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Abstract
Human activity has boosted carbon dioxide emissions, causing temperatures to rise. The average temperature on Earth is 
roughly 15 °C, but it has been much higher and lower in the past. There are natural climatic changes, but experts say tempera-
tures are already rising faster than at any other period in history. Unplanned urbanization can sometimes backfire, causing 
negative consequences that harm the economy and contribute to environmental damages, especially in developing countries 
like Bangladesh. Because of the strong association between land use/land cover and land surface temperature (LST), the 
study attempted to analyze and estimate LULC and seasonal (both summer and winter) LSTs using Landsat satellite images 
at 5-year intervals from 1995 to 2020. Later, the study forecasted both LULC and seasonal LSTs for 2030 and 2040 using 
cellular automata (CA) and artificial neural network (ANN) algorithms for Rajshahi district. As supporting parameters for 
determining the magnitude of climate change effects owing to urbanization and temperature rise, primary data collection 
procedures such as focus group discussions (FGDs) and key informant interviews (KIIs) with experts from diverse sectors 
were used. Results reveal that the built-up area was increased from 158.22 km2 (6.64%) to 386.74 km2 (16.23%) in this 
25 years’ timeframe, and it contributed the highest average temperature (41.68 °C in 2020 in summer) comparing with other 
LULCs. The LSTs were increasing at an alarming rate with 1–2 °C standard deviations per 5 years and maximum temperature 
was increased from 1995 to 2020 by 37.22 to 42.7 °C) in summer and 22.18 to 28.94 °C in winter. Prediction states that net 
increase of built-up area will be 2.51 and 5.29, respectively, in 2030 and 2050 from 2020. Maximum LST will likely to be 
increased to 43.23 °C (2030) and 45.92 °C (2040) in summer, and 30.94 °C (2030) and 31.77 °C (2040) in winter. FGDs 
and KIIs assessments indicate that frequent LULC change was the main reason for increasing LSTs (71%) and 76% experts 
agreed that heat waves are the most influencing factors for adverse climate change, among other parameters. The work 
introduces new methods for integrating remote sensing data with primary datasets, which will provide substantial insights 
to urban planners and policymakers in terms of participatory and sustainable planning.
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Introduction

Urbanization is the process by which large populations 
become permanently concentrated in relatively small 
regions, resulting in the formation of cities. It is also the 
process through cities develop and an increasing pro-
portion of the population resides and migrates in cities. 
However, in the modern world, urbanization is becoming 
a headache for every country’s urban planner and policy 
makers. Haphazard urban growth and unplanned expan-
sion of urban areas are common scenarios in almost all 
developing countries, especially in South Asia. Today, 
50% of the world’s total population is urbanized, which is 
expected to reach 68% by 2050 (Habitat 2016; Kafy et al. 
2019). Rapid and uncontrolled urban migration, the con-
centration of better jobs in city areas, and discrimination 
placement of civic facilities are among the major reasons 
behind the massive flow of urban migration. Modern urban 
development accelerates urbanization that pressures mod-
ern cities and affects the surrounding environment, ecosys-
tem, and biodiversity (Al Rakib et al. 2020a; Chakroborty 
et al. 2020; Kafy et al. 2021a, 2020b; Rahman et al. 2018). 
Urban areas sometimes act as a ceaseless platform of vari-
ous economic activities and local–regional development, 
by representing more than 54% of the worldwide popula-
tion (Al Rakib et al. 2020b; Dey et al. 2021; Ullah et al. 
2019a). Though urbanization is an indicator of economic 
progress and social and technological advancement of a 
city, it certainly creates many short and long-term demerits 
in various aspects (Celik et al. 2019; Maimaitiyiming et al. 
2014). A rapid change in land cover creating a vast effect 
in the increment of land surface temperature (LST) with 
hampering the climate and ecological balance is one of the 
significant long-term consequences of modern urbaniza-
tion (Kafy et al. 2020b; Maimaitiyiming et al. 2014; Mal-
lick et al. 2008). Land cover changes are considered one of 
the leading causes behind the rising temperature in cities 
that is fueled by the urban consumption of cool land cov-
ers, i.e., vegetated and agricultural surfaces, wetlands, and 
water bodies (Halmy et al. 2015; Kafy et al. 2020b; Mishra 
and Rai 2016; Pal and Ziaul 2017; Zhou et al. 2011; Zine 
El Abidine et al. 2014). Land use usually refers to area 
which is localized and used by humans for various pur-
poses and land cover means area with natural surfaces and 
resources of land but they are regularly studied together 
for having strong correlation with each other (Al Rakib 
et al. 2020a; Verburg et al. 2009). Over the years, a sig-
nificant shift in built-up and urban areas is noticed as only 
3% of urban areas worldwide in 1950 and is expected to 
reach 66% by 2050 (UN-DESA 2018). This increasing 
trend has a drastic effect on the surrounding environment 
and climate, as urban areas have 2–4 °C more temperature 

than the rural areas and surrounding land use/land cover 
(LU/LC) (Lai and Cheng 2010). Numerous factors like 
reluctance in vertical urban growth, construction materi-
als, short distance between buildings and infrastructures, 
unplanned placement of public squares, roads, highways, 
short and large industrial hub, and commercial concen-
tration are responsible for the constant upsurge in tem-
perature (Ahmed et al. 2013; Chen et al. 2006; Dey et al. 
2021; Durand et al. 2011; Kafy et al. 2020b, 2021c; Pal 
and Ziaul 2017). This increasing trend and consumption 
of cool land covers result in the urban heat island (UHI) 
creation in major urban centers worldwide (Ahmed 2018; 
Kafy et al. 2020c; Naim and Kafy 2021; Yang et al. 2017) 
that has a higher connectivity with high energy consump-
tion, surrounding air quality, and health risks for humans 
such as cancer, and respiratory illness (Ahmed et al. 2013; 
Ogashawara and Bastos 2012; Pal and Ziaul 2017). Miti-
gating the formation of these UHIs can be achieved by the 
implementation of systematic and planned approach taken 
by urban planners for the betterment of living environ-
ments, human health, and surrounding nature.

