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Abstract
Hybrid urban areas are dominated by important spectral mixtures from formal and informal housing units which make them 
difficult to map even for the most robust classifier. Proposals to introduce other descriptive features, such as size, shape, 
texture, and context into the classification process, come with another drawback which is how to ensure the selected feature 
thresholds are optimal. Image segmentation which is the backbone of object-based analysis depends on a range of param-
eters including scale parameter, shape, smoothness, colour, and compactness weighting factors. Current techniques to select 
optimal segmentation scales only give the remote sensing analyst control over one parameter out of five (20%). This study 
proposes a classification strategy that gives the analyst control of 60% of the parameters to ensure an acceptable segmenta-
tion outcome. The study also proposes a feature selection approach that eliminates feature overlaps within the feature space 
which may not be observable within the original data. An automatic optimal parameter selection function is also proposed 
in this study. Tested on a SPOT5 resolution merge image, the approach overpowered the accuracy metrics of (Kemper et al.
in Int Arch Photogramm Remote Sens Spat Inform Sci 40(7): 1389, 2015) with overall, sensitivity, specificity, precision, 
true skill statistic accuracies of respectively 0.97, 0.96, 1, 0.942, 0.95 against 0.97, 0.804, 0.98, 0.477, and 0.781. Similar 
trends are observed with the smallest average error of omission for built-up and non-built structures at 0.042 and 0 against 
to 0.196 and 0.164. The errors of commission for built-up and non-built-up structures were 0.060 and 0.008 respectively 
compared to 0.523 and 0.585.

Keywords  Urban mapping · Object-based image analysis · Informal settlement · Image segmentation parameters · Principal 
component · Chebyshev’s rule

Introduction

Modern cities are generally composed of well-structured 
housing units and street patterns. The quest for better living 
conditions in main cities has resulted in the development 
of informal settlements within or at peripheries of towns, 
creating a town or city with a mixture of formal and infor-
mal housing structures (hybrid urban areas). Planning for 
service delivery in these informal areas requires detailed 
land cover information. Image classification has been widely 
used to extract land information from satellite and aerial 
images (Herold et al. 2003; Du Plessis 2015; Kohli et al. 

2016; Debbage et al. 2017). The improvements in sensor 
resolution has resulted in high detailed geospatial informa-
tion. However, one drawback from such improvement is the 
high spectral variability within individual classes that can 
lead to intra class confusion due to similarities in spectral 
signatures. The situation becomes even more exacerbated 
with complex environments such as urban areas, which have 
complex and unclear object spectral signatures (Ben-Dor 
et al. 2001; Herold et al. 2004; Kuffer and Barrosb 2011). 
For instance, Heiden et al. (2001) reported that tile mate-
rials such as polyethylene, bitumen, and concrete mainly 
dominate roofs of residential buildings while zinc materi-
als dominate non-residential structures such as commer-
cial buildings. The authors reported that low reflectance in 
long wavelengths was the main characteristic of roof made 
of zinc material while a strong reflectance in these wave-
lengths would characterise roof materials made of chains of 
hydrocarbons such as polyethylene or bitumen. In addition, 
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rooftops made of concrete have a low reflectance in short 
wavelengths.

Herold et al. (2002) and Herold et al. (2004) reported 
that roads have increasing reflectance with long wavelengths 
and roads made of concrete and gravel can reach reflectance 
peaks in the infrared band. Concrete roads were described 
with high reflectance in the visible light spectrum while new 
asphalt roads show low reflectance in short wavelengths and 
high reflectance in long wavelengths including the visible 
and infrared. The authors reported that red tile and wood 
shingle roofs exhibit high reflectance in the infrared band. 
It is also argued that the presence of iron oxide in the red 
tile roofs increase the absorption in the visible light (Weng 
and Quattrochi 2006). Moreover, high reflection in the green 
band is a key attribute of water bodies while urban vegeta-
tion shows high reflectance in the red and infrared (Herold 
et al. 2003; Jilge et al. 2016).The development of very high 
spatial resolution sensors have also made objects’ shapes 
and contextual attributes crucial in image classification. 
(Reigber et al. 2007; Meng et al. 2009; Chen et al. 2012). 
It was reported in Steiniger et al. (2008) that similar spatial 
advantages can also be made available from high-resolution 
aerial photographs.

Numerous image classification strategies of urban areas 
have been reported in the literature. Novack and Kux (2010) 
proposed an object-based classification strategy of an infor-
mal settlement in Sao Paulo in Brazil using a high-resolution 
Quickbird image. The approach used the Segmentation Param-
eter Tuner algorithm for the selection of optimal scale param-
eters. The principle underlying the selection process is that a 
parameter search is performed based on the fitness between 
a training sample drawn by the user and the segmentation 
produced by the algorithm (Costa et al. 2008). The authors 
extracted geometrical, spectral and textural segment features 
to train the object-based classification. The technique achieved 
a classification accuracy of about 70% with a kappa agreement 
of 65%. One drawback of the scale parameter selection process 
is the restriction in user defined search range as the proposed 
range may not include certain optimal scale parameters for 
the segmentation (Meyer and Niekerk 2016). An alternative 
image classification approach was presented in Odindi et al. 
(2012) who performed a land cover classification of Port Eliza-
beth using a Landsat image. The authors used the statistical 
K-means and ISODATA pixel-based classifiers to extract built 
up structures, green vegetation, water bodies, dune, and bare 
ground. Although the strategy has been widely used for land 
cover mapping (Abbas et al. 2016), the centroids estimated by 
the K-means are not always representative of their respective 
classes. The other limitation of the algorithm pointed out in 
Singh et al. (2011) is the presence of empty clusters during 
the classification. Furthermore, a comparison between the 
Iterative Self Organizing Data Analysis and eCognition has 
highlighted the superiority of the object-based algorithm as the 

