacement of structures. Therefore, one of 
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]

the important steps in deformation analysis is to determine 
the meaning of the displacement that occurred at the points, 
which is done using statistical tests. It is noteworthy that 
the displacement evaluation is typically performed in local 
coordinate systems; in this study, the results and the equa-
tions required to achieve the displacement vector based on 
the ENU coordinate system are presented (Vodopivec and 
Savsek-Safic 2003; Savšek-Safić et al. 2006). The deforma-
tion created at a point can be defined as the statistical sig-
nificant displacement of that point in two different epochs. 
For example, the position of a point at time t is expressed as 
Pt

(
Eastt, Northt

)
 using the covariance matrix ΣPt and at time 

t + dt as Pt+dt

(
Eastt+dt, Northt+dt

)
 using the covariance ΣPt+dt . 

The amount of displacement, horizontal displacement, and 
covariance matrix related to the point coordinates is defined 
by the difference between the estimated coordinates at times t 
and t + dt as follows (Koch 1999; Vodopivec and Savsek-Safic 
2003; Savšek-Safić et al. 2006; Alcay et al. 2019):

Assuming the coordinates in the two epochs t and t + dt 
are uncorrelated, the covariance matrix for the coordinates of 
point in two epochs can be expressed as follows (Vodopivec 
and Savsek-Safic 2003; Savšek-Safić et al 2006):

The variance of horizontal displacement by considering 
the Jacobi matrix Jd can be written as follows (finally, by 
calculating the multiplication of these matrices, the standard 
deviation(STD) of displacement ( �d ) is presented) (Vodopivec 
and Savsek-Safic 2003; Savšek-Safić et al 2006)::

(10)
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In this study, the deformation calculation has been per-
formed continuously, signifying that the data of the first epoch 
is used as a reference and that the second epoch is compared 
with the reference epoch.

Statistical tests of displacement significance

In regard to calculating displacement, we presented the 
results based on a comparison between two epochs. In 
the following, we considered two hypotheses, namely 
the null hypothesis and alternative hypothesis as follows 
(Koch 1999; Savšek-Safić et al. 2006; Alcay et al. 2019):

After the adjustment of at least two time epochs, we 
can determine the displacement d based on the second 
term of Eq. (10) and the displacement standard devia-
tion �d using the third term of Eq. (12). Since these two 
parameters can be calculated before deformation analy-
sis, they are used properly in statistical tests so that we 
can consider the test statistics as follows (Savšek-Safić 
et al 2006):
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{
H0 ∶ E(d) = 0 No displacement between two epochs

H0 ∶ E(d) ≠ 0 Displacement between two epochs

(14)Ttest =
d

�d

(12)
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In this study, the deformation calculation has been per-
formed continuously, signifying that the data of the first epoch 
is used as a reference and that the second epoch is compared 
with the reference epoch.

Statistical tests of displacement significance

In regard to calculating displacement, we presented the 
results based on a comparison between two epochs. In 
the following, we considered two hypotheses, namely 
the null hypothesis and alternative hypothesis as follows 
(Koch 1999; Savšek-Safić et al. 2006; Alcay et al. 2019):

After the adjustment of at least two time epochs, we 
can determine the displacement d based on the second 
term of Eq. (10) and the displacement standard devia-
tion �d using the third term of Eq. (12). Since these two 
parameters can be calculated before deformation analy-
sis, they are used properly in statistical tests so that we 
can consider the test statistics as follows (Savšek-Safić 
et al 2006):
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At last, the value of Ttest for each point is compared with 
the critical value Tcrit at a confidence level � . To know 
whether the displacement is significant or not, if T < Tcrit , 
the null hypothesis will be confirmed and therefore the dis-
placement will not be statistically valid. If T > Tcrit , the null 
hypothesis will be rejected and the displacement will be 
statistically valid; for more details about the critical value 
( Tcrit ), that is, its method of calculation, formulation, and 
determination, see Savšek-Safić et al. (2006). As described 
in Savšek-Safić et al. (2006), the value of Tcrit is equal to 3. 
As a “rule of thumb,” its value is larger than that obtained 
from the distribution function of the test statistics. Therefore, 
in this research, “3” is considered as the critical value.