Different satellite data are used to examine the LULC 
change dynamics such as Landsat, SPOT, Sentinel, and 
MODIS data (Al-Hamdan et al. 2017; Halmy et al. 2015; 
Kafy et al. 2021b; McCarthy et al. 2018; Osgouei and Kaya 
2017). Hence, the Landsat satellite data is often used by 
researchers for its high availability, good temporal reso-
lution, free-access, and long-range time-series data (Dey 
et al. 2021; Lu et al. 2019). The integrated approach of 
Geographic Information System (GIS) and Remote Sensing 
(RS) is greatly considered among researchers to measure the 
LULC change dynamics and spatiotemporal distribution of 
LST (Al Rakib et al. 2020a; Balogun and Ishola 2017; Dey 
et al. 2021; Faisal et al. 2021; Kafy et al. 2020b, 2021d; Lily 
Rose and Devadas 2009; Rahman et al. 2018). LULC change 
detection and LST monitoring through field visits are time-
consuming, error-prone, and highly labor-intensive (Hart 
and Sailor 2009; Lily Rose and Devadas 2009). Meanwhile, 
the integrated approach of GIS and RS technology is more 
user-friendly, technologically advanced, and more efficiently 
examine, monitor, and map the LULC and LST change (Fu 
and Weng 2018; Niyogi 2019; Trolle et al. 2019). Statisti-
cal and technological advancements in numerous methods 
using diverse satellite data have influenced spatiotemporal 
modeling of LULC and LST change and resulted in efficient 
solutions to difficulties associated with this phenomenon 
(Ahmed et al. 2013; Celik et al. 2019; Faisal et al. 2021; 
Fu and Weng 2018; Gaur et al. 2018; Rahman 2016; Zine 
El Abidine et al. 2014). Researchers worldwide have also 
analyzed the spatial distribution of LST on different LULC 
classes using available thermal sensors to better understand 
the influence of LULC change on LST (Celik et al. 2019; 
Rahman et al. 2017a, b).
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To understand the dynamics of one area, evaluation of 
LULC change and their impact on spatiotemporal LST 
distribution is not enough. However, predicting the future 
LULC and LST scenarios and the effects of the current 
changing pattern is also needed to better understand the 
impact of this phenomenon. Predicted LULC and LST 
change scenario are playing a crucial role in decision-mak-
ing and policy improvement as it provides the decision-
makers and urban planners with a better view of the future 
needs and impact of the present trends (Handayanto et al. 
2017; Kafy et al. 2021d; UN “Sustainable Development 
Goals” 2015). As the LULC and LST change prediction is 
spatial in nature, researchers need a comprehensive stra-
tegic approach to predict the future scenarios (Kafy et al. 
2020b). Researchers worldwide took various approaches to 
predict the future scenario like Markov Chain (MC) (Guan 
et al. 2011), Cellular Automata (CA) (Al sharif and Pradhan 
2014; Kafy et al. 2021e), Multi-Layer Perception Markov 
Chain (MLP—MC) (Arsanjani et al. 2013; Mishra and Rai 
2016), Artificial Neural Network (ANN) (Azari et al. 2016; 
Maduako et al. 2016a, b; Mozumder and Tripathi 2014), 
Cellular Automata—Markov (CA—Markov) chain (Ghosh 
et al. 2017; Islam et al. 2018), Binary Logistic Regression 
algorithm (Liu et al. 2017), and CLUE (Singh et al. 2015) 
models. All the prediction models have their own algorithms 
and methodology to perform the simulation. Among them, 
the CA model uses the previous cell values within a neigh-
borhood to predict according to a series of transition rules 
(Al sharif and Pradhan 2014; Pal and Ziaul 2017). On the 
other hand, the ANN is inspired by the human brain’s nerve 
system that evaluates and models the non-linear trends (Kafy 
et al. 2020c; Maduako et al. 2016a, b). The MLP-MC model 
was recently developed, integrating the Multi-Layer Percep-
tion Neural Network (MLP-NN) and MC model (Fortin et al. 
2003). It takes a qualitative LULC map of two consecutive 
years as input and produces a transition matrix (Kafy et al. 
2020b; Maduako et al. 2016a, b; Mishra et al. 2018; Mishra 
and Rai 2016). This model also suggests a scenario that a 
raster unit (pixel) will convert to one category of LULC 
from another within a certain time period based on the past 
trends (Eastman 2012). The MC model is also a known 
method to understand and simulate the landscape changes 
(Al sharif and Pradhan 2014). But this model is recom-
mended for the areas for which the LULC change pattern 
is known (Maithani 2015). The MC also extracts the LULC 
conversion area to simulate the transition pattern (Kafy et al. 
2020b). Despite all the advantages, MLC-MC method takes 
precedence over MLP-NN and MC for its advanced algo-
rithm, higher accuracy, and the best possible simulation of 
urban expansion (Dey et al. 2021; Mishra et al. 2018).

In recent times, several methods are applied by research-
ers to predict the LULC and LST change dynamics for their 
respective study areas (Al sharif and Pradhan 2014; Celik 

et al. 2019; Kafy et al. 2021e; Mishra et al. 2018). Mishra 
et al. (2018) examined and compared the application of 
Stochastic Markov Chain (ST—MC), MLP-MC, and CA 
models to examine and predict the future LULC scenario of 
Varanasi, India (Mishra et al. 2018). Kafy et al. (2021e) used 
CA model to predict the future LULC dynamics of Dhaka 
Metropolitan Area with high-resolution RapidEye satellite 
images that showed a high level of accuracy (Kafy et al. 
2021e). Zine El Abidine et al. (2014) correlated the relation 
between LULC and LST dynamics and used that to model 
urban heat waves in Middle Eastern cities (Zine El Abidine 
et al. 2014).

Rajshahi district, located in Bangladesh’s northeastern 
region, is an agricultural-based region that is well-connected 
throughout the country. Better living standards, access to 
better educational institutions, and employment opportuni-
ties have attracted people towards Rajshahi over the past few 
decades. The increasing population pressure is accelerating 
unplanned infrastructural development in this region. Meth-
ods incorporating CA and ANN algorithms have the poten-
tial to yield valuable insights into the short and long-term 
consequences of LULC and LST change in this region. It can 
also help the decision-makers and urban planners to reduce 
the effect of UHI. The current study is a regional scale study 
and the first of its kind in Bangladesh’s northwest region, 
intending to determine the past (1995, 2000, 2005, 2010, 
2015, and 2020) and future (2030 and 2040) trend of LULC 
and seasonal (summer and winter) LST change, as well as 
LST variation across different LULC classes, using novel 
approaches such as support vector machine (SVM), CA, 
and ANN algorithms. Finally, this study engages the local 
community people and professionals through Focus Group 
Discussions (FGDs) and Key Informant Interviews (KIIs) 
to identify the impact of LULC, seasonal LST, and climate 
change in the study region for developing sustainable land 
use management, temperature increase, and climate change 
mitigating strategies. This study will be an effective tool for 
urban planners and policymakers to understand the LULC 
change and its impact on seasonal LST distribution in a more 
comprehensive manner.

Study area profile

Rajshahi district, the divisional center-point of Rajshahi 
Division, is situated in the north-western part of Bangla-
desh, standing upon the northern bank of the Padma River. 
It lies between 24° 12′ N to 24° 44′ N latitude and 88° 18′ E 
to 88° 58′ E longitude (Fig. 1). This region serves as one of 
Bangladesh’s most influential commercial and educational 
cores, with an approximate area of about 2428 km2 (BBS 
2013; Clemett et al. 2006; RDA 2008). Though the major-
ity portion of the Rajshahi district serves the agricultural 
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purpose, this area is continuously exposed to uncontrolled 
and unmonitored urbanization since the beginning of the 
twenty-first century. This haphazard development resulted in 
a reduction of 14% of vegetation and agricultural land with 
an increment of infrastructure development by 19.4% from 
1997 to 2010 (Islam and Hassan 2012). By the next decade, 
Rajshahi district had only 43.12% of the total area consist-
ing of agricultural land and vegetation, 32.13% of bare land, 
14.17% of built-up area, and 10.58% of water bodies (Kafy 
et al. 2020a). The unplanned and uncontrolled transition 
between different LULCs negatively influences the ecologi-
cal sustainability of an area, as this transition significantly 
replaces cool land covers like vegetation, agricultural land, 
and water bodies to built-up areas. City-level studies have 
shown that the haphazard urban growth with uncontrolled 
depletion of cool land covers significantly accelerates the 
rise in LST (Kafy et al. 2020a).