latter relies on meaningful objects rather than individual pixels 
(Manakos et al. 2000). Similarly, Fundisi and Musakwa (2017) 
classified high-resolution Pleiades images of an urban area in 
Gauteng province (South Africa) using ISODATA algorithm 
in ENVI software. The mapped urban area was dominated by 
vegetation cover, which explains the high overall classifica-
tion accuracy of 85.5% and kappa agreement of 77%. More 
recently Gxumisa and Breytenbach (2017) also pointed out the 
superiority of object-based classification approaches over their 
pixel-based counterparts when classifying a SPOT5 multispec-
tral image covering the Soshanguve area in Gauteng province, 
South Africa. Object based classification strategies have also 
been reported as more suitable for heterogeneous areas such 
as urban areas (Kemper et al. 2015; Degerickx et al. 2017; 
Kuffer et al. 2017; Ouerghemmi et al. 2017; Van der Linden 
et al. 2019). One major contribution to the good performance 
of the proposed strategy in Gxumisa and Breytenbach (2017), 
with regard to building extraction, was the introduction of 
elevation data into the classification process to minimize the 
influence of pixel similarity among classes. However, one sug-
gestion made by the authors to improve the accuracy was the 
use of techniques such as principal component analysis that 
identifies suitable spectral bands that would best describe each 
individual class (Gxumisa and Breytenbach 2017).

This study proposes a feature selection method combining 
a principal component analysis which identifies the possible 
optimal objects’ descriptive features which are then projected 
onto a Chebyshev’s matrix to eliminate possible features’ over-
laps which may not be observable in the original data. The 
final candidate features are qualified as unique after “optimi-
zation” in order to ensure an acceptable object identification 
during the classification process. The selection approach is 
tested on inter-class distance features to produce the more 
potent measures that separate each object from its neighbours. 
The proposed segmentation parameters’ selection approach 
includes a local search through which possible optimal com-
binations of scale parameter/compactness/colour are identified 
to produce good quality segments at a single level segmenta-
tion. The obtained parameters are further processed through a 
global search tool to identify how many segmentation levels 
are needed to represent most of the land use/land cover classes 
in the imagery and reveal the associated parameter combi-
nations. An additional scale/compactness search function is 
proposed to automatically identify best parameter matches to 
achieve acceptable segmentation outcomes.

Study area and methods

Study area and data

To test our image classification strategy, we chose the city 
of Stellenbosch due to its small size (Fig. 1), its challenging 
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landscape with mountains and hills as well as its diversity in 
urban vegetation cover, building footprints and water bodies 
including dams, swimming pools, and reservoirs. Stellen-
bosch is a small town in the Western Cape Province located 
at 33.9321° S and 18.8602° E. Stellenbosch municipality 
covers an area of 831 km2. To the west and southwest, it 
extends as far as the urban edge of the Cape Town metro-
politan area while to the east and southeast it is bounded by 
mountain ranges. The western part of Stellenbosch munici-
pality and the eastern part of Franschhoek valley are sepa-
rated by mountains. With a population of 77,476 inhabitants, 
about 50% of residents live in suburbs including but not 

limited to Idasvallei, Coatesville, Die Boord, Brandwatch, 
Jamestown, Paradyskloof and the shantytown of Kayamandi 
at the North West periphery of the city. The university is 
located near the city centre while some schools are spread 
within the city and the shantytown of Kayamandi. Land 
use and land cover in Stellenbosch is similar to most South 
African cities including but not limited to roads, residential, 
urban vegetation, commercial, industrial, educational build-
ings, and water bodies.

The data used in this study includes a multispectral 
SPOT5 10 m spatial resolution and a 2.5-m spatial res-
olution panchromatic images. The historical imagery 

Fig. 1   A presentation of the 
study area of Stellenbosch
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was captured on 20th November 2008. In addition to 
the satellite imagery, a 0.5-m high resolution aerial 
photograph covering the study area was acquired from 
the National Geospatial Information office in Cape 
Town. All satellite data was supplied with metadata 
files by the South African National Space Agency 
(SANSA). The date of image capture did not matter 
for the study since the focus was more on the land use/
land cover classes which obviously may have expanded 
but this has no technical implications on the presented 
methodology.

After the pre-processing of the satellite imagery, we 
segmented the enhanced image using 8 randomly selected 
scale parameters to collect segments’ brightness attributes. 
The series of segmentations were done keeping the shape/
colour as well as the compactness/smoothness parameters 
at 0.5 for equal influence on the results and we gave each 
band a weight of 1 so that the multiresolution algorithm 
takes into account all the spectral information made avail-
able by each band in eCognition. The collected brightness 
measures were representative to all classes involved in 
this study according to the land use/land cover classes. 
The total number of samples collected within the study 
area represent a count of 1460 objects’ spectral bright-
ness measures selected across the image to avoid a bias 
representation of certain classes. It must be noted that the 
shape compactness we are referring to here is distinct from 
the segmentation parameter associated to the smoothness 
and will be computed as follows:

Because of spectral similarities across land use/land cover 
within urban areas, attributes such as inter-object separation 
distances, the perimeter measures, the shape compactness 
indices, object’s lengths, width, length over width ratios will 
be considered in the classification process. However among 
the 7 mentioned attributes, the inter-object separation dis-
tance seems to be the most complex, due to the fact that 
in residential urban areas a large amount of buildings may 
share the same proximity distance. Moreover, classes such as 
urban trees which may be very close to residential buildings 
may exhibit similarity of proximity distance to residential 
buildings. This would give serious difficulties even to the 
most robust classifier to separate these classes under such 
circumstances. One solution we will explore and incorporate 
into the classification strategy is to propose an approach that 
could refine these distance topology relationships and offer 
optimised measures that could minimize misclassifications.