Experimental tests, processing strategy, 
and results

The combination of multi-GNSS observations for Galileo 
and GPS includes E1/E5a and L1/L2 signals, respectively. 
Therefore, estimation of model unknowns is done by obser-
vations of these two systems. Table 1 shows the observation 
processing strategy for the combined multi-GNSS precise 
point positioning. The observations used in this part of the 
study were collected by the a multi-GNSS receiver on April 
24, 2018, in two epochs. A high-precision device was used 
to simulate the point displacement at the horizontal level. 
Figure 2 shows the device used along with the displace-
ment value. In this study, a horizontal displacement test was 

Table 1  Information used along with settings made in PPP processing

Item Setting

Observables Undifferenced code and phase observations
Frequency Galileo: E1/E5a; GPS: L1/L2
Elevation Cutoff 10◦

process Positioning using a combination of multi-GNSS (Galileo and GPS) observations
Estimator RLS with the unknowns added (Zangeneh-Nejad et al. 2018)
Stochastic model Nominal weight (code = 2 m and phase 15 mm) �G,P ∶ �E,P = 1 ∶ 2,�G,L ∶ �E,L = 1 ∶ 2

Sampling rate 5s

Satellite orbit and clock GFZ multi-GNSS
Satellite antenna PCO and PCV GPS, Galileo: IGS14.atx
Receiver antenna phase center and variation IGS14.atx
Troposphere model Saastamoinen model and global mapping function (GMF) (Böhm et al., 2006)
Relativistic correction Corrected (Prokopov et al., 2009)
Phase wind-up Corrected (Wu et al., 1992)
Station displacement Ocean tide loading, solid earth tides, and pole tides (Kouba and Héroux 2001)
Observation weight By LS-VCE method
Processing mode Static
Adjustment method PPP solution: RLS algorithme (Zangeneh-Nejad et al. 2018)
Estimated parameters System time difference parameters, receiver clock error, receiver position, ambiguity 

parameters, and tropospheric wet delay
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performed, involving the application of displacements (15 
and 25 mm) for the north and east horizontal components. 
The amount of simulated displacement between the two 
epochs has been considered as a real displacement.

In this research, observations in two epochs have been 
used. Initially, processing was performed as PPP using the 
five weight models presented. Observations were analyzed 
by nominal stochastic model and estimated model by LS-
VCE method. In the nominal method, the observation accu-
racy of code 2 m and phase 15 mm was selected. In the sec-
ond method, the stochastic model was estimated according 
to LS-VCE. Figures 3 and 4 show the standard deviations of 
the GPS code and phase observations with the five models. 
Also in Figs. 5 and 6, the results of the Galileo system are 
presented. Table 2 shows the mean values of the standard 
deviations for the GPS code and phase. According to this 
table, the values estimated by the LS-VCE method are dif-
ferent from their nominal values.

Deformation analysis using GPS‑only 
measurements

In this section, by using GPS observations and consider-
ing different weighting models, the displacement analysis 
has been studied. The results have been reviewed in several 
ways. Initially, the volume of displacement in the direction 
of the two components of east and north will be presented in 

Fig. 2  The device used to apply the simulated displacement with the 
receiver (15 mm on the right side of displacement, 25 mm on the left 
side of displacement for the north and east components)

Fig. 3  The STD of code and 
phase (GPS) parameters using 
LS-VCE in the first Epoch 
(duration of observations: 3 h 
and 50 min): code (above the 
picture) and phase (below the 
picture)
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two epochs. Then the standard deviation related to these two 
components will be tested. Following that, the two-dimen-
sional displacement vectors and azimuths will be analyzed. 
At last, by performing the statistical tests, the significance 
of the displacement will be examined. The results have been 

evaluated in the two modes of using the nominal weight and 
the estimated weight. In order to evaluate the performance 
of the proposed method, Table 3 has presented the results of 
the displacement for the desired point in two epochs using 
the nominal stochastic model and estimated stochastic model 

Fig. 4  The STD of code and 
phase (GPS) parameters using 
LS-VCE in the second Epoch 
(duration of observations: 4 h 
and 12 min): code (above the 
picture) and phase (below the 
picture)

Fig. 5  The STD of code and 
phase (Galileo) parameters 
using LS-VCE in the first Epoch 
(duration of observations: 3 h 
and 50 min): code (above the 
picture) and phase (below the 
picture)
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by LS-VCE method. The first epoch is considered as a refer-
ence epoch.

