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Abstract
Land Use/Land Cover (LULC) maps are crucial for assessing the status of environmental and natural resources management 
in any river basin or watershed. LULC is a cross-cutting environmental variable that also finds significant applications in 
hydrological modeling, watershed management, natural disaster management, climate change studies, and land management. 
This research study uses three different classification algorithms to investigate the LULC status of the Alaknanda river basin 
of the northwest Himalayan region in India. The entire area was classified into nine LULC classes using Landsat 8 satellite 
imagery, initially employing the Maximum Likelihood algorithm. This generated a reasonably good overall accuracy with 
a high Kappa coefficient of 0.79. However, the producer’s accuracies for a few significant classes were not satisfactory. 
This research attempts to explain the anomaly in the producer’s accuracy and improve them using machine learning-based 
classification algorithms. Furthermore, machine learning-based classification algorithms, namely Random Trees (RT) and 
Support Vector Machine (SVM) were employed. Both the algorithms generated good overall accuracy with high Kappa 
values of 0.83 and 0.82, respectively. Interestingly, the qualitative and quantitative comparisons for the classification results 
revealed that both RT and SVM algorithms resulted in improved and high producer’s accuracies. Therefore, this study infers 
that for mountainous watersheds with high variations in elevation and steep topography, machine learning-based classifica-
tion algorithms perform better than the conventional statistical classification algorithm.

Keywords  LULC classification · Watershed management · Maximum Likelihood · Machine learning · Random Trees · 
Support Vector Machine

Introduction

Land Use/Land Cover (LULC) maps have emerged as one 
of the most critical sources of environmental information, 
employed in assessing the natural resources’ status in any 
river basin or watershed (Nie et al. 2011; Atzberger 2013; 
Roy et al. 2015). Land use and land cover information also 
find significant applications in hydrological modeling, 
watershed management, natural disaster management, and 
land management (Lillesand et al. 2008; Nie et al. 2011; 
Sierra-Soler et al. 2016). Satellite remote sensing offers a 

unique set of advantages like global coverage, high temporal 
frequency, synoptic view, and the ability to observe inacces-
sible areas (Campbell and Wynne 2011). The most important 
benefit is the availability of optical remote sensing datasets 
in the open-source domain. Renowned agencies like the 
United States Geological Survey (USGS) and the European 
Space Agency (ESA) have been providing optical satellite 
datasets, viz. Landsat and Sentinel series for free, which has 
popularized remote sensing for various applications (Saadat 
et al. 2011; Wondrade et al. 2014; Mishra et al. 2020; Thanh 
et al. 2020). Numerous studies by different researchers have 
demonstrated the efficacy of optical remote sensing data 
products for land cover classification (Gong et al. 2013; 
Gómez et al. 2016).

Generally, the land cover describes the physical land 
types viz. area covered by forests, impervious surfaces, agri-
cultural lands, barren lands, and water bodies. On the other 
hand, as the term suggests, land use describes the utility of 
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the land for various purposes by humans, viz. for develop-
ment, conservation, or mixed uses. The entire ecosystem is 
strongly affected by variables responsible for land use and 
climatic changes (Shrestha et al. 2012). LULC is attributed 
as one of the most relevant flow contributors in a water-
shed (Kim et al. 2013; Himanshu et al. 2017). Therefore, for 
assessing water resources availability and its management in 
a watershed, LULC change analysis is of utmost importance 
(Malik and Bhat 2014).

Moreover, LULC changes cause a substantial effect in 
modifying the rainfall breakup into various hydrological 
components like surface runoff, infiltration, interception, and 
evaporation (Costa et al. 2003; Mao and Cherkauer 2009; 
Sajikumar and Remya 2015). There are two reasons for the 
variation in the LULC, one being the natural dynamics, and 
the other is attributed to human activities (Thenkabail et al. 
2005; Bontemps et al. 2008; Singh et al. 2014; Zhang et al. 
2019). These factors are responsible for deforestation, global 
warming, loss of biodiversity, increasing natural disasters, 
and global environmental change (DeFries et  al. 2010; 
Owrangi et al. 2014; Mahmood et al. 2014; Barros et al. 
2021).