To minimize computer storage and the analysis time and 
reduce the image analyst effort, it is proposed to reduce 
the size of the images. The satellite images and the aerial 

(1)
Shape compactness =

[
4� × objectarea

]
(object perimer)−2

photograph used in this study were cropped using Gimp 
2.1.0.8 software compression free to not alter the pixel val-
ues of images statistics (Campbell 2006).

Study methodology

Geometric corrections

The imagery provided for the study was SPOT5 imagery of 
level 1A which consequently requires geometric corrections 
before any further analysis (Sowmya et al. 2017; MohanRa-
jan et al.2020). Geometric correction of satellite imagery 
consists of modelling the relationship between coordinates 
on images and ground coordinates. The first-order polyno-
mial model was disregarded for our area since it is more 
suitable for flat landscape and our study area is dominated by 
hills and mountains. Instead, the second degree polynomial 
model was selected for the geometric corrections (Mather 
and Tso 2016). All the satellite images were geometrically 
corrected using Lo 19 projection which is a local projection 
system, using the corrected 2008 colour aerial photograph as 
a reference. The panchromatic satellite image was first reg-
istered to the aerial photograph to preserve the high spatial 
resolution then the multispectral image was co-registered to 
the panchromatic satellite image using Erdas Imagine soft-
ware. The nearest neighbour resampling method was used 
because according to Mather and Tso (2016), it does not 
alter the original pixel values and produces less distortions 
compared to cubic convolution and bilinear interpolation 
(Baboo and Devi 2010). We used a total of 10 ground con-
trol points which were identified in both satellite images and 
the aerial photograph. The total root mean square error of 
the correction of an image is estimated through as follows 
(Rocchini and Rita 2005):

Figure 2 presents the results of the image registration pro-
cess. It can be observed that there is a continuation of linear 
features between the multispectral SPOT5 image on the right 
and the colour aerial photograph, revealing the success of 
the geometric correction strategy.

Reflectance normalisation

To collect remotely sensed data of lasting values, the data 
must be calibrated to physical units such as reflectance 
because the radiance recorded by the sensor for each pixel 
is an apparent radiance. This apparent radiance is the com-
bination of the radiance of the object on the earth surface 
and atmospheric effects (Rani et al. 2017). The estimation 

(2)Totalrms =

�
1

n
∑�

u2 + v2
�
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of ground reflectance requires the conversion of pixels’ DN 
values to apparent radiance, then conversion of the appar-
ent radiance to apparent reflectance and finally the apparent 
reflectance is converted to ground reflectance. For SPOT 
imagery, the conversion from pixel DN values to apparent 
radiance is done through the following (Mather and Tso 
2016):

With L� , the apparent radiance. The conversion of the 
apparent radiance to the apparent reflectance is done through 
the following equation (Mather and Tso 2016):

With �� the apparent reflectance, ESUN� the exo-atmos-
pheric solar irradiance in Watts∕m2�m , d the Earth-Sun dis-
tance in astronomical units and s the solar zenith angle. The 
Earth-Sun distance is estimated as follows (Mather 2004):

The target reflectance is estimated by multiplying the 
apparent reflectance by 400, rounded and encrypted back 
to 8bits radiometric resolution through the following piece 
of code implemented in Erdas function environment as 
follows:

(3)L� =
[

Gain

Pixel DN value

]
+ Bias

(4)�� =
�L�d

2

ESUN� cos �s

(5)d = 1 − 0.01674 cos (JD − 4)

All the parameters used in the conversion of apparent 
radiance to the ground reflectance were provided in the 
metadata files of the satellite imagery. The result of the con-
version from the pixel DN to ground reflectance is a range of 
pixel values from 0 to 255 grey levels in absence of atmos-
pheric errors. A visual analysis of our imagery revealed the 
presence of water bodies within the study area, thus the low-
est reflectance value expected should be zero or close to zero 
in the infrared band. However, the statistics of our multi-
spectral image show that the image still has atmospheric 
distortions as illustrated by Fig. 3 as follows.

From the observation of Fig. 3, there is a need for fur-
ther processing of the imagery to reduce the minimum pixel 
value attributed to water bodies to zero or a value very close 
to zero.

Atmospheric corrections

Several atmospheric correction models exist in the literature 
(López-Serrano et al. 2016; Sowmya et al. 2017; Boakye, 
et al. 2020.). Atmospheric correction methods can be related 
to the spectral resolution of the available multispectral satel-
lite imagery and the availability of image capture data (Dutta 
and Das 2019; Lhissou et al. 2020; Miky 2019). Figure 4 
details a workflow guiding the selection of the appropriate 
atmospheric correction method.

Observing both paths from the multispectral imagery the 
SPOT5 multispectral image satisfies the left path require-
ments. From the four correction models proposed it was 
noted that the empirical atmospheric correction model 
requires ground calibration data in the scene and the ancil-
lary data provided with the imagery did not contain such 
information. The dark object subtraction model assumes that 
no atmospheric transmittance is lost and that there occurs no 
diffuse downward radiation at the surface (Song et al. 2001), 
but the hilly and mountainous landscape of Stellenbosch 
town does not satisfy these requirements. Moreover, a visual 
analysis of the land use/land cover classes on the satellite 
imagery and aerial photograph did not show the presence of 
dense vegetation cover, excluding the possibility of using 
the Dense Dark vegetation method. The radiative Transfer 
Model seems to be suitable for our study area, ATCOR2 
and ATCOR3 available in the image pre-procession soft-
ware PCI Geomatica, are such Radial Transfer Models. 
Since ATCOR2 is more suitable for flat landscape (Richter 