The climate of the Rajshahi district is divided into dif-
ferent monsoons that brings moderate rainfall, high humid-
ity, and escalating temperature. Four distinctive seasons 
are noticed in this region, i.e., winter (low rainfall, tem-
perature, and humidity) from October to February; sum-
mer (low rainfall, high temperature, and humidity) from 
March to June; and monsoon (heavy rainfall, moderate 

temperature, humidity) from July to September (Alamgir 
et al. 2020). Higher temperature is varying between 30 and 
40 °C and usually remains in mid-summer, i.e., April and 
May. On the other hand, the lower temperature is varying 
between 18 and 23 °C and generally remnants in mid-
winter, i.e., December and January (BBS 2013; Kafy et al. 
2020b; UN 2019).

Despite being an agrarian region, a pick level indus-
trialization has occurred in this region after the opening 
of Jamuna Bridge in 1998 (Amzad Hossain 2017; Wadud 
2018). The huge urban influx was seen in this region due 
to major urban migration which was tremendously affected 
by better life opportunity and abundant job opportunities 
(Al Rakib et al. 2020c; Kafy et al. 2019). In 2001, this 
region consisted of a total population of 22,86,874, hav-
ing a population density of 941 people/km2 (BBS 2013; 
Clemett et  al. 2006). By 2016, the total population of 
this region was increased to 28,53,000 with a popula-
tion density of 1175 people/km2 (BBS 2013; UN 2019). 
Unregulated urbanization and haphazard consumption of 
different LULCs highly impacted the seasonal severity of 
this region in the last few years that greatly affected biodi-
versity, ecology, livelihood, and agricultural development 
(Kafy et al. 2020a).

Fig. 1   Location map of the study area. a Rajshahi district in Bangladesh. b Rajshahi district
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Data and methodology

Data description

Both primary and secondary datasets were used for this 
study. The study period was set to be the years 1995, 2000, 
2005, 2010, 2015, and 2020. Over this silver jubilee, twelve 
sets of multispectral Landsat satellite data were acquired 
from United States Geological Survey (USGS) to examine 
the LULC change in the study area and its impact on the 
seasonal LST distribution. All of the images were collected 
for both the summer and winter seasons, where April was 
considered for summer and December was considered for 
the winter season. Cloud cover was set to < 10%, though all 
the images had nearly 0% cloud cover over the study region. 
The images had a spatial resolution of 30 m. Preprocessing 
stage of the images was avoided as Landsat satellite data is 
free from radiometric and geometric distortion (Kafy et al. 
2021d). A detailed description of the acquired data is shown 
in Table 1.

Primary data collection

Primary data was collected by conducting a field visit in Feb-
ruary 2020. Global Positioning System (GPS) was used to 
assemble the ground truth data for the accuracy assessment 
of classified LULC maps for the year 2020. Ten FGDs and 

twenty KIIs were conducted from January 2020 to March 
2020 to identify the possible impacts of LULC change, 
seasonal LST shifts, and climate change in the study area. 
The FGDs will help to identify the impacts of LULC and 
temperature changes on the study area in the last 25 years. 
The KIIs with experts will assist in identifying the possible 
impacts of climate change on the study region. Based on 
the suggestions provided by the FGD and KII participants, 
strategies for ensuring sustainable land use management, 
reducing the temperature increase, and mitigate the cli-
mate change impacts have been developed. The FGDs were 
conducted in ten unions of the Rajshahi district (Fig. 1b). 
The KIIs and FGDs (8–10 participants) assessments were 
consisted of urban planners, agricultural officers, environ-
mental engineers, policymakers, local community leaders, 
and decision-makers. The outputs from FGDs and KIIs has 
been discussed in the “Impact on LULC, seasonal LST, and 
climate change based on KIIs and FGDs” section.

Classification of LULC map

All the acquired images were classified into four major 
LULC class, i.e., water bodies, built-up area, agricultural 
land, and bare land for the whole study period using a sup-
port vector machine (SVM) algorithm in ENVI 5.3 soft-
ware. A detailed description of each LULC is provided in 
Table 2. The SVM algorithm is a powerful LULC clas-
sification method as it is derived from statistical learning 

Table 1   Description of the 
collected Landsat data from 
USGS

Year Season Acquired date Path/row Sensor Spatial resolution Cloud cover

1995 Summer 18 April 1995 138/043 Landsat 5 TM 30 m  < 10%
Winter 28 November 1995

2000 Summer 15 April 2000
Winter 11 December 2000

2005 Summer 13 April 2005
Winter 7 November 2005

2010 Summer 11 April 2010
Winter 23 December 2010

2015 Summer 9 April 2015 Landsat 8 OLI
Winter 21 December 2015

2020 Summer 6 April 2020
Winter 18 December 2020

Table 2   Description of features 
in each LULC

Land cover Covered land use and features

Built-up area Residential, industrial, functional areas, impervious layers, and trans-
portation network

Agricultural land All types of vegetation, herb, shrubs, cultivation, and agricultural lands
Water bodies Rivers, wetlands, ponds, water reservoirs, canals, and streams
Bare land Fallow land, sand, large playground, open ground, and landfill sites
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theory that usually produces more accuracy in the classified 
images even if the data is complex and noisy (Maulik and 
Chakraborty 2017). Survey data, background information, 
and local knowledge on existing and previous LULC classes 
were considered to ensure the maximum accuracy of the 
signature data used in the image classification.

Classification accuracy assessment

A total of 1800 ground-truthing points were collected from 
6 years of images using random sampling technique. The 
same number of points were used to validate the accuracy of 
the classified maps using points collected from the Google 
earth platform (GEP) and GPS. A total of 300 points were 
collected from the GEP for each year from 1995 to 2015. 
For the year 2020, 200 points were collected using GPS dur-
ing the field visit and 100 points were collected from GEP. 
Overall accuracy, User accuracy, Producers’ accuracy, and 
Kappa statistics were calculated using the equations shown 
in Table 3, which are considered one of the best classifica-
tion accuracy assessment techniques (Rahman et al. 2018).

Estimation of seasonal LST

Spatial distribution of seasonal (summer and winter) LST 
during the study period (1995–2020) was evaluated using 
Landsat thermal bands from the acquired datasets. Land-
sat thermal sensor acquires thermal data as Digital Number 
(DN) that were converted to LST using the equations which 
are shown in Fig. 2 (Celik et al. 2019; Connors et al. 2013; 
Maduako et al. 2016a, b; Pal and Ziaul 2017; Shatnawi and 
Abu Qdais 2019; Ullah et al. 2019b).

Seasonal LST variation over different LULC classes

To evaluate the seasonal mean temperature variations over 
different LULC classes, the “Zonal Statistics” tool was 
used. An output table was generated by using zonal sta-
tistics showing the mean values of seasonal LST for each 
LULC class in ArcGIS 10.6 software. The “Zonal Statistics 
as Table” tool summarizes the mean temperature values 
within each class of LULC dataset and reports the results 
to a table (Fig. 3).