According to the results presented in Table 3, by using 
5 nominal weight models for stochastic model to estimate 

the east–west and north–south components, the weighting 
model Q5 becomes more accurate in estimating these com-
ponents. Thus, as compared with the real displacement, the 
difference for the East–West component is − 1.9 mm and for 

Fig. 6  The STD of code and 
phase (Galileo) parameters 
using LS-VCE in the second 
Epoch (duration of observa-
tions: 4 h and 12 min): code 
(above the picture) and phase 
(below the picture)

Table 2  The mean STD of 
code and phase (GPS/Galileo) 
parameters

Component Weight ( Q1) Weight ( Q2) Weight ( Q3) Weight ( Q4) Weight ( Q5)

�GPS
P3

(m) − Epoch_1 1.072 0.776 1.703 1.956 3.626

�GPS
L3

(mm) − Epoch_1 4.8 3.5 8.3 9.8 17.4

�GPS
P3

(m) − Epoch_2 0.800 0.574 1.279 1.468 2.717

�GPS
L3

(mm) − Epoch_2 6.6 4.3 11.8 13.1 22.2

�Galileo
P3

(m) − Epoch_1 0.06 0.08 0.08 0.11 0.35

�Galileo
L3

(mm) − Epoch_1 2.4 1.6 4.3 4.8 7.9

�Galileo
P3

(m) − Epoch_2 0.23 0.17 0.45 0.59 0.86

�Galileo
L3

(mm) − Epoch_2 2.5 1.7 4.4 4.9 8.5

Table 3  Compare the results obtained for the displacement of the east–west and north–south components using two nominal stochastic models 
and LS-VCE in the precise point positioning method with the help of GPS observations at the two time intervals of 4 h

Weight matrix Estimated value with nominal weighting model Estimated value with LS-VCE weighting model Actual displacement

East (mm) North (mm) Difference East (mm) North (mm) Difference East (mm) North (mm)

Q1 19.7  − 23.0  − 5.3  − 8 21  − 20.7  − 4  − 5.7 25  − 15

Q2 20.8  − 15.9  − 4.2  − 0.9 18.6  − 12  − 6.4  − 3 25  − 15
Q3 22.4  − 26.4  − 2.6  − 11.4 26.6  − 23.9 1.6  − 8.9 25  − 15
Q4 22.3  − 21.6  − 2.7  − 6.6 27.5  − 19.5 2.5  − 4.5 25  − 15
Q5 23.1  − 16.1  − 1.9  − 1.1 25  − 13.1 0 1.9 25  − 15
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the North–South component is − 1.1 mm. In the same case, 
when the LS-VCE method is used for the precision estima-
tion of IF code and phase parameters instead of the nomi-
nal weight, the weighting model Q5 becomes more accurate 
in estimating the east–west and north–south components, 
also for the east–west component, there is no difference 
between the estimated value and the real value, and for the 
north–south component the difference is − 1.9 mm. Based 
on these results, for the components weight estimation of 
the IF code and phase, the LS-VCE method is more accurate 
and this increase in efficiency has been presented in the four 
used models. In Table 4, the estimated standard deviation 
parameter has been presented by the LS-VCE method for 
each of the two East–West and North–South components by 
using the nominal and estimated weights.