(6)

IF (ROUND(reflec tan ce × 400))⟩255 THEN

DN = 255

ELSEIF(ROUND(refelc tan ce × 400))⟨0
DN = 0

ELSE

DN = ROUND(reflec tan ce × 400)

ENDIF

Fig. 2   Registration output showing a transparent overlay of the regis-
tered multispectral image over the colour aerial photograph
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and Center 2004) ATCOR3 was selected for our study area 
and the tool has been used for atmospheric corrections of 
mountainous areas (Tan et al. 2012; Ateşoğlu and Tunay 
2014). Since ATCOR3 requires the use of a digital elevation 
model, we used contour lines and GPS point’s coordinates 
provided by the National Geospatial Information office to 
produce a digital elevation model using ArcGIS software. 
Figure 5 shows the outcome of the atmospheric correction 
process. After selection of a few water body segments, it can 
be observed that the lowest pixel value in the infrared band 
was reduced to 0.083018 while the brightest water body 
segment had a reflectance of 0.50404, which is expected in 
absence of atmospheric distortions on the objects’ ground 
reflectance values.

Data fusion

Poor spatial and spectral resolutions have been a great chal-
lenge for urban mapping. Some authors have suggested a spa-
tial resolution of a multispectral image finer than 5 m (Harold 
et al. 2003). High spatial resolution is required for a better 
description of metrics such as objects’ shapes whereas differ-
ent object and land surfaces are better identified if high spec-
tral resolution is available (De Jong and Van DerMeer 2005). 
The SPOT5 panchromatic and multispectral resolutions are 
respectively 2.5 m and 10 m, offering respective pixel sizes 
of 6.25m2 and 100m2. Informal building units are reported 
to have sizes between 6 and 20m2 while formal residential 
building units are described to have sizes greater than 30m2 
(Busgeeth et al. 2008). As a consequence, using an image that 
can provide rich spectral information about the objects on the 
earth’s surface but provides coarse spatial resolution may not 
be the good combination to extract informal housing units. A 
solution to this dilemma is to bring together the high spectral 

resolution property of the multispectral image and the high 
spatial resolution property from the panchromatic image into 
one single image to benefit from both properties. Several reso-
lutions merge approaches have been reported in literature with 
each technique offering its strengths and weaknesses (Simone 
et al. 2002; Ghassemian 2016; Pohl and Van Genderen 2016). 
Shamshad et al. (2004) investigated four resolution merge 
techniques including the Principal Component Analysis, the 
Multiplicative, the Brovery Transform and the Wavelet Trans-
form resolution merge methods. The study reveals that all four 
techniques improved the image spatial resolution but only the 
Principal Component Analysis and the Wavelet Transform pre-
served the statistical parameters of the bands. For this study 
the Wavelet Transform method included in Erdas Imagine soft-
ware was used. The choice on the Wavelet Transform over the 
principal component analysis was based on the fact that the 
method does not alter the image radiometric resolution (Sham-
shad et al. 2004; Mehra and Nishchal 2014). The outcome of 
this process is a multispectral image that possesses both the 
high spectral resolution and the high spatial resolution derived 
from the input images as shown in Fig. 6.

The visual interpretation of the original 10 m multispec-
tral SPOT5 image reveals it would have been very difficult to 
extract high quality building outlines due to the poor spatial 
resolution. With the resolution merge performed, it can be 
observed that some building outlines are well represented.

Features identification

Spectral features

Spectral features play a vital role in describing objects on the 
Earth surface as discussed previously. To describe objects 

Fig. 3   The minimum and 
maximum reflectance statistics 
of the image respectively at 10 
and 246
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within our area few spectral metrics were estimated in order 
to separate land cover/land use classes from one another 
when running the classification algorithm. NDVI indexes 
have been proven efficient to separate vegetation from 
non-vegetation classes (Gandhi et al. 2015; Hashim et al. 
2019). To separate vegetation from non-vegetation classes 
a threshold measure of the index was estimated to isolate 
vegetation class from other classes. In addition to the NDVI 
index, thresholds in the green band were also estimated to 
enhance the discrimination between the vegetation class and 
other classes. Spectral thresholds in the infrared band were 
estimated to isolate buildings from water bodies. Addition-
ally, some spectral thresholds were estimated to separate 
residential from non-residential building classes.

Shape features

Shape can enable to separate tree patches from green build-
ing roofs. For that purpose shape compactness thresholds 
were estimated using the equation in (1). A certain number 
of shape compactness thresholds were estimated to separate 
residential from non-residential buildings and to separate 
informal housing from formal housing units.

Size features

Size characteristics including area sizes, perimeters, lengths, 
width, and length over width ratios were estimated. For 
instance, some length over width thresholds were estimated 

Fig. 4   Workflow showing various criteria to consider when choosing atmospheric correction methods (reproduced from Ncaveo 2005)
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to separate roads from non-roads classes. Length thresholds 
were also estimated to isolate roads from non-road classes. 
Objects’ size measures were also estimated in order to iden-
tify the most meaningful measures that can separate land 
use/land cover classes from one another. Some area size 
thresholds were selected to separate buildings from water 
bodies as well as separating residential from non-residential 
buildings. Area size thresholds of parking were estimated to 
separate educational buildings from commercial buildings 
as well as informal housing units from formal housing units.