Remote sensing data and techniques, along with GIS, pro-
vide an apt platform to develop and prepare LULC maps. 
Multi-spectral/temporal satellite data with medium/high 
spatial resolution have materialized as the most preferred 
data sources for deriving LULC maps (Güler et al. 2007). 
Conventionally, maps were prepared using available records 
and extensive field surveys, rendering them tedious, labori-
ous, time-consuming, and expensive. Moreover, due to the 
dynamic nature of the environment, the output maps used 
to become outdated (Dash et al. 2015). In contrast, remote 
sensing data provides highly vital information in a very cost-
effective and less time-consuming manner. High-resolution 
satellite data products are employed in large cities to esti-
mate LULC changes. However, the too-high cost of such 
data sets limits their availability (Dwivedi et al. 2005). On 
the contrary, satellite data products with the medium reso-
lution, specifically from the Landsat series, are among the 
most popular datasets worldwide for LULC mapping and 
change detection studies (Kumar et al. 2012; Wang et al. 
2009; Odindi et al. 2012).

Numerous methods and techniques have been used for pre-
paring satellite image-based land cover maps in the past (Li 
et al. 2014). These methods include unsupervised and super-
vised classification approaches, as well as parametric and 
non-parametric methods. In very recent times, non-parametric 
methods based on the machine learning approach have gained 
tremendous consideration for satellite image-based LULC 
classification and mapping. Researchers across the globe 
have been carrying out several studies on LULC mapping and 
modeling by employing various machine learning algorithms 
(Civco 1993; Pal 2005; Teluguntla et al. 2018; Talukdar et al. 

2020a, b). Also, comparison-based studies have been carried 
out wherein multiple machine learning-based models, and 
conventional models were employed for image classification 
(Rogan et al. 2008; Camargo et al. 2019). The most favored 
and in-demand algorithms include Support Vector Machine 
(SVM), Random Forests (RF), and k-Nearest Neighbors 
(k-NN) (Huang et al. 2002; Franco-Lopez et al. 2001; Kennedy 
et al. 2015). Object-based classification is another preferred 
approach that has proved to be very useful for classifying 
fine resolution satellite images (Machala and Zejdová 2014). 
The most critical aspect in LULC mapping is classification 
accuracy, which plays a crucial role as a deciding factor in 
selecting the best among various classification methods. The 
significant elements affecting the classification accuracy are 
the type of satellite sensor, spatial resolution, training data 
sources, accuracy assessment data sources, the total number 
of classes, and the classification approach (Manandhar et al. 
2009). Consequently, the most critical factor is choosing suit-
able classification algorithms for achieving acceptable clas-
sification accuracy (Lu and Weng 2007).

LULC mapping in mountainous terrain has always been 
challenging due to hills, valleys, plateaus, and mountains. This 
complexity in the landscape introduces effects like shadows 
and illumination issues due to aspect variation causing severe 
changes in the surface reflectance of various LULC types 
(Wang et al. 2020). Moreover, complex topography also poses 
challenges in water body identification. Advanced machine 
learning-based image classification techniques have been pro-
ducing promising results, and therefore, their use to generate 
LULC maps in complex terrain must be explored.

Keeping the aforementioned into consideration, the fol-
lowing are the specific objectives of the present study:

1.	 To prepare Land Use/Land Cover maps for the 
Alaknanda River Basin (ARB) using three approaches.

2.	 To compare the classification results obtained from 
MLC, SVM, and RT algorithms based on accuracy 
assessment.

The inferences drawn from this study will provide practical 
insights into using machine learning techniques for perform-
ing LULC classification, especially in snow-covered moun-
tainous regions. Also, the methodology presented can be rep-
licated to classify complex topographic settings elsewhere.