Prediction of temporal LULC change

The CA model was used to identify the future LULC change 
using QGIS’s (version 3.18) MOLUSCE plugin as it con-
siders all the static and dynamic aspects of change in every 
LULC categories with excellent accuracy (Al-sharif and 
Pradhan 2015; Balogun and Ishola 2017; Losiri et al. 2016; 
Santé et al. 2010). For using the MOLUSCE 3.0.13 ver-
sion in the updated QGIS version, up-gradation of the freely 
available plugin python script was performed by keeping 
all the parameters same for prediction future LULC. As 
the model considers dependent and independent variables, 
elevation, slope, distance from the road network, water bod-
ies, education institutions, and commercial areas were used 
as dependent variables and classified LULC maps for the 
study period were used as independent variables. Shapefiles 
of road networks, water bodies, education institutions, and 
commercial areas were collected from open street map plat-
form to estimate the distance using the Euclidian distance 
function in ArcGIS 10.6 software. Digital Elevation—Shut-
tle Radar Topography Mission (SRTM) was used to calcu-
late the elevation and slope characteristics. The estimated 
dependent variables developed a transition matrix using a 
random sampling technique by setting a maximum iteration 
of 1000 cells (3 × 3) neighborhood pixels. After developing 
the transition matrix, the CA model predicted future LULC 
maps for 2030 and 2040 in QGIS software. Before the pre-
diction process for the years 2030 and 2040, the model was 
validated by predicting the LULC map for 2020 with a side-
by-side comparison with the classified maps of the respec-
tive year. Multiple Kappa (K) parameters like Klocation, Kno, 
Klocation strata, and Kstandard were estimated in TerrSet software 
to validate and evaluate the model’s accuracy level. The vali-
dation module of QGIS was also applied to examine the clas-
sification accuracy with Kappa coefficients comparing the 
classified maps and the predicted maps of the same years. 
The overall detailed classification and prediction procedures 
are given in Fig. 4.

LST prediction process for 2030 and 2040

The ANN algorithm in MATLAB software was used to 
predict the 2030 and 2040 seasonal LST scenarios. It is 
considered an effective approach in time-series prediction 

Table 3   Equations used 
for classification accuracy 
assessment

Features Equation

Overall accuracy Total number of corrected classified pixels (diagonal)

total number of reference pixels
× 100

User accuracy number of correctly classified pixels in each catagory (diagonal)

total number of reference pixels in each category (row total)
× 100

Producers’ accuracy number of correctly classified pixels in each category (diagonal)

total number of reference pixels in each category (column total)
× 100

Kappa coefficient Total number of Sample×Total Number of Corrected Sample−
∑

(col.tot×row tot)

(Total number of Sample)2−
∑

(col.tot×row tot)
× 100
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using the previous years’ datasets (Faisal et al. 2021; Mas 
and Flores 2008; Shatnawi and Abu Qdais 2019). Firstly, 
the ANN algorithm creates a random output with a low 

accuracy upon receiving the patterns. Then, the ANN algo-
rithm computes the gap between the low accurate output and 
the intended output, which is a self-computed feature. Using 

Fig. 2   Process of seasonal LST estimation using Landsat thermal bands

Fig. 3   Process of Zonal Statistics as Table in ArcGIS 10.6 software
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the “Leveraging backpropagation” algorithm, a correction 
amount was calculated between the output and hidden lay-
ers, even between the hidden layers and the input layers. 
The iterative cycle moves back and forth till the achieve-
ment of an optimal error between the network output and 
the intended output (Faisal et al. 2021; Gopal and Wood-
cock 1996; Maduako et al. 2016a, b; Mansour et al. 2020). 
Detailed methodology is shown in Fig. 5.

Five hidden layers, i.e., classified LULC images, NDBI, 
NDBSI, latitude, longitude, were considered input param-
eters and the extracted LST data were considered output 
parameters for LST prediction. Hidden layers are essential 
for the prediction method as these influence the outcome 
allowing the network to manifest non-linear behavior. 
The initial rate (µ) was set at 0.1, and the range of decay 
(β) that ranges between 0 and 1 was used to monitor it 
(Shatnawi and Abu Qdais 2019; Van Gerven and Bohte 
2017). The pixel value data were converted to discrete 
data for all the images to better the performance of the 
ANN model. The prediction process consists of network 
development, assessment of network performance, net-
work training, and prediction. For accuracy assessment 
of the intended data in representing the changes in the 

performance tests, a regression analysis was done (Arsan-
jani et al. 2013; Hu and Lo 2007), which provided the 
Mean Square Error (MSE) and Coefficient Correlation 
(R) values that determined the network confidence (Faisal 
et al. 2021; Maduako et al. 2016a, b; Nurwanda and Honjo 
2020; Ullah et al. 2019b). To validate the model, R and 
MSE values of 2020 for the summer and winter seasons 
were obtained.

Result and discussion

This section describes the results estimated from the meth-
odology mentioned in the “Data and methodology” section. 
The results contain a spatiotemporal change of LULC, vari-
ation of seasonal LST, seasonal LST distribution over dif-
ferent LULC classes, prediction of the future LULC classes, 
and seasonal LST distribution. This section finally discusses 
FGDs and KIIs findings and proposes effective strategies 
for ensuring sustainable land use management, reduction in 
temperature increase, and possible mitigating measures to 
combat climate change impacts.

Fig. 4   Flowchart of LULC prediction process using CA algorithm
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Spatiotemporal change of LULC (1995–2020)

The spatiotemporal distribution of classified LULCs, i.e., 
water bodies, built-up area, agricultural land, and bare land 
for 1995, 2000, 2005, 2010, 2015, and 2020 are illustrated 
in Fig. 6. The accuracy assessment of the classified maps 
shows a higher accuracy with more than 89% overall accu-
racy for all the years (Table 4), which is considered an excel-
lent accuracy percentage for further analysis (Wang et al. 
2017).

The areal distribution of LULC during 1995–2020 is 
shown in Fig. 7. Two changing trends are noticed from the 
areal analysis. One is a massive decrease of agricultural 
lands and a gradual increase of built-up areas. The agri-
cultural land was 1461.92 km2 (61.37%), 1281.12 km2, 
and 1209.86 km2 by 1995, 2000, and 2005 respectively, 
showing a massive decrease in 2010 (1194.04 km2) and 
2015 (1005.39 km2), ultimately resulting in a 926.14 km2 
(38.88%) of agricultural land in 2020. On the other hand, 
the built-up area consisted only 158.22 km2 (6.64%), 
167.53 km2, and 195.27 km2 of the total land in 1995, 2000, 
and 2005 that was experienced a steady increase in 2010 
(225.23 km2) and 2015 (300 km2), finally reached to an area 

of 386.74 km2 (16.23%) in 2020. Significant changes were 
also noticed for water bodies and bare land classes. In 2020, 
7.54% and 37.37% water bodies and bare land classes were 
estimated, which were 14.17% and 17.82% in 1995.

A detailed temporal change of the LULC classes 
pattern is shown in Table  5. A steady increase during 
1995–2000 (0.39%), 2000–2005 (1.16%), and 2005–2010 
(1.26%) was noticed in built-up area followed by a massive 
increase in 2010–2015 (3.14%) and in 2015–2020 (3.64%). 
Another upsurge scenario was estimated in bare land as 
the major increase occurred during 1995–2000 (9.28%) 
and 2010–2015 (5.27%). A major decrease was recorded 
in agricultural land during 1995–2000 (− 7.59%) and 
2010–2015 (− 7.92%), same timelines as major increases 
were estimated for bare lands. A gradual decrease in agri-
cultural land was seen during 2000–2005 (− 2.99%) and 
2015–2020 (− 3.33%). Waterbody has experienced a major 
decrease until 2010, as analysis showed by 2.08%, 1.4%, 
and 2.27% decrease rate during 1995–2000, 2000–2005, and 
2005–2010 timeline, respectively.