Distance features

High-dimensional data are very common in image classifi-
cation when multiple features such as proximity distances 
between various components of land use/land cover classes 
are to be considered (Lever et al. 2017). Proximity between 
objects in urban areas is among the most diverse, making 
it very difficult to separate one class from others due to the 
large dimensionality of the data. One solution we opted in 
order to identify the most prominent distance features that 
enable the separation between classes and reduce the dimen-
sion of the data is to process the collected measures through 
a Principal Component Analysis (Ng 2017; Cushion et al. 
2019). For the purpose, distance measures were manually 
collected after digitizing various classes samples in ArcGIS 
then recorded the different distances that separate classes 
using the measure tool in ArcGIS. Table 1 presents the aver-
aged distance measures between the various land use/land 
cover classes.

In order to improve numerical stability in the subsequent 
PCA, a normalization was performed on the data (Gewers 
et al. 2018). Normalizing a dataset can optimize its discrimi-
nation power, which is central for image classification (Ng 

Fig. 5   The reflectance of water 
bodies was improved to reach 
a value near zero as minimum 
reflectance of the multispectral 
image in the infrared band

Fig. 6   Top: original SPOT5 10 m multispectral image and at the bot-
tom the resolution merged image
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2017). Each entry of the normalised matrix Mnorm is esti-
mated using the equation as follows:

The produced matrix Mnorm contains in its columns and 
rows the various cross-distances xi between individual 
classes i, where, i = {residential, commercial, Educational, 
urban vegetation, roads}, and xi the mean cross-distance 
between a list of six classes with regards to one another.

The normalized matrix does not enable to identify and 
locate the greatest variance within the data; thus, a covari-
ance matrix must first be estimated from the normalised data 
(Ng 2017; Hernandez et al. 2018). Equation (8) given as 
follows serve this purpose:

With N, the number of cross-distances represented in 
each row or column of the matrix. The terms x and y repre-
sent the means estimates of x and y measures respectively. 
The identification and location of the greatest variances 
within the covariance matrix is done through the estimation 
of eigenvalues and their corresponding eigenvectors from 
the covariance matrix (Granato et al 2018; Cushion et al. 
2019). Each eigenvalue was solved under the constraint 
that it satisfies the equation given in (9) as follows:

(7)
xNorm =

xi − xi�
1

N

N∑
i=1

�
xi − xi

�2

(8)Cov(x, y) =

(
� − p

)
×
(
y − y

)

N − 1

Table 2 presents the estimated eigenvalues with their 
respective eigenvectors. The eigenvalues were rearranged 
in decreasing order with their associated eigenvectors.

The aim of applying principal component analysis on 
our cross-distance measures was to simplify and reduce the 
dimensionality of the original data with a minimum loss 
of the overall dispersion of the measures collected. Table 3 
shows a summary of variance magnitude carried by each 
eigenvalue.

Adding the first four variance magnitudes carried by the 
respective first four eigenvalues reveal that they carry about 
99.5% of the total cross-distance information.

The next step in our cross-distance data optimization is the 
selection of more potent eigenvalues as well as their associ-
ated eigenvectors. Several selection suggestions are available 
in the literature (Jolliffe and Cadima 2016). For this study, the 
cumulative variance magnitude approach was chosen for its 
simplicity. Each coefficient of the eigenvectors is a weighting 
factor for each cross-distance in the original data and the more 
weight is attached to a cross-distance, the more discriminative 
power it has. The products between the coefficients of eigen-
vectors with their associated cross-distances in the original 
data are called scores (Happ and Greven 2018). Each coeffi-
cient also describes the spatial relationship that exists between 
a reference class and the other classes within the same urban 
area. To estimate the data scores in this study, we will use the 
difference between cross-distances and their respective centre 
means in order to give equal influence to each cross-distance 

(9)det
(
A − ��I

)
= 0

Table 1   Averaged inter-class 
mutually separating distances

Reference class\vari-
able distance to

Residential Commercial Industrial Educational Urban Veg-
etation

Roads

Residential 20 m 500 m 500 m 500 m 16 m 5 m
Commercial 500 m 1000 m 1000 m 500 m 5 m 150 m
Industrial 500 m 1000 m 20 m 1000 m 15 m 100 m
Educational 500 m 500 m 500 m 20 m 30 m 50 m
Urban Vegetation 6 m 5 m 15 m 30 m 3 m 5 m
Roads 5 m 150 m 100 m 50 m 5 m 50 m

Table 2   Computed eigenvalues 
with their respective 
eigenvectors (principal 
components’ columns)

�
i
 number �

1
�
2

�
3

�
4

�
5

�
6

Classes\eigenvalues 3.413 1.172 0.964 0.418 0.033 -4.67E-7
Principal Components PC

1
PC

2
PC

3
PC

4
PC

5
PC

6

Residential 0.485 0.258 0.024 0.501 0.656 0.124
Commercial 0.531 -0.071 0.133 -0.194 -0.067 -0.808
Industrial 0.316 0.131 -0.731 -0.544 0.120 0.197
Educational 0.374 -0.313 0.579 -0.448 0.0786 0.469
Urban vegetation 0.142 0.857 0.254 -0.098 -0.398 0.117
Roads 0.472 -0.282 -0.220 0.452 -0.621 0.242
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measure involved in the analysis (Daszykowski et al. 2007). 
The process is labelled translation since it does not affect the 
interpretation of the data because the variances of our origi-
nal cross-distance data are the same as those obtained after 
the translation. Since the aim of this analysis is to increase 
the discrimination power of each cross-distance measure, it is 
recommended to use in addition to the principal component 
analysis, a projection method to strengthen the PCA results 
(Gewers et al 2018) and for this study we selected the Cheby-
shev’s projection method instead of the empirical rule because 
the estimated distance scores do not follow a normal distribu-
tion (Seresht and Ghassemian 2016).