According to the obtained results, in all different weight-
ing modes, using the LS-VCE method is more accurate than 
utilizing the nominal weight in presenting the east–west and 
north–south components. Based on the results of Table 4, 
in the first epoch, for the East–West component, the highest 
precision is 0.9 mm when using the weighted model Q5 and 
the lowest precision is 5.9 mm when using the weighted 
model Q2 ; for the North–South component, the highest pre-
cision is 0.5 mm when using weighted model Q5 , and the 
lowest precision is 3.8 mm when using the weighted model 
Q2 . In the second epoch, the highest and lowest precisions 

for the east–west component are 1.5 and 8.3 mm, respec-
tively and for the north–south component they are 0.7 and 
4.2 mm, respectively.

To compare the results when using the LS-VCE method 
in the weight estimation of the IF code and phase in the 
first and second epoch, regardless of which weight-
ing model is used, the highest and lowest precisions for 
the east–west component are 0.3 to 0.5 mm and for the 
north–south component the precision is 0.2 mm. Based on 
these results, the precision improvement when using the 
LS-VCE method for the East–West component is between 
0.6 and 7.8 mm and for the North–South component it 
is between 0.3 and 4 mm, which indicates a significant 
increase in precision when using the LS-VCE method. 
Table 5 presents the results of the displacement vector 
and its relevant azimuth.

According to Table 5, which is, in fact, a supplement 
to the information obtained from Table 3, it can be seen 
that when using the weight model Q5 and Q1 , the precise 
point positioning method using the weight estimation with 
LS-VCE compared to the nominal weight can cause us to 
approach the exact value of displacement, that is, the real 
displacement. In fact, first of all, the main criterion is that 
the estimated values must be close to the real value in two 
east–west and north–south directions. Secondly, the dis-
placement vector needs to be close to the real value. On 

Table 4  Comparison of the results obtained for the precision of East–West and North–South components using the two models of nominal sto-
chastic and LS-VCE in the precise point positioning method by GPS observations at two time intervals of 4 h

Weight matrix STD. with nominal weighting model STD. with LS-VCE weighting model

Epoch.1 Epoch.2 Epoch.1 Epoch.2

East (mm) North (mm) East (mm) North (mm) East (mm) North (mm) East (mm) North (mm)

Q1 3.1 1.8 5.1 2.4 0.3 0.2 0.5 0.2
Q2 5.9 3.8 8.3 4.2 0.3 0.2 0.4 0.2
Q3 1.9 1.1 3.1 1.5 0.3 0.2 0.5 0.2
Q4 1.7 1.0 2.7 1.3 0.3 0.2 0.5 0.2
Q5 0.9 0.5 1.5 0.7 0.3 0.2 0.5 0.2

Table 5  Estimated displacement and azimuth using the two models of stochastic nominal and LS-VCE in the PPP method by GPS observations 
at two time intervals of 4 h

Weight matrix Estimated value with nominal weighting model Estimated displacement with LS-VCE weighting 
model

Actual

d (mm) Azimuth (°) Difference d (mm) Azimuth (°) Difference d (mm) Azimuth (°)

d Az d Az

Q1 30.28  − 40.58 1.13 18.46 29.49  − 45.41 0.34 13.63 29.15  − 59.04
Q2 26.18  − 52.60  − 2.97 6.44 22.14  − 57.17  − 7.01 1.87 29.15  − 59.04
Q3 34.62  − 40.31 5.47 18.73 35.76  − 48.06 6.61 10.98 29.15  − 59.04
Q4 31.05  − 45.91 1.90 13.13 33.71  − 54.65 4.56 4.39 29.15  − 59.04
Q5 28.16  − 55.12  − 0.99 3.92 28.22  − 62.34  − 0.93  − 3.30 29.15  − 59.04
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the other hand, detecting the azimuth angle in the precise 
point positioning with the help of the estimated weight using 
the LS-VCE method is more accurate than using the nomi-
nal weight. After obtaining the displacement value in the 
two directions of the east–west and north–south, the results 
related to the displacement vector precision, as well as doing 
statistical tests must be performed to examine the signifi-
cance of the displacement. The relevant results have been 
presented in Table 6.