Materials and methods

Study area

The study focusses on the Alaknanda River Basin (ARB), 
which lies between 78°33′ E to 80°15′ E longitude and 
29°59′24″ N to 31°04′51″ N latitude in the Northwestern 
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Himalayan region of Uttarakhand in India and encompasses 
a catchment area of 11,035.3 km2 (Fig. 1) with a total length 
of 183.5 km. Alaknanda originates from the Satopanth, and 
the Bhagirath Kharak glaciers flow downstream and meet 
the Bhagirathi River at Devprayag to finally become river 
Ganga or the Ganges. The River Alaknanda is joined by the 
Dhauliganga, Nandakini, Mandakini, Pindar and some other 
tributaries as shown in Fig. 1. The catchment area features a 
variety of climates, viz. subtropical, temperate, sub-alpine, 
and alpine, primarily due to the substantial variation in the 
altitude ranging from 446 to 7801 m. ARB has a unique 
topographic setting featuring high mountain peaks and gla-
ciated valleys, especially in the northern part (Sharma and 
Mohanty 2018). The area is characterized by high relief, 
steep slopes, and high drainage density (Panwar et al. 2017). 
Furthermore, the topography is generally represented by 
north–south trending ridges and incised river valleys (Ghosh 
et al. 2019). Figure 1 shows clearly that the river valleys are 
very narrow in the upper part catchment, relatively narrow 
in the middle, and relatively wider in the lower reach.

Data and sources

The satellite data-based LULC classification was carried out 
using freely available 30 m (spatial resolution) Landsat 8 
OLI Level 1 images. The dataset was downloaded from the 
‘EarthExplorer’ official website of the United States Geo-
logical Survey (USGS) (https://​earth​explo​rer.​usgs.​gov/). A 
total of 2 multi-band images (Table 1) were downloaded 
for this purpose. Each L8/OLI image has data in 11 bands 

but, for classification purposes, data for bands 2 to 7 and 9 
(details listed in Table 2) were downloaded.

Tools and techniques used

The Semi-Automatic Classification Plugin (SCP) version 
6.4.0.2 in QGIS 3.14 software interface was used for pre-
processing the downloaded L8/OLI images, and after that, 
ArcGIS 10.4 was used for classification and accuracy assess-
ment. ENVI software was used for the estimation of the 
Normalized Difference Snow Index. For the classification 
in the ArcGIS interface, three different training algorithms 
(classifiers) from the spatial analyst toolbox were put into 
use, namely, MLC, SVM, and RT.

Methodology

This study focused on classifying the mountainous river 
basin and preparing LULC maps using three different clas-
sification algorithms. The resulting maps were compared 
on the basis of the accuracy assessment of each classified 

Fig. 1   Location map of the 
study area

Table 1   Details of satellite data downloaded for LULC classification

S. No Date of acquisition Row ID Path ID Cloud 
cover 
%

1 18–04-2018 39 145 6
2 11–05-2018 39 146 1
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image. The flowchart in Fig. 2 depicts the sequence of steps 
followed as part of the methodology adopted in this study.

The downloaded satellite images were pre-processed, 
where the Digital Number (DN) values in the images were 
converted to the Top of Atmosphere (ToA) Reflectance. 
During this process, the Dark Object Subtraction (DOS) 
atmospheric corrections were also applied using the SCP 
tool in QGIS. All the pre-processed image bands were then 
stacked together and clipped using the vector boundary 
of the study area. Both the clipped band stacks were then 
mosaiced together to create a single image of the entire river 
basin. The image was classified into nine different classes, 
namely, Snow, Forest, Sparse vegetation (or barren areas), 
Built-up, River bed, Water, Agriculture, Cloud, and Shadow. 
Concepts of visual image interpretation were used to identify 
each class and consequently assigned to the image pixels for 
image classification.