Image classification

Finding optimal local segmentation 
scale‑compactness parameters combination

Post image enhancement, the image was segmented at respec-
tive scale parameters of 20, 40, 60, 70, 80, 100, 120, and 135 
using eCognition. The collected segments’ areas and bright-
ness attributes were used to compute inter-segment hetero-
geneity � values, using Eq. (10) as follows (Yang et al. 2019):

With �i the area of the segment (i) and vi the brightness 
attribute of the segments (i). The expression could hold with 
the numerator only but to minimize the instability caused by 
objects smaller than shacks’ sizes recorded in our building 
size database, a division by the sum of segments ‘sizes was 
applied to the numerator. Since the success of a segmentation 
process does not get credit from the scale parameter alone but 
from the correct balance with other parameters such as shape, 
colour and compactness weight( which is complementary to 
the smoothness weight), we performed a search of parameters 
that can optimise the performance of scale parameters. Each 
segmentation scale was then tested with various compact-
ness thresholds ranging from 0.1 to 0.9(Smoothness weight 

(10)� =

∑
�ivi∑
�i

decreasing from 0.9 to 0.1). To achieve internally homogene-
ous segments, the function in (10) must reach a peak (local 
maxima), characterizing segments with high heterogeneity 
attributes with reference to their neighbours at a given com-
bination of scale parameter and compactness/smoothness 
weight. Although the proposed strategy differs in its formula-
tion from those of Espindola et al. (2006), Kim et al. (2008) 
that incorporated the Moran’s index in a Global function, 
it achieves the same objectives of identifying optimal scale 
parameters from the peak values of a curve representing 
objects’ variances plotted against their respective segmentation 
scale parameters (Wang et al. 2019). Our proposed approach 
is a two-phase method which includes a local and a global 
search. The local search identifies the optimal compactness/
smoothness thresholds that would produce a peak of the func-
tion which characterises high inter-segment heterogeneity at 
each one of the scale parameters considered. Table 4 shows 
compactness and normalized inter-segment local heterogeneity 
measures (Yang et al. 2019) tested with the scale parameter of 
20. The test was repeated with all the remaining seven scale 
parameters.

To perform a local search for optimal parameter combina-
tions, each normalized inter-segment heterogeneity (intra-seg-
ment homogeneity) is plotted against its associated compact-
ness value to produce a search curve. A peak of the curve will 
mean there is a high inter-segment heterogeneity between seg-
ments. This means that each individual segment is internally 
homogeneous and can distinguish itself from its neighbours 
at the corresponding parameter combination thresholds that 
produced the peak(s).

Figure 7 shows an unsuccessful search for optimal compact-
ness thresholds from the normalized inter-segment heterogene-
ity curve as there are no peaks along the curve.

Similarly, Table 5 shows data tested at scale parameter 
of 60 in order to identify local compactness thresholds that 
would produce homogeneous segments (distinct from their 
neighbours).

Figure 8 shows a successful search of optimal local com-
pactness thresholds that would optimize the segmentation at 

Table 3   Summary of variance 
magnitudes carried by each 
eigenvalue

Eigenvalues �
1

�
2

�
3

�
4

�
5

�
6

Estimates 3.413 1.172 0.964 0.418 0.033 -4.67E-7
Proportion 0.569 0.195 0.161 0.070 0.006 -7.78E-08
Cumulated 0.569 0.764 0.925 0.995 1.00 1.00

Table 4   Compactness thresholds and their corresponding normalized inter-segment heterogeneity values at scale of 20

Local compactness values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Local normalized inter-segment Heterogeneity 1 0.987 0.905 0.821 0.654 0.477 0.390 0.336 0
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scale 60 and produce meaningful segments with shapes of seg-
ments as close as possible to their real world shapes.

The curve of normalized local inter-segment heterogene-
ity reveals two peaks at 0.4 and 0.6, meaning the combina-
tion of a scale parameter threshold of 60 would produce 
meaningful segments for at least two land use/land cover 
classes.

Finding the optimal number of segmentation levels 
needed for the study area

In order to determine the number of segmentation levels 
needed to obtain optimal objects outlines, we will look at the 
number of optimal compactness thresholds across the vari-
ous scale parameters used in the search of the best fit combi-
nations between scale parameter and compactness. Figure 9 
presents the summary of scale and compactness parameters 
search results. In Fig. 9(a), (e), and (f), the respective scale 
parameters 20, 40, 120, and 135 did not find any best fit com-
pactness thresholds, which would result in segments outlines 
far from their real world shapes while in Fig. 9(b), (c) and (d) 
the inter-segment heterogeneity curves produced some peaks, 
characteristics of homogeneous segments. Observing Figs. 8 
and 9(b), (c) and (d), there is a redundancy of the compactness 
value of 0.6 at scale parameters 60, 70, 80, and 100; this could 
indicate a compactness threshold at which a certain type or 
groups of land use/land cover classes(s) is (are) “optimally” 
segmented. Figure 9(c) also shows an additional compactness 
threshold of 0.8 at scale parameter 80. With consideration of 
these observations we may hypothesize that there may exist 
only two segmentation levels needed to extract the different 
land use/land cover classes with acceptable segments’ outlines 

from our study area. A global search of both parameters in the 
next subsection will attempt to verify this hypothesis.

Global search of optimal scale 
parameter‑compactness combination

The global search process is similar to the local search 
approach but differs in the fact that the compactness thresholds 
are not assessed with reference to the inter-segment heteroge-
neity function but this time with reference to their respective 
scale parameters as illustrated in Table 6.

Due to the fact that the relationship between compact-
ness thresholds and scale parameters is not linear, it was 
expected to obtain a curve which is not a sinusoid as 
shown in Fig. 10, but it can be seen that the shape of 
the curve shows two “summits” which seems to confirm 
the data requires only two segmentation levels for its 
classification.