The results presented in Table 6 are interpreted in two 
manners. At first, a comparison is made between the stand-
ard deviation obtained for the displacement component d 
in the two cases of using the nominal weight and estimated 
weight with the help of LS-VCE in the precise point posi-
tioning method in such a manner that when the nominal 
weight is used, in this case the highest precision of the 
precise point positioning method is 1.48 mm when using 
the weighting model Q5 and the lowest precision is 8.9 mm 
in the weighting model Q2 . In case of using the estimated 
weight with the help of LS-VCE, the same examination 

shows a value between 0.4 and 0.5 mm. Therefore, by com-
paring the results of Table 6, it can be shown that the precise 
point positioning when using the estimated weight with the 
help of LS-VCE can improve the precision of the displace-
ment component between 1 and 9 mm.

Given the effect that different stochastic models can have 
on the quality of the position obtained from GNSS obser-
vations (Hadas et al. 2020; Li et al. 2016; Luo et al. 2014), 
to further evaluate the better stochastic model, it is possible 
to provide a more accurate evaluation for the coordinates of 
the points. Therefore, for the desired station, considering 
the relevant stochastic models in two epochs, the results 
related to the standard deviation of the coordinates have 
been evaluated. Figures 7, 8, 9, and 10 show the standard 
deviation of the east–west and north–south components. 
Also, Fig. 11 shows the estimated mean precision for two-
dimensional coordinate components using five stochastic 
models.

According to Figs. 7 to 11, it can be observed that in the 
first and second epochs, when different stochastic models 

Table 6  Statistical tests in 
displacement detection

Weight matrix Nominal weighting model LS-VCE weighting model

�d(mm) Ttest Tcrit Displacement �d(mm) Ttest Tcrit Displacement

Q1 4.26 7.1 3 Yes 0.39 73.9 3 Yes
Q2 8.9 2.9 3 No 0.44 49.9 3 Yes
Q3 2.63 13.2 3 Yes 0.43 83.0 3 Yes
Q4 2.48 12.5 3 Yes 0.47 72.3 3 Yes
Q5 1.48 18.9 3 Yes 0.47 58.9 3 Yes

Fig. 7  East–West component 
standard deviation using five 
stochastic models in the first 
epoch
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are utilized, the exponential stochastic model and cosine 
stochastic model offer better precision for coordinate com-
ponents so that the use of the exponential stochastic model 
can have the highest accuracy. The precision of the esti-
mated coordinates is one of the criteria that can be used 
for the superiority of these models. At last, for the best 
model (the exponential model), the maximum value of the 
standard deviation in the two epochs for the east–west and 

north–south components is between 21 and 42 cm and the 
minimum value is between 0.1 and 0.3 mm.

Deformation analysis using multi‑GNSS (Galileo 
and GPS) measurements

In this section, the displacement analysis with the combina-
tion of systems has been discussed. In order to investigate 

Fig. 8  North–South component 
standard deviation using five 
stochastic models in the first 
epoch

Fig. 9  East–West component 
standard deviation using five 
stochastic models in the second 
epoch
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the combination of different satellite systems observations, 
we used the multi-GNSS observations. According to the 
mode of using satellite single-system observations, in this 
section we have examined all the features mentioned above 
when multi-GNSS observations are combined. Initially, the 
displacement comparison of the east–west and north–south 
components was made using the two nominal stochastic 

models and the LS-VCE method in the precise point posi-
tioning method with the help of the multi-GNSS observa-
tions. The results of this comparison have been presented 
in Table 7.

Based on the results presented in Table 7, it can be seen 
that when a combination of multi-GNSS observations is 
used, the numerical values of the components estimated 

Fig. 10  North–South compo-
nent standard deviation using 
five stochastic models in the 
second epoch

Fig. 11  Estimated mean 
precision for two-dimensional 
coordinate components using 
five stochastic models
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in case of using the nominal weight and the estimated 
weight are close to each other. The weight estimation has 
a greater effect on the coordinate estimation than nomi-
nal weight when only GPS is used. With respect to the 
combined observations, the use of the Q5 weight model 
can provide the estimated coordinates at the values which 
are the closest to the actual coordinates. Then the preci-
sion of the components of the east–west and north–south 
components was compared using two weighting models in 
the PPP method. The results of this comparison have been 
presented in Table 8.