For the image classification training, sample polygons 
were digitized using field data, Google Earth Imagery, and 
different band combinations of the satellite image. A total 
of seven band combinations (R-G-B) were used to select 
training samples, namely, Natural Color Composite (4–3-2), 
False Color Composite (FCC)-Urban (7–6-4), Color Infra-
red Composite-Vegetation (5–4-3), Agricultural Area Com-
posite (6–5-2), Healthy Vegetation Composite (5–6-2) and 
Land Water Composite (5–6-4). The FCC of the two images 
(Fig. 3a) with a band combination of 7–5-3 is depicting the 
presence of snow/ice (cyan color) in the high elevation areas. 
Figure 3b shows the Natural Color Composite with band 
combination 5–4-3, wherein the snow-covered mountains 
are prominently visible. The same composite was used for 
the selection of training samples to classify snow. Also, to 
verify the classification of snow, the Normalized Difference 
Snow Index (NDSI) as shown in Fig. 3c was calculated using 
the following general equation: NDSI = (Green – SWIR)/

(Green + SWIR). Based on the previous studies (Hall et al. 
1998; Nijhawan et al. 2016) a threshold of 0.4 was selected 
to distinguish between snow and no snow areas. The process 
was carried out in ENVI software, using the Band Math tool. 
Even though the satellite images used in the analysis were 
acquired in April and May, the snow in the region is justi-
fied by the presence of glaciers in the high elevation zones 
of the Alaknanda River Basin. The higher elevation areas in 
the northern part of the study area remain snow-covered all 
round the year. Therefore, to appreciate and associate snow/
ice in the study area, an elevation map of the study area 
using SRTM DEM having a spatial resolution of 30 m was 
prepared, as shown in Fig. 3d. This representation correlates 
with the classification of snow.

A signature file with samples for all nine classes was 
developed to classify the satellite image. The classifica-
tion was carried out using the Maximum Likelihood Clas-
sifier (MLC), Support Vector Machine Classifier (SVM), 
and Random Trees Classifier (RT). The spectral signature 
file containing samples for each class was used to generate 
classified images in each of the classification approaches. 
Finally, an accuracy assessment was carried out for all the 
three classified images separately. For the accuracy assess-
ment, reference points shapefile was created using ground 
truth field data and points identified using Google Earth. 
A total of 946 points were identified as ground truth refer-
ences to be compared with the corresponding pixels in the 
classified image. The reference points or the test pixels were 
chosen through random sampling, but it was made sure that 
they were distinct from the training pixels. The number of 
reference points for ‘Snow’, ‘Forest’, ‘Sparse vegetation’, 
‘Built up’, ‘River bed’, ‘Agriculture’, ‘Clouds’, ‘Shadows’ 
and ‘Water’ were 131, 158, 46, 186, 18, 170, 41, 33 and 
163, respectively. A pivot table of reference pixels class 
and classified pixels class was created in ArcGIS interface 

Table 2   Landsat 8 OLI 
individual bands wavelength 
range and resolution

The table has been imported from page 114 of Semi-Automatic Classification Plugin Documentation 
(2016) by Luca Congedo (licensed under a Creative Commons Attribution-ShareAlike 4.0 International 
License)

Landsat 8 Bands Wavelength [micro meters] Resolution [meters]

Band 1—Coastal aerosol 0.43–0.45 30
Band 2—Blue 0.45–0.51 30
Band 3—Green 0.53–0.59 30
Band 4—Red 0.64–0.67 30
Band 5—Near Infrared (NIR) 0.85–0.88 30
Band 6—SWIR 1 1.57–1.65 30
Band 7—SWIR 2 2.11–2.29 30
Band 8—Panchromatic 0.50– 0.68 15
Band 9—Cirrus 1.36–1.38 30
Band 10—Thermal Infrared (TIRS) 1 10.60–11.19 100 (resampled to 30)
Band 11—Thermal Infrared (TIRS) 2 11.50–12.51 100 (resampled to 30)