Automatic selection of scale parameter and best fit 
compactness thresholds for optimal segmentation 
of the study area

Let � be a weighting compactness parameter, � represents 
the smallest segmentation scale parameter that would pro-
duce the smallest meaningful segment when � gets closer 
to zero. Let xi be the optimal compactness threshold for 
the scale parameter yi . Let n be the number of compactness 
thresholds that produced peaks in the local search pro-
cess. Figure 10 shows that the relationship between scale 
parameters and compactness thresholds is not linear; thus, 
a linear approximation of the curve in Fig. 10 is needed 
in order to automatically estimate which scale parameter 
produces good quality segments if used with a certain 
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Fig. 7   Optimal local compactness search at scale parameter of 20

Table 5   Search for optimal compactness at scale parameter of 60

Local compactness values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized inter-segment heterogeneity values 0.010 0.017 0 0.017 0.050 0.150 0.083 0.417 1
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Fig. 8   Optimal local compactness search at scale parameter of 60
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Fig. 9   Summary of local searches of best fit combinations between 
segmentation scale and compactness parameters. In (a), the output 
of a search at scale parameter 40, in (b) the research results at scale 

parameter 70 and in (c) the search result at scale parameter 80, (d) the 
search outcome at scale parameter 100, (e) the search results at scale 
parameter 120 and (f) the search results at scale parameter 135

Table 6   Scale parameters with their associated best fit compactness thresholds

Compactness thresholds 0 0 0.4 0.6 0.6 0.6 0.8 0.6
Segmentation scale parameters 20 40 60 60 70 80 80 100

630 Applied Geomatics (2021) 13:619–643



1 3

compactness measure and vice versa. For the purpose, we 
will estimate the parameters � , � and n using linear Least 
squares method as follows:

The estimated function is expected to be a linear 
approximation of the relationship between scale param-
eters and their respective best fit compactness values and 
it will be of the form:

With S the scale parameter, �  a weighting parameter 
equal to the compactness threshold. The first quantity 
after the equal sign matches the mathematical formu-
lation of the scale parameter as define in the eCogni-
tion user guide, that describes the scale parameter as 
the product between the image variance and a weight-
ing factor which may be the shape, the colour, the 
smoothness or the compactness(Definiens 2007). Our 
proposed formulation is more suitable for compact-
ness parameters which the study focuses on, as well as 
segmentation scale parameters. The slight difference 
between our proposed approach and the mathematical 
formulation of the scale parameter in eCognition user 
guide is that we constrained the scale parameter to a 
minimum value of � which is the smallest scale param-
eter to produce meaningful segments outlines when the 
weighting factor is set to zero. This is to reduce the 
operator efforts and time in a trial and error param-
eter search since the function in (12) would enable to 
automatically find the best fit compactness threshold 

(11)
�

�
∑

x2
i
+ �

∑
xi =

∑
xiyi

�
∑

xi + �n =
∑

yi

(12)S = �� + �

for any given scale parameter and vice versa. In the 
next section Fig. 11 presents the classification strategy 
workflow.

Image classification

Figure 11 describes the various steps to be undertaken in 
order to perform our image classification using eCognition.

After identifying suitable scale parameters and asso-
ciated shape compactness thresholds, two-level classifi-
cations were performed using eCognition object-based 
classification. The first-level classification aims to identify 
eight classes including formal, informal, educational, com-
mercial, industrial buildings as well as water bodies, urban 
vegetation and road classes using spectral signatures, size, 
length, shape compactness measures as well as spatial con-
text of each class. The second-level classification aims to 
separate informal housing units from all the other built up 
structures. The strategy employed was to group the formal, 
commercial, industrial and educational building classes 
into a single ‘Formal’ building super class. Water bod-
ies, urban vegetation, roads and informal building classes 
were transferred to the second-level classification to build 
a final classification map of five classes. Table 7 presents 
the various objects’features to be used to separate indi-
vidual segments from their neighbours.

Results

Spatial distance feature analysis

Table 8 presents the first four principal components and 
their respective loadings. An analysis of the first Principal 
Component shows that a large number of residential and 
commercial buildings are located near major roads. This 
principal component is strongly correlated to commercial 
buildings characterized by the largest loading value asso-
ciated with this land use class and also seems to describe 
the town centre. The second principal component is mainly 
correlated to urban vegetation and reveals the absence of 
roads, commercial, educational buildings. This principal 
component seems to describe the periphery of the town 
and reveals that inter-class distance feature would easily 
enable to separate outer urban vegetation from residen-
tial, commercial, industrial, educational and road classes. 
The third principal component is strongly correlated to 
industrial and education buildings (large building infra-
structures). The opposition in signs of these two land use 
classes reveals they are not correlated, meaning that with 
an increase of educational buildings there is a decrease 
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Fig. 10   Segmentation scale parameter and compactness thresholds 
in a global search process. The curve shows two dominant peaks at 
which scale parameter 60 with a compactness threshold of 0.6 and 
another peak at scale parameter 80 with a compactness threshold of 
0.8. From the results in the figure, it can be argued that the various 
land use/land cover classes in our image can fairly be segmented at 
two segmentation levels at scale parameters 60 and 80 with respective 
compactness thresholds 0.6 and 0.8
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of industrial buildings in the neighbourhood. The fourth 
principal component is strongly correlated to residential 
building and road classes. The opposition in signs between 
residential buildings and commercial, industrial, educa-
tional building classes shows that with an increase of 
residential buildings there is as consequence a shortage in 
commercial, industrial, educational building classes. This 
seems to describe the informal settlement area.

The orthogonality property of the principal compo-
nent matrix enables to keep any relationships that exist 
between land use/land cover classes in the original data 
(López–Bueno et al. 2018). The obtained matrix coefficients 
called scores represent the distances from the origin of the 
Principal Component coordinate system, along a principal 

component to the point where a variable is orthogonally pro-
jected onto the principal component as illustrated in Fig. 12.