According to Table 8, it can be seen that in case of com-
bination of multi-GNSS observations when the precision 
estimation is utilized for code and phase components, the 

estimated precision for North–South and East–West coordi-
nate components with LS-VCE method has been improved 
by 5.8 mm compared to the nominal weight. This increase 
in precision is 0.7 mm for the combined mode compared 
to GPS-only. Afterward, the displacement analysis and the 
estimated azimuth have been discussed using the two mod-
els. The results of this comparison have been presented in 
Table 9.

Based on the results presented in Table 9, in most cases 
the estimated two-dimensional displacement in the case of 
the estimated weight relative to the nominal weight presents 
a result closer to reality. The LS-VCE method presupposes a 
realistic weight matrix estimated from your data. Therefore, 
another criterion that can be chosen for comparison is the 

Table 7  Comparison of displacement of east–west and north–south using the two models of nominal stochastic and LS-VCE in the PPP method 
with the multi-GNSS observations

Weight matrix Estimated value with nominal weighting model Estimated value with LS-VCE weighting model Actual displacement

East (mm) North (mm) Difference East (mm) North (mm) Difference East (mm) North (mm)

Q1 21.8  − 24.9  − 3.2  − 9.9 21.3  − 24.9  − 3.7  − 9.9 25  − 15

Q2 18.5  − 18.3  − 6.5  − 3.3 18.1  − 18.4  − 6.9  − 3.4 25  − 15
Q3 24.3  − 27.8  − 0.7  − 12.8 24.0  − 27.6  − 1  − 12.6 25  − 15
Q4 21.5  − 23.2  − 3.5  − 8.2 21.1  − 23.1  − 3.9  − 8.1 25  − 15
Q5 20.2  − 18.2  − 4.8  − 3.2 19.7  − 18.2  − 5.3  − 3.2 25  − 15

Table 8  Comparison of the precision of east–west and North–South components using the two models of nominal stochastic and LS-VCE in the 
PPP method with the multi-GNSS observations

Weight matrix STD. with nominal weighting model STD. with LS-VCE weighting model

Epoch.1 Epoch.2 Epoch.1 Epoch.2

East (mm) North (mm) East (mm) North (mm) East (mm) North (mm) East (mm) North (mm)

Q1 1.7 2.9 2.3 4.6 0.3 0.2 0.6 0.3
Q2 2.4 4.0 3.0 6.4 0.3 0.2 0.6 0.3
Q3 1.1 1.8 2.8 2.8 0.3 0.2 0.6 0.3
Q4 0.9 1.6 1.3 2.4 0.3 0.2 0.6 0.3
Q5 0.5 0.8 0.7 1.3 0.3 0.2 0.6 0.3

Table 9  Estimated displacement and azimuth using the two models of nominal stochastic and LS-VCE in the PPP method with the multi-GNSS 
observations

Weight matrix Estimated value with nominal weighting model Estimated displacement with LS-VCE weight-
ing model

Actual

d (mm) Azimuth (deg) Difference d (mm) Azimuth (deg) Difference d (mm) Azimuth (deg)

d Az d Az

Q1 33.07  − 41.20 3.92 17.84 32.77  − 40.54 3.62 18.50 29.15  − 59.04
Q2 26.04  − 45.31  − 3.11 13.73 25.75  − 44.53  − 3.40 14.51 29.15  − 59.04
Q3 36.91  − 41.16 7.76 17.88 36.62  − 41.01 7.47 18.03 29.15  − 59.04
Q4 31.63  − 42.82 2.48 16.22 31.23  − 42.41 2.08 16.63 29.15  − 59.04
Q5 27.21  − 47.98  − 1.94 11.06 26.79  − 47.27  − 2.36 11.77 29.15  − 59.04
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estimated precision for the displacement, which is calcu-
lated in two ways. At last, the results related to the statistical 
tests and the significance of the estimated displacement have 
been evaluated. The results of this comparison have been 
presented in Table 10.