Applied Geomatics (2021) 13:863–875866
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and then exported to Microsoft excel for the generation of 
error matrix and calculation of kappa coefficient for all three 
classified images. Additionally, the Producer’s and User’s 
accuracies for each class were also computed to access the 
accuracy of classification. The following Eqs. (1 and 2) 
were adopted for calculating producer’s accuracy and user’s 
accuracy:

Equations (3 and 4) adopted for the overall accuracy and 
kappa coefficient calculation are:

(1)Producer
�

s accuracy (%) =

(

xii

x+i

)

∗ 100

(2)User
�

s accuracy (%) =

(

xii

xi+

)

∗ 100

(3)Overall accuracy =
1

N

c
∑

i=1

ni

(4)Kappa coefficient =

{

N

c
∑

i=1

xii −

c
∑

i=1

(

xi+ ∗ x+i
)

}

÷

{

N2 −

c
∑

i=1

(

xi+ ∗ x+i
)

}

where N represents total pixels; c represents the total num-
ber of classes; xii = total number of pixels in row ‘i’ and col-
umn ‘i’; xi+  = total number of samples in a row ‘i’; x+i = total 
number of samples in column ‘i’ in the error matrix.

Since cloud detection is a significant challenge in any 
LULC map, the majority of LULC mapping is carried out 
using cloud-free satellite imageries, or the clouds are masked, 
and the masked portion of satellite imagery is obtained from 
the imagery of another year, preferably of the same month 
of the year. However, in this study, attempt has been made 
to classify the clouds and their shadows using the pixel val-
ues. The exact cloud and shadow pixel values were identi-
fied using the Landsat Quality Assessment Toolbox extension 
for ArcGIS. The Quality Assessment (QA) band was down-
loaded to use this tool effectively, wherein each pixel contains 
an integer value that represents bit packed combinations of 
surface, atmospheric, and sensor conditions. The integer val-
ues for cloud and shadow pixels were identified and extracted 
using the tool mentioned above in the ArcGIS interface, and 
then it was compared with the area classified as clouds by the 

Fig. 2   Methodology flowchart
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classifiers. Using this approach, it was possible to classify the 
clouds with error-free accuracy using all three classification 
approaches.

Results and discussion

The LULC maps for the snow-fed Alaknanda River Basin of 
the Northwest Himalayan region were prepared using three 
different classification algorithms; namely, MLC, SVM, 
and RT are presented in Fig. 4. Since the river network in 
the area is relatively narrow, it is not prominently visible 
in the maps presented. Therefore, a zoomed-in portion of 
the southwestern part of the catchment has been shown in 
Fig. 5 to visually appreciate the difference in classified maps 
obtained by the three approaches. Furthermore, the accuracy 
assessment was conducted for each of these maps to compare 
and evaluate the efficiency of these algorithms. The accuracy 
assessment results for the LULC maps generated using ML, 

SVM, and RT classifiers are presented in Tables 3, 4, and 
5, respectively.

Table 3 presents the accuracy assessment of the LULC 
map obtained using MLC. It shows that with a kappa coef-
ficient of 0.79, the overall accuracy of the classification 
is 82%. The producer’s accuracy of ‘Forest’, ‘Snow’ and 
‘Clouds’ is above 90%; ‘Agriculture’ and ‘Sparse vegetation’ 
were classified with a producer’s accuracy of above 80%; 
‘Built up’ area with over 75%; ‘River bed’ and ‘shadows’ 
between 60 to 70% and ‘Water’ having least and unsatisfac-
tory producer’s accuracy of 57.93%. As far as the user’s 
accuracy is concerned, except the ‘Built up’ class, which 
shows a very low accuracy of 40.22%, all the remaining 
classes show a user’s accuracy of greater than 70%.

Table 4 presents the accuracy assessment of the LULC 
map obtained using SVM. It shows a slightly higher kappa 
coefficient of 0.82 and an improved overall accuracy of 84%. 
The producer’s accuracies of ‘Snow’, ‘Forest’, ‘Sparse veg-
etation’, ‘River bed’, ‘Clouds’ and ‘Shadows’ are above 
90%. Furthermore, SVM shows a remarkable improvement 
in the producer’s accuracy of ‘water’ as high as 86.59%. 