The analysis shows a significant uncontrolled growth 
in built-up areas and a remarkable decrease in agricultural 
lands and water bodies. Rapid haphazard urban planning 

Fig. 5   Flowchart of seasonal LST prediction process using ANN algorithm
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and uncontrolled rural–urban migration due to the pull fac-
tors (better job opportunities, the standard of livings, bet-
ter healthcare facilities, etc.) are some of the main reasons 
behind this significant LULC change. The cool land cov-
ers like agricultural lands and water bodies are constantly 
filled with impervious surfaces of built-up area to cover the 
increasing infrastructure demand by rapidly grown hous-
ing projects. Reduced agricultural areas result in a rise in 
uncontrolled and intensive agriculture, which increases the 
use of chemical elements and pesticides, resulting in harm 
to the environment’s most vital elements, namely water, air, 
and soil (Faisal et al. 2021; Wang et al. 2017). Also, a sig-
nificant reduction of green cover will reduce the functions 
of biodiversity and ecosystem services. Due to the surface 
water body losses, pressure will increase in groundwater, 

which will create water scarcity during agricultural produc-
tion in upcoming years.

Variation of seasonal LST distribution in the study 
area

Landsat thermal bands were used to extract the seasonal 
variation (both summer and winter) of LST in the study 
region during 1995–2020. Summer and winter maximum 
and minimum LST distribution are illustrated in Fig. 8 and 
Fig. 9, respectively.

Summer LST distribution shows a maximum temperature 
of 37.22 °C and 38.4 °C in 1995 and 2000 respectively that 
gradually was increased to 38.83 °C in 2005 and 39.72 °C in 
2010, resulting in more increased in maximum temperature 

Fig. 6   Classified LULC images 
of Rajshahi district for a 1995, 
b 2000, c 2005, d 2010, e 2015, 
and f 2020
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in 2015 (41.36 °C) and 2020 (42.7 °C) by creating a devi-
ation of approximately 1 °C for every 5 years. The same 
increasing pattern was seen in minimum temperature too as 
the minimum temperature in 1995, 2000, 2005, and 2010 
was 22.18 °C, 23.32 °C, 24.68 °C, and 26.31 °C respectively 
with a deviation of 2 °C on an average, leading to a mini-
mum temperature of 27.52 °C in 2015 and 28.94 °C in 2020.

Winter LST distribution also shows a steady increasing 
pattern as the maximum temperature in 1995, 2000, 2005, 
and 2010 were 24.53 °C, 25.82 °C, 26.34 °C, and 27.34 °C 
showing a gradual increasing rate with an average deviation 

of approximately 1 °C, resulting in a maximum temperature 
of 28.54 °C in 2015 and 29.12 °C in 2020. A similar increase 
rate was also seen in the minimum temperature of the winter 
season as in 1995, 2000, 2005, and 2010 the minimum tem-
perature were 14.67 °C, 15.11 °C, 16.27 °C, and 17.52 °C 
respectively that steadily increased to 18.91 °C and 20.42 °C 
in 2015 and 2020 respectively with 1 °C average deviation 
between 5 years.

Both summer and winter LST distribution in the study 
area shows an increasing trend in the south, south-east, 
north-east, and northern part of the study area. However, the 

Table 4   Accuracy assessment of the classified images

Year Classified class Validation points for different LULC classes

Water body Urban area Vegetation cover Bare land Total User accuracy

1995 Water body 61 1 2 1 65 93.85
Urban area 0 84 1 4 89 94.38
Vegetation cover 1 4 58 9 72 80.56
Bare land 1 5 3 65 74 87.84
Total 63 94 64 79 300
Producer accuracy 96.83 89.36 90.63 82.28 Overall accuracy 89% Kappa coefficient 85.69

2000 Water body 59 2 1 1 63 93.65
Urban area 0 83 3 4 90 92.22
Vegetation cover 1 2 71 3 77 92.21
Bare land 0 5 3 62 70 88.57
Total 60 92 78 70 300
Producer accuracy 98.33 90.22 91.03 88.57 Overall accuracy 92% Kappa coefficient 88.81

2005 Water body 64 1 0 0 65 98.46
Urban area 2 81 2 1 86 94.19
Vegetation cover 1 3 69 3 76 90.79
Bare land 0 1 2 70 73 95.89
Total 67 86 73 74 300
Producer accuracy 95.52 94.19 94.52 94.59 Overall accuracy 94% Kappa coefficient 92.87

2010 Water body 53 2 4 2 61 86.89
Urban area 0 78 2 4 84 92.86
Vegetation cover 1 3 77 3 84 91.67
Bare land 2 4 3 62 71 87.32
Total 56 87 86 71 300
Producer Accuracy 94.64 89.66 89.53 87.32 Overall accuracy 90% Kappa coefficient 89.22

2015 Water body 51 1 2 2 56 91.07
Urban area 1 81 4 4 90 90.00
Vegetation cover 1 3 71 3 78 91.03
Bare land 2 4 5 65 76 85.53
Total 55 89 82 74 300
Producer accuracy 92.73 91.01 86.59 87.84 Overall accuracy 89% Kappa coefficient 85.65

2020 Water body 55 2 1 1 59 93.22
Urban area 0 80 2 4 86 93.02
Vegetation cover 1 3 70 3 77 90.91
Bare land 1 4 5 68 78 87.18
Total 57 89 78 76 300
Producer accuracy 96.49 89.89 89.74 89.47 Overall accuracy 91% Kappa coefficient 87.92
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western part of the study area did not experience the same 
increasing pattern as the eastern part due to the massive 
LULC change in the eastern and southeastern parts (Fig. 6). 
Climate change, global warming, unplanned urbanization, 
increase in the impervious layers (buildings, roads, and 

highways), greenery, and water bodies reduction in the study 
region may be responsible for this seasonal increase in LST 
(Alamgir et al. 2020; IPCC 2014). The significant increase 
in LST reduces the accessibility of water and crops, thereby 
increasing the vulnerability to drought and extreme weather 
conditions in the study region. Due to massive climate 
changes and global warming, winter in the study region is 
gradually warmer (Bank 2016; IPCC 2014). Climate change 
experts and meteorologists predicted that the winter season 
would be significantly warmer and shorter than in previous 
years, as the temperature continues to rise daily.

Spatial distribution of seasonal LST on different 
LULC

To evaluate the seasonal mean LST distribution in differ-
ent classified LULCs, i.e., waterbodies, built-up area, agri-
cultural land, and bare land, the “zonal statistics” tool was 
used in ArcGIS 10.6 software. Figure 10 represents the mean 
seasonal temperature fluctuation in various LULC classes 
during the study period (1995–2020) with a 5-year interval.