An increase in precision for the displacement component 
is 5.3 mm when the estimated weight is used compared to 
the nominal weight. In all different weighting modes, the 
combination of observations has increased the estimated 
precision of the displacement component compared to the 
single-system mode. In case of the combination of multi-
GNSS observations, in all different weighting modes, the 
displacement significance test even when the nominal weight 
is used has been confirmed. When the observations are com-
bined, in most cases the difference between the estimated 
coordinate components with the real value of displacement 
has decreased. Sometimes, the combination of systems is 
not able to present less difference for displacement than the 
single-system mode, resulting from the low number of satel-
lites tracked by the Galileo positioning system.

The capability of the PPP method in detecting 
stable points

To evaluate the PPP method in the displacement analysis 
more accurately, instead of estimating the numerical value 
of the displacement in both east and north directions, this 
analysis is conducted to determine whether the studied sta-
tion has been displaced or not. A four-point was used for this 
study. The observations were made for each station at two 

intervals of 5 h. Stations 1 and 2 were fixed throughout the 
measurement period, and the stations 3 and 4 were moved 
in the second epoch. In view of the fact that the receivers are 
fixed on the concrete pillar of the station, it is not possible 
to change them unless this change of motion is intentionally 
applied to the points. For stations 3 and 4, this displace-
ment was applied using a special device installed on the 
pillar. When the receivers moved from their initial location 
at stations 3 and 4, the other three receivers at points 1 and 
2 remained unchanged at their initial location without any 
interruption in the observation. The observations for the 
four stations in the two time epochs have been presented 
in Table 11.

To evaluate the results, two observation periods were per-
formed on the desired stations. As mentioned earlier, for the 
stations 3 and 4, the two receivers were moved to their ini-
tial positions. Yet the other three stations were continuously 
taking the observations in the two epochs without reloca-
tion. Table 12 shows the position of four stations with their 
standard deviations in the UTM coordinate system. Also, 
Table 13 reveals the amount of two-dimensional displace-
ment of points, as well as the estimated displacement.

This section replies to the questions as to whether the 
approach is to detect the magnitude of the displacement at 
points, and whether only the PPP method is used to move 
the points, and whether this method is capable of correct 
diagnosis or not. According to the results presented in 
Tables 12 and 13, it can be observed that sometimes the 
estimated amount of displacement differs from the actual 
displacement. Yet this method can also be used to confirm 

Table 10  The results related to 
statistical tests to examine the 
significance of displacement 
using the two models of 
nominal stochastic and LS-VCE 
in the PPP method with the 
multi-GNSS observations

Weight matrix Nominal weighting model LS-VCE weighting model

�d(mm) Ttest Tcrit Displacement �d(mm) Ttest Tcrit Displacement

Q1 4.0 8.3 3 Yes 0.5 66.5 3 Yes
Q2 5.8 4.5 3 Yes 0.5 51.3 3 Yes
Q3 2.4 15.1 3 Yes 0.5 68.8 3 Yes
Q4 2.2 14.4 3 Yes 0.6 56.8 3 Yes
Q5 1.3 21.3 3 Yes 0.6 48.2 3 Yes

Table 11  Time of collecting 
observations at each station

Station Num-
ber

Epoch_1 Epoch_2

Date Time Duration (h) Date Time Duration (h)

1 Start 23.05.2018 9:50:0 5.66 23.05.2018 15:56:0 5.66
End 15:30:0 21:36:0

2 Start 23.05.2018 9:50:0 5.66 23.05.2018 15:56:0 5.66
End 15:30:0 21:36:0

3 Start 23.05.2018 9:50:0 5.66 23.05.2018 15:56:0 5.66
End 15:30:0 21:36:0

4 Start 23.05.2018 10:21:0 5.15 23.05.2018 15:56:0 5.15
End 15:30:0 21:05:0
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whether the point has been displaced and whether this dis-
placement is significant. Therefore, this method can also 
be used whether only one point is moved or not, which can 
be used for various applications that require a centimeter 
precision.