Fig. 3   a FCC of the satellite images downloaded for classification b Clipped Natural Color Composite of ARB c Normalized Difference Snow 
Index map of the study area d Elevation maps of the study area

Applied Geomatics (2021) 13:863–875868
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However, the producer’s accuracy of ‘Built up’ class is as 
low as 59.68%, which is not satisfactory. The SVM approach 
obtained a user’s accuracy of 42% and 68% for ‘Sparse veg-
etation’ and ‘River bed’, respectively. The user’s accuracy 
for the remaining classes is above 80%. Thus, SVM classifi-
cation yielded much better results than the ML classification 
algorithm. The objective of SVM classification is to identify 
the optimal boundary between various classes or samples, 
also referred to as the support vectors. It is a binary classi-
fier capable of identifying a single boundary between two 
separate classes (Maxwell et al. 2018).

Finally, Table 5 presents the accuracy assessment of 
the LULC map obtained using an RT classifier. This clas-
sification approach shows the highest values for the kappa 
coefficient (0.83) and overall accuracy (85%). The pro-
ducer’s accuracies for ‘Snow’, ‘Forest’, ‘Sparse vegetation’, 
‘Water’, ‘Cloud’ and ‘Shadow’ are above 90%. ‘Agriculture’ 
class shows a good producer’s accuracy of 82.35%, while 

for ‘Built up’ and ‘River bed’, it is 54.30% and 61.11%, 
respectively.

Visual comparison of the three LULC maps presented in 
Fig. 4 shows a similar pattern for the two machine learning 
approaches. However, the map classified using MLC looks 
different. Figure 4a shows that the Maximum Likelihood 
Classifier has classified a considerable area under as built up 
in the northeastern part of the basin. On the contrary, Fig. 4b 
and c shows that the same area has minimal built-up areas 
as classified by the machine learning algorithms. Another 
interesting visual comparison is for the sparse vegetation or 
barren areas class. MLC has classified a considerably large 
number of pixels in this class as compared to SVM and RT 
algorithms.

Similarly, comparing the share of area under each class 
using all three classification approaches reveals a mix of 
minor and noteworthy differences. To appreciate the per-
centage of the area classified under each LULC class, a 

Fig. 4   LULC maps for the Alaknanda River Basin generated using (a) Maximum Likelihood Classifier, (b) Support Vector Machine, and (c) 
Random Trees

Applied Geomatics (2021) 13:863–875 869
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quantitative comparison of the classification results was per-
formed and is presented in the form of bar charts in Fig. 6. 
The bar charts clearly indicate the variation of classification 
output generated using MLC, SVM, and RT algorithms.

In this study, particular emphasis is directed towards clas-
sifying water using medium resolution satellite data in com-
plex mountainous terrain. Since the Alaknanda River Basin 
features narrow river stretches and steep valleys, it becomes 
challenging to identify water pixels in optical imagery. 
Therefore, multiple locations along the river course were 
carefully selected to prepare the training samples, and clas-
sification results indicate that MLC failed to capture water 
bodies, but both the machine learning approaches performed 
well. For a better visual representation of water body clas-
sification, a subset of the study area from the southwestern 
part of the catchment is presented in Fig. 5. It is visually 
evident that MLC has not been able to capture the river, 
especially in the southwest part of the map (Fig. 5a) while, 
SVM and RT have detected the river quite well (Fig. 5b, c).

In light of the classification results, the above discussion 
strongly suggests that machine learning algorithms (SVM 
and RT) have outperformed the conventional MLC technique 
to generate LULC maps for the snow-covered mountainous 
Alaknanda River Basin. The results are in line with other 
studies wherein several machine learning models like SVM, 
random forest (RF), radial basis function (RBF), decision tree 
(DT), and naïve bayes (NB) have performed better in com-
parison to the conventional classification approaches (Ma et al. 
2019; Shih et al. 2019; Talukdar et al. 2020a, b). Researchers 
have concluded explicitly that SVM and RF (Mountrakis et al. 
2011; Ma et al. 2017; Carranza et al. 2019) are the best ML-
based image classification techniques.