A significant increase in the summer LST variation in 
different LULC, especially in a built-up area and bare land, 
was recorded in the spatial distribution. Summer mean 
LST in built-up areas were increased from 37.26 °C (2010) 
to 41.68 °C in 2020, which was 34.92 °C in 1995. In bare 
land, summer mean temperature was 32.77 °C in 1995 that 
was increased to 36.12 °C in 2015 and 38.06 °C in 2020. 
Deviation of 6.76 °C and 5.29 °C was seen in summer 
mean temperature of built-up areas and bare land, during 

Fig. 7   Areal distribution of 
different LULC during the study 
period (1995–2020)

Table 5   Spatiotemporal change of different LULC during the differ-
ent time periods

Time range Net change in %

Water body Built-up area Agricultural 
land

Bare land

1995–2000  − 2.08 0.39  − 7.59 9.28
2000–2005  − 1.40 1.16  − 2.99 3.22
2005–2010  − 2.27 1.26  − 0.66 1.67
2010–2015  − 0.49 3.14  − 7.92 5.27
2015–2020  − 0.39 3.64  − 3.33 0.08
1995–2005  − 3.48 1.56  − 10.58 12.51
1995–2010  − 5.75 2.81  − 11.25 14.18
1995–2015  − 6.24 5.95  − 19.16 19.45
1995–2020  − 6.63 9.59  − 22.49 19.53
2000–2010  − 3.67 2.42  − 3.66 4.90
2000–2015  − 4.15 5.56  − 11.57 10.17
2000–2020  − 4.55 9.20  − 14.90 10.25
2005–2015  − 2.76 4.40  − 8.58 6.94
2005–2020  − 3.15 8.04  − 11.91 7.02
2010–2020  − 0.88 6.78  − 11.25 5.35

Overall change in %
1995–2020  − 3.19 4.39  − 9.86 8.65
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the study period (1995–2020). The distribution of LST 
in agricultural land and water bodies was also changed 
as in agricultural land, the mean summer temperature 
in 1995 was 25.31 °C that was increased to 31.02 °C in 
2015 and 31.72 °C in 2020, having a deviation of 6.41 °C 
during the study period (1995–2020). The mean summer 
LST in water bodies was 24.46 °C in 1995, the lowest 

mean temperature was recorded in summer, followed by 
an increment to 28.37 °C in 2015 and 29.88 °C in 2020.

Variation of winter mean LST had also shown a signifi-
cant increase in different LULC. Winter mean LST in built-
up areas was 22.35 °C in 1995 followed by 26.88 °C and 
28.35 °C in 2015 and 2020, respectively, having an escala-
tion of 6 °C during the study period (1995–2020). In bare 

Fig. 8   Spatial distribution of summer LST of the study area in a 1995, b 2000, c 2005, d 2010, e 2015, and f 2020
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lands, the winter mean temperature in 1995 was 21.76 °C, 
which was increased to 25.65 °C in 2015 and 26.39 °C in 
2020 with a deviation of 4.63 °C from 1995 to 2020. Water 
bodies and agricultural lands also experienced a gradual 
increase in the winter mean temperature. In agricultural 
lands, the mean winter temperature in 1995 was 15.38 °C, 
followed by an enlarged temperature of 20.33 °C in 2015 and 
21.74 °C in 2020. The mean winter LST of the water body 

was also increased to 19.32 °C in 2015 and 20.87 °C in 2020 
from the low temperature of 14.92 °C in 1995. An increase 
of 5.95 °C and 6.36 °C was recorded in the winter mean 
temperature of water bodies and agricultural lands, respec-
tively, during the study period (1995–2020). The highest 
winter mean temperature was recorded in the built-up area 
for 2020 (28.35 °C), and the lowest winter mean temperature 
was recorded in the water body for 1995 (14.92 °C).

Fig. 9   Spatial distribution of winter LST of the study area in a 1995, b 2000, c 2005, d 2010, e 2015, and f 2020

806 Applied Geomatics (2021) 13:793–816



1 3

The variation of seasonal mean LST on different LULC 
shows an analytical insight about the adverse effect of built-
up area in the gradual increment of LST by replacing the 
cool LULC classes (agricultural lands and water bodies) 
with the impervious surfaces (built-up areas). Uncontrolled 
and rapid urban development, rural to urban migration, cli-
mate change, and global warming are few of the most sig-
nificant contributors to the temperature rise. Green covers 
of agricultural and vegetation lands have penetrable layers 
and tree shading that can help in less heat emission to reduce 
the heat (Djekic et al. 2018). However, with the unplanned 
development, these green covers are constantly replaced 
with the major portion of impervious and paved surfaces that 
can retain more energy and radiate more heat thus increasing 
the temperature (Al Rakib et al. 2020a; Fahad et al. 2018; 
Rahman et al. 2017a, b).

Predicted scenario of future LULC dynamics

The future prediction scenarios for LULC classes for 
2030 and 2040 were performed using the CA algorithm 
(Fig. 11). Classified LULC maps for the years 2000 and 
2010 were used to predict the 2030 scenario, where 2010 
and 2020 maps were used to predict the 2040 LULC sce-
nario. For evaluating the accuracy of the prediction model, 
a predicted map for 2020 was done using the past LULC 
maps (2000, 2010, and 2015). The QGIS and TerrSet 

were used to validate the CA model, and both techniques 
presented an excellent prediction accuracy for the future 
LULC scenario. The QGIS validation shows more than 
88% correctness and 0.8 Kappa value for the predicted 
image (Table 6). Kappa parameters evaluation in TerrSet 
shows satisfactory results as Klocation, Kno, Klocation strata, 
Kstandard values showed more than 0.8 for the predicted 
image. Therefore, the estimated kappa and the percentage 
(%) of correctness value were satisfactory and suitable 
to predict the future LULC scenario for 2030 and 2040 
(Pontius and Millones 2011).

Comparing the predicted maps of 2030 and 2040 with 
the classified scenario of 2020 shows that 59.8 km2 area 
in 2030 and 126.09 km2 area in 2040 will face infrastruc-
tural development if proper measures are not taken. Due to 
rapid built-up area expansion, agricultural land (− 2.41% 
in 2030 and − 6.22% in 2040) and water body (− 0.98% in 
2030 and − 2.77% in 2040) will face a significant decrease 
in the predicted years. The highest positive net change was 
recorded for built-up areas (2.51% and 5.29%), where the 
maximum negative net change was noticed for agricultural 
land (− 2.41% and − 6.22%) from 2020 to 2030 and 2020 
to 2040, respectively (Table 7). The expected LULC shift 
demonstrated that if not properly controlled, the increas-
ing rate of built-up areas could have a severe impact on 
future ecosystem services, environmental sustainability, 
and human life.