Conclusion

In this research, we studied the effect of the stochastic model 
in determining displacement. Three types of elevation-
dependent stochastic model with five samples were used. 
The trigonometric sinE (two samples), trigonometric cosE 
(two samples), and exponential functions of one sample were 
employed. The RLS method was used to solve the PPP prob-
lem and the LS-VCE method was employed to determine 
the variance of GNSS observations. Evaluations and results 
show that the Q5 model performed better analysis than other 
models. Therefore, the analysis of the results using this 
model was performed in several stages. The first step is to 
compare the differences between the actual and estimated 
coordinates for the east–west and north–south components 
using the nominal weight and the LS-VCE method. The 
results of the coordinate comparison show that the stochastic 
model based on the LS-VCE in the PPP method gives a dif-
ference of 0 and − 1.9 mm for the east–west and north–south 
components, while the use of nominal weight, a difference 
of − 1.9 and − 1.1 mm. In the second step, two weighting 
methods were studied in terms of estimating coordinate 
accuracy. The accuracy parameter for these components in 
two epochs, for the nominal weight mode, were between 

0.9 to 8.3 mm (epoch1) and 0.5 to 4.2 mm (epoch 2) for five 
elevation-dependent model ( Q1–Q5 ); meanwhile, in the case 
of using the LS-VCE method, these values were between 
0.3 to 0.5 mm and 0.1 to 0.2 mm. Based on these results, 
should the LS-VCE be employed, the precision improve-
ment for the East–West component will be between 0.6 
and 7.8 mm, and for the North–South component will be 
between 0.3 and 4 mm. In the third step, after obtaining 
the coordinates, the accuracy parameter of the horizontal 
component was evaluated. Accordingly, the nominal weight 
mode provided an accuracy of this component between 1.48 
and 8.9 mm, while the use of LS-VCE reduced this value to 
0.4 to 0.5 mm. In the fourth step, instead of using GPS-only 
observations, Multi-GNSS observations were used for dis-
placement analysis. Based on this, the estimated precision 
for the north–south and east–west coordinate components 
was increased by 5.8 mm when the LS-VCE was utilized 
compared to the nominal weight. The precision of the dis-
placement component was increased by 5.3 mm by using the 
estimated weight compared to the nominal weight. There-
fore, based on what was presented, it can be concluded that:

There are two factors influencing displacement analysis. 
One is the variance of the code and phase observations and 
the other is the elevation-dependent weight model.

The use of the LS-VCE method has yielded more favora-
ble results in terms of both coordinates and their accuracy 
than the nominal weight mode. This accuracy improvement 
was also presented for the horizontal component.

The accuracy of the coordinates presented in the nomi-
nal weight mode is strongly influenced by the elevation-
dependent weight model, while the LS-VCE method has 
fewer changes in the accuracy of the presentation by chang-
ing these models.

In both modes use only GPS and Multi-GNSS, the PPP 
method can provide us with more accurate displacement 
by using the LS-VCE weight estimation than the nominal 
weight.

Multi-GNSS mode has provided better results in estimat-
ing accuracy.

Therefore, the PPP method can also be used to verify 
whether the point is displaced and whether this displacement 

Table 12  Coordinates and standard deviation of four stations in the UTM coordinate system

Station 
Number

Epoch_1 Epoch_2

UTM coordinate system

East (m) STD (mm) North (m) STD (mm) East (m) STD (mm) North (m) STD (mm)

1 606,673.360 1.62 6,719,513.701 0.98 606,673.356 2.84 6,719,513.695 1.27
2 606,602.995 1.62 6,720,345.992 0.98 606,602.994 5.31 6,720,345.985 2.02
3 607,093.994 1.22 6,719,091.812 0.72 607,093.982 2.09 6,719,091.790 0.95
4 607,036.813 1.39 6,720,141.985 0.77 607,036.794 2.33 6,720,141.981 1.00

Table 13  Point displacement (Local ENU coordinate) analysis in the 
second case

Station 
Number

d estimated 
(mm)

d actual 
(mm)

Ttest Tcrit Displacement

1 6.7 0 2.76 3 No
2 6.6 0 2.88 3 No
3 24.5 17 14.52 3 Yes
4 18.9 9 7.01 3 Yes
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is significant. This method can also be applied to various 
applications that require centimeter accuracy.
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