Summary and conclusions

It has been reported that Machine Learning is capable 
of generating a classification with higher accuracy for 
the remotely sensed satellite data in comparison to the 

Fig. 5   LULC status of the southwestern portion of ARB (a) Maximum Likelihood Classifier (b)Support Vector Machine and (c) Random Trees
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parametric approaches like Maximum Likelihood (Maxwell 
et  al. 2018). In the current study, an attempt has been 
made to compare three different classification approaches, 
namely ML, SVM, and RT, to prepare LULC maps for 
the snow-fed Alaknanda River Basin of the Northwest 
Himalayan region. The following conclusions are drawn 
from this study:

•	 The highest values of the Kappa coefficient and overall 
accuracy were obtained using the RT approach, fol-
lowed by SVM and ML. This shows that advanced 
machine learning-based classifiers performed better 
than the parametric Maximum Likelihood Classifier in 
the Alaknanda River Basin.

•	 Snow has been classified with a very high accuracy 
of 99.24% in all the classification approaches. Forest 
has also been classified with high accuracy in all three 
methods, but SVM and RT are better than ML. Simi-
larly, Sparse vegetation has been most accurately clas-
sified by RT, followed by SVM and ML.

•	 Classification of Built-up shows flipped results where 
ML obtained the highest accuracy of 75.81. On the 
other hand, both SVM and RT performed poorly, with 
accuracies of less than 60%. Also, Agriculture was 
best classified by the ML classifier, followed by RT 
and SVM.

•	 The SVM classifier outperformed the ‘River bed’ clas-
sification. In all three approaches, the clouds were very 
accurately classified. ML and RT showed a cent percent 
accuracy.

•	 The shadow pixels were classified with an accuracy of 
70% by ML classifier, but the machine learning-based 
approaches classified these with 100% accuracy.

•	 Finally, the water pixels in the satellite images were 
most accurately classified by the RT classifier followed 
by SVM and were poorly classified by the ML classi-
fier.

Finally, it can be concluded that for the snow-fed 
Alaknanda River Basin, the advanced machine learning-
based parametric classifiers have performed better than 
the Maximum Likelihood Classifier. The results cannot 
be generalized, but the accuracy assessment shows that 
Machine Learning based classifiers have outperformed in 
accurately classifying the majority of the classes. Espe-
cially for the watershed LULC mapping, accurate clas-
sification of water bodies is of utmost importance. This 
study suggests that the RT classifier is the best of three 
for accurately classifying water bodies. This particular 
inference signifies a robust utility of advanced machine 
learning algorithms for performing LULC classification.

Furthermore, the methodology can be replicated 
in snow-fed mountainous regions elsewhere. Change Ta
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detection studies can also be conducted using RT, SVM, or 
even other machine learning-based algorithms using freely 
available medium resolution satellite data products. How-
ever, it can be argued that microwave remote sensing data 
is most preferred to classify water, but in highly complex 
and undulated terrain, the occurrence of foreshortening 
and shadow effect introduces errors in microwave data. 
Therefore, the study shows that the Machine learning-
based classification approaches improve water detection 
capability and LULC mapping functionality using satel-
lite-based remote sensing data. Moreover, researchers in 
the remote sensing domain have increasingly interested 
in exploring and employing advanced machine learning 
algorithms for image classification (Rodriguez-Galiano 
et al. 2012; Yeom et al. 2013; Jamali 2020). The field is 
developing rapidly, and new algorithms and implementa-
tions are becoming available continuously. The application 
of machine learning algorithms in LULC classification can 
result in high-quality results, as the classification results 
of this research shows.
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