Fig. 10   Mean LST distribution in different LULC during the study period (1995–2020)
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Predicted seasonal distribution of LST

The seasonal LST variation during the study period 
(1995–2020) showed a significant escalation in the tem-
perature. Thus, it is critical to predict future seasonal LST 
distribution dynamics to understand the potential threat to 
environmental sustainability and climate change in the study 
area. The ANN algorithm was used to predict the future 

seasonal LST scenario for 2030 and 2040 using the past 
LST trends (2000–2010 and 2010–2020), and the predicted 
summer and winter LST are illustrated in Fig. 12 (a and b) 
and Fig. 13 (a and b), respectively. The comparison of the 
predicted seasonal LST scenario of 2020 with the actual 
estimated LST of the same year showed a promising agree-
ment proving the model’s accuracy and validation. The 
MSE values for both seasons were less than 0.6 for the LST 

Fig. 11   Predicted future LULC maps for a 2030 and b 2040 in the study area

Table 6   CA model accuracy 
validation using QGIS and 
TerrSet for the predicted maps 
of 2020

Prediction year CA model validation with two platforms

Kappa parameters of TerrSet QGIS MOLUSCE Plugin Model

Klocation Kno Klocation strata Kstandard %—correctness Overall Kappa value

2020 0.82 0.85 0.80 0.82 88.35 0.82

Table 7   Predicted LULC 
scenario of 2030 and 2040 with 
a comparison of 2020 LULC 
scenario

LULC classes Area (in km2) Net change (in %) Overall 
change (in 
%)2020 2030 2040 2020–2030 2030–2040 2020–2040

Water body 179.66 156.28 113.68 -0.98 -1.79 -2.77 -1.85
Built-up area 386.74 446.54 512.83 2.51 2.78 5.29 3.53
Agricultural land 926.14 868.62 777.95 -2.41 -3.81 -6.22 -4.15
Bare land 889.68 910.78 977.76 0.89 2.81 3.70 2.47
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Fig. 12   Predicted summer LST Scenario of a 2030 and b 2040

Fig. 13   Predicted winter LST Scenario of a 2030 and b 2040
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scenario, and the R values were greater than 0.8, showing a 
strong positive correlation with the estimated and predicted 
LST (Table 8).

Figures 10 and 11 show a similar increasing trend in the 
seasonal temperature over the study area in 2030 and 2040. 
The Summer LST trend shows the maximum temperature 
will likely be increased to 43.23 °C in 2030 and 45.92 °C 
in 2040 from 42.7 °C in 2020. The minimum summer tem-
perature of 2030 and 2040 will be increased to 29.97 °C in 
2030 and 31.72 °C in 2040 from 28.94 °C in 2020, having 
an approximate increase of 1 °C between 2020 and 2030 and 
3 °C between 2020 and 2040.

Winter LST trend shows a similar increasing scenario 
in 2030 and 2040. In 2030, the maximum winter tempera-
ture will be expected to be reached at 30.94 °C (2030) and 
31.77 °C (2040), where the minimum winter temperature in 
2030 and 2040 will be 21.97 °C and 23.43 °C, respectively. 
Compared to the 2020 winter LST distribution, the maxi-
mum and minimum temperature average increment rate for 
2030 and 2040 were 1.7 °C and 2.8 °C, respectively.

This increasing seasonal LST trend affects the thermal 
capacity of different LULC categories and contributes to 
the UHI effect (Bonafoni et al. 2017). Moreover, accord-
ing to the fifth IPCC assessment report, Asian regions are 
expected to hit higher temperatures than the global average 
(IPCC 2014). Intensification to urban areas compared to 
rural areas greatly influences the uplifting of global warm-
ing (Roy et al. 2014). An increase in the green cover through 
preservation of the agricultural land, afforestation, planned 
urban planning approach, and employment of urban plan-
ners in government authorized city planning organizations 
can help to control the unplanned urbanization and uncon-
trolled temperature rise and can able to mitigate the UHI 
effect (Faisal et al. 2021).

Limitations of CA and ANN models

The CA and ANN models showed excellent performances 
in predicting the LULC and LST change dynamics for 
2030 and 2040 using the previous datasets during the study 
period. However, the CA and ANN models provide an 

efficient framework for analyzing and forecasting LULC 
and LST scenarios. The models are more accurate when 
the historical pattern of LULC and LST dynamics remains 
constant or fixed. As a result, the CA model is not always 
adequate for explicitly predicting spatial LULC (Santé et al. 
2010). Because of its limited ability to identify the explicit 
relationship between the influential variables, the ANN is 
sometimes referred to as a black box (Van Gerven and Bohte 
2017). The ANN model develops training samples following 
the input of layers and begins to train and determine the most 
influential variables without considering their relative signif-
icance. There are no well-established criteria in the system 
for weighting each input parameter individually according to 
its significance (Shatnawi and Abu Qdais 2019). However, 
dynamic phenomena such as urbanization, loss of green 
cover, and surface temperature rise cannot be anticipated 
with 100% precision since they are heavily dependent on 
human activities and rational decisions made at the regional 
to the municipal level.

Whatever their limits, dynamic models are helpful for 
assumptions and understanding the phenomenon of changes 
in the land cover and variations in surface temperature in any 
area. Techniques such as LULC, LST change, and prediction 
mapping are rapidly gaining recognition as highly effective 
tools for managing critical natural resources and mitigating 
environmental consequences.

Impact on LULC, seasonal LST, and climate 
change based on KIIs and FGDs

This section briefly describes the outcomes of FGDs and 
KII. The FGDs outcome will help to understand the impacts 
of LULC and temperature changes on the study area in the 
last 25 years. Along with the KIIs assessments, experts’ 
opinions will assist in identifying the possible impacts of 
climate change on the study region.

Group discussion related impacts of LULC change 
and temperature increase

During the FGDs, participants were asked questions about 
the effects of LULC changes in the research area over the 
last 25 years (1995–2020). The key investigation points in 
the FGDs were questions about the impact of LULC on tem-
perature, agricultural land, biodiversity, soil characteristics, 
and water resources. During the ten focus groups, a total of 
76 people took part. The participants were given a sheet that 
included all of the potential LULC effects stated in the table 
and allowed them to select various options ranging from 
very low to very high for all of the questions. According to 
the findings of the discussion, massive LULC change sig-
nificantly increases seasonal temperature (71% very high), 

Table 8   ANN Model validation with the predicted and observed sea-
sonal LST of 2020

Prediction 
year

Season ANN model validation for LST prediction 
using MATLAB software

No. of hidden 
layers

Mean Square 
Error (MSE)

Correlation 
Coefficient 
(R)

2020 Summer 5 0.52 0.86
Winter 0.59 0.84
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converts agricultural land and other green cover areas into 
infrastructure (69% very high), disrupts the hydrological 
cycle by increasing groundwater stress and reducing surface 
water bodies (51% very high), and ultimately causes flood-
ing. Furthermore, LULC has a large impact on biodiversity 
and habitat destruction (65% high) by converting agricul-
tural and green cover areas to infrastructure (Table 9). The 
results of the FGDs will also validate the results obtained 
from satellite image observation, which show that significant 
LULC change is occurring in the study area, particularly 
agricultural land being converted to built-up areas and that 
the overall seasonal LST is increasing due to the increase in 
impervious layers.

Interviewed related impacts on climate change 
in the study region

During the KIIs, experts were asked questions on the 
effects of climate change in the study area. During the KIIs, 
questions about the impact of climate change on seasonal 
variations, heat and cold waves, decrease in rainfall, agri-
cultural production, change in irrigation source, time of 
sowing seeds, and so on were asked. The total number of 
KII participants was 20, and during the interview, possible 
climate change impacts were presented to the experts on 
a sheet, allowing them to select multiple options as well 
as any other impact based on their expertise. According to 
the findings of the KIIs, climate change has significantly 
increased heat waves (76% very high) and impacted seasonal 
variations (66% very high), resulting in a longer summer and 
a significantly shorter winter season. Furthermore, climate 
change alters the rainfall pattern, increasing the pressure on 
the surface and groundwater (very high 64%). Experts also 
suggested that increased use of fertilizer, insecticides, and 
changes in seeding time reduce agricultural and fish pro-
ductivity (very high 88%) (very high 62%). Due to climate 
change, original species of paddy and fish are becoming 
extinct and being replaced by artificial/bred species of fish. 
As a result, many people are malnourished. According to 
experts, agriculture is one of the most vulnerable sectors to 

climate change, as it is primarily influenced by temperature 
changes, rainfall patterns, and the increased likelihood of 
extreme events (drought and floods). According to experts, 
climate change hastens the occurrence of climate-sensitive 
diseases (high 60%), such as hypertension associated with 
heat stress, diarrhea, dengue, dysentery, and so on. Experts 
also stated that the urban poor are particularly vulnerable to 
the effects of climate change (up to 60%) due to the infra-
structural fragility of slums and squatter settlements and a 
lack of job security. The results of the KIIs will also support 
the findings of the satellite image analysis, which show that 
climate change and the loss of green cover by built-up areas 
significantly contribute to summer and winter seasonal vari-
ations, long summer and winter season time duration, and a 
reduction in ecosystem and biodiversity (Table 10).

Sustainable land use management, temperature 
increase, and climate change mitigating strategies

Based on the suggestions provided by the FGD and KII 
participants, strategies for ensuring sustainable land use 
management, reducing the upsurge of temperature, and miti-
gate the climate change impacts have been developed. The 
implementation of these strategies will ensure planned sus-
tainable infrastructural development by ensuring integrated 
local–regional intergovernmental coordination between dif-
ferent organizations.

	 i.	 Ensuring proper use of available land by restricting the 
unplanned expansion of infrastructural development 
and conserving natural resources like green covers and 
water bodies.

	 ii.	 Promoting vertical infrastructural development, 
restricting the misuse of bare lands, and utilizing 
available open land for activities related to nature-
based solutions like tree plantation and water resource 
management.

	 iii.	 Applying zoning techniques at the regional-local 
level to identify the locations of natural resources and 

Table 9   Group discussion outcomes of possible impacts of LULC change in the study area

Impact of LULC change Changes in last 25 years (in %); N = 76

Very low Low Moderate High Very high

Increase in seasonal temperature 7 5 17 35 71
Agriculture lands and green cover converted to infrastructure 2 3 23 41 69
Reduction of agricultural land (green area) contributes to biodiversity loss and destroys habitats 0 4 12 65 21
The rapid transformation of the green area increases soil erosion, desertification due to inten-

sive cultivation in the same land
0 1 11 19 49

LULC changes disturb the hydrological cycle, reduce surface water bodies and create flooding 
by increasing surface runoff

2 4 16 45 51
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ensure infrastructural development by conserving 
them.

	 iv.	 Safeguarding the gradually declining trend of agri-
cultural lands by imposing strict rules and regulations 
to feed the growing population, enhance economic 
enlargement, and preserve biodiversity.

	 v.	 Increasing more artificial wetlands and introduce rain-
water harvesting approach for reducing pressure on 
groundwater and adequate recharge of the aquifer.

	 vi.	 Applying integrated water resource management 
(IWRM) plan for ensuring sustainable use of surface 
and groundwater resources.

	vii.	 Preventing water, soil pollution and increase the sur-
face water availability for higher agricultural produc-
tivity and environmentally sustainable land utilization.

	viii.	 Increasing green landscape around households by tree 
plantation and rooftop farming to combat heat waves, 
which will improve air quality, and reduce heat stress-
related health problems.

	 ix.	 Ensuring sustainable infrastructural development 
by preparing an integrated local–regional level mas-
ter plan with the help of urban planners for planned 
and inclusive urbanization by conserving natural 
resources.

	 x.	 Proper coordination between local and regional 
level decision-making government organizations for 
monitoring the infrastructural development activi-
ties and impose strict rules for preserving the natural 
resources.

	 xi.	 Climate change mitigation strategies by adopting de-
carbonization technologies, which will reduce CO2 
emissions, such as renewable energy, fuel switching, 
energy efficiency improvements, and carbon capture, 
storage, and utilization.

Conclusion

Confounding variables such as urbanization and land use 
change may add uncertainty to the estimate of global tem-
perature trends associated with climate change. This study 
estimated a significant increment of built-up area in the past 
25 years by replacing other LULCs such as water bodies, 
agricultural and bare lands. The built-up area was increased 
from 1995 to 2015 by 158.22 km2 (6.64%) to 386.74 km2 
(16.23%), whereas agricultural land was decreased signifi-
cantly from 1461.92 km2 (61.37%) to 926.14 km2 (38.88%), 
respectively. The built-up area will be covered by 446.54 
km2 in 2030 and 512.83 km2 in 2040, according to the 
LULC prediction. The maximum temperature was increased 
from 1995 to 2020 by 37.22 to 42.7 °C in summer with 1 °C 
standard deviations per 5 years and 22.18 °C to 28.94 °C in 
winter with 2 °C standard deviations per 5 years in the study 
region. Prediction states that the maximum LST will likely 
to be increased to 43.23 °C (2030) and 45.92 °C (2040) in 
summer, and 30.94 °C (2030) and 31.77 °C (2040) in winter. 
FGDs and KIIs assessments indicate that frequent LULC 
change was the main reason for increasing LSTs (71%), con-
verts agricultural land and other green cover areas into infra-
structure (69% very high), disrupts the hydrological cycle by 
increasing groundwater stress and reducing surface water 
bodies (51% very high), and ultimately causes flooding. In 
addition, 76% of experts agreed that heatwaves are the most 
influencing factors for adverse climate change, among other 
parameters. This study can be used as a framework for urban 
planners and policymakers in terms of participatory and sus-
tainable rural–urban planning.

Although satellite data provide information that is not 
directly related to the quantitative rise of temperature 
records, in this work, local analyses of urban and global 

Table 10   Outcomes of expert interviews related to possible impacts of climate change in the study area

Possible climate change impacts N = 20 (in %)

Very less Less Moderate Much Very much

Impact on agriculture (decrease crops production and quality) and fisheries 0 0 21 51 88
Reduces biodiversity 0 0 28 41 58
Increase stress on water resources and hydrology 0 0 35 47 64
Increased moisture stress during dry periods leading to increased drought 1 1 11 24 57
Greater temperature extremes 0 0 38 59 76
Impact on seasonal variations 0 0 21 29 66
Changes in precipitation patterns 2 3 13 33 29
Increase in crops growing season 4 6 26 59 62
Increased vulnerability to cyclone and storm surges 3 5 51 9 21
Impacted on human health 0 2 26 60 33
Particularly more impact on vulnerable groups like urban poor 0 5 16 57 25
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warming-related issues were discussed by integration of 
remote sensing technology and primary traditional data col-
lection system. Due to the fact that the study was conducted 
over a wide range of spatial scales, some ambiguity about 
the reliability of urban temperature records exists, which 
opens the way for future discussion on the impact of urban 
heating on climate data. Further progress in this area may 
benefit from the fresh views provided by novel methods and 
techniques, as well as from more research demonstrating the 
multi-scale effects of urbanization on the climate. Combin-
ing high-resolution data as nightlights, which has been ena-
bled by advancements in remote sensing, statistical models, 
and ideas may offer an innovative approach for analyzing 
such problems.
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