Table 8 presents the projection of the origin distance fea-
ture from their original “coordinate system (X1, X2, and X3) 
onto the principal component coordinate system. Each vari-
able has a unique score along each principal component axis.

An observation at the second principal component scores 
reveals that commercial buildings and urban vegetation are 
located at almost the same distance from the origin of the 
principal component coordinate system; thus, it would be 
difficult to separate the two classes using the separation dis-
tance in the second Principal Component axis. The distance 
between educational buildings from the origin of princi-
pal components’ coordinate system is the largest along 

Fig. 11   The workflow has three main streams including a segmentation parameter search stream, an inter-class distance features optimization 
stream and the classification stream which gathers all the estimated attributes into the classification process
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the second principal component. Along the third principal 
component, industrial buildings have the longest distance 
from the origin of the new coordinate system, while urban 
vegetation shows the longest distance from the coordinate 
origin along the fourth principal component. From the dif-
ferent scores of land use/land cover classes, we were able to 
estimate the inter-class distance features with reference to 
the new coordinate system origin. Table 9 shows the more 
potent distances separating the various land use/land cover 
classes.

The first, third, and fourth principal components seem 
to provide the most valuable inter-class distances. The 
most potent distance separating a majority of residen-
tial buildings from commercial buildings was estimated 

at about 723 m while some residential buildings were 
located near 601 m from some components of urban veg-
etation such as recreational parks, sport fields. Educational 
buildings were found located at a fair distance of about 
647 m from some commercial establishments while some 
of the commercial establishments were located from the 
periphery of town at a distance approximating 1324 m. An 
approximate distance of 132 m separates some major roads 
from some recreational parks, urban trees, and sport fields. 
Commercial and industrial buildings are separated by an 
approximate distance of about 900 m as revealed along 
the third principal component. Some residential buildings 
were found located at an approximate distance of 475 m 
from educational buildings along the fourth principal 

Table 7   The various objects features used for image classification

Land use/Lan cover classes Descriptive attributes

Water class(Dams, swimming pools, water reservoirs) Distances to residential buildings located between 10 and 25 m; Area sizes located 
between 200m2and 800m2;Perimeter measures located between 60 and 120 m; Reflec-
tance in the red band smaller than 1; Reflectance in infrared band smaller than 1

Educational class(schools, university) Distances from sport fields smaller than 677 m; Reflectance in the red band located 
between 90 and 190;Area sizes greater than 615m2; Shape compactness = 0.704

Commercial buildings class Distances from main roads smaller than 563 m; Reflectance in the red band located 
between 85 and 100; Area size smaller than 877m2; Shape Compactness = 0.606

Industrial buildings Distances from commercial buildings smaller than 899 m; Reflectance in the green band 
located between 100 and 192; Area sizes greater or equal to 700m2; Length measures 
greater or equal to 55 m; Width measures greater or equal to 20 m; Shape Compact-
ness = 0.391

Informal buildings class Distance from commercial buildings greater or equal to 723 m;Reflectance in the green 
band located between 192 and 250; Area size measures greater or equal to 6m2; Area 
size smaller or equal to 20m2;Shape compactness = 0.785(smaller Units); Compact-
ness = 0.775(Larger Units)

Formal buildings class(Blocks of flats, Town houses, 
RDP houses)

Distances from commercial buildings smaller than 577 m; Reflectance in the red 
band located between 100 and 250; Reflectance in the green band located between 
98 and 192.;Area size smaller than 9576m2 (Block of flats);Area sizes smaller than 
117m2 (Town houses); Shape compactness = 0.781(RDP units); Shape compact-
ness = 0.7854(Town houses); Shape compactness = 0.786(large block of flats)

Urban vegetation Distances from roads smaller than 133 m; Reflectance in the green band located between 
23 and 94; NDVI index smaller than 0.3; Area size greater than 1500m

2(Sport fields); Area size 
smaller than 900m2 (recreational parks); Shape compactness = 0.45(recreational parks); 
Shape compactness = 0.750) Sport fields)

Roads(Tare roads and gravel roads) Distances to industrial buildings greater than 605 m;Reflectance in the red band located 
between 120 and 210; Length greater than 100 m; Width measures located between 9 
and 11 m’ Width measures located between 2 and 4 m;length over width ratios located 
between 1 and 17; Shape compactness = 0.2380

Table 8   The estimated class 
scores which are projection 
of the multi-dimensional 
inter-class distances onto 2D 
coordinate system

PC
1
 scores PC

2
 scores PC

3
 scores PC

4
 scores

Residential buildings class 28 -79 5 -313
Commercial buildings class 751 25 -317 -375
Industrial buildings 129 -174 583 86
Educational buildings class 104 194 -267 162
Urban vegetation class -572 25 18 252
Roads class -440 8 -22 188
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component. In order to estimate the probability that a land 
use/land cover located 723 m from a residential building is 
a commercial establishment or a land use/land cover situ-
ated 475 m from an educational building is a residential 

building, the identified optimal distances are projected 
onto Chebyshev’s matrix as presented in Table 10.

From the analysis of the various distance ranges, it can be 
observed there are overlaps between certain distance ranges, 

Fig. 12   Illustration of the score 
concept with examples for 
residential building and urban 
vegetation classes

Table 9   A presentation of the various inter-class distances estimated from their respective scores with the optimal distances written in bold

Inter-class distance typology(m) PC
1
 scores PC

2
 scores PC

3
 scores PC

4
 scores Mean Standard 

Deviation

Residential-Commercial buildings 723 104 322 62 303 262
Residential-Industrial buildings 101 95 577 399 293 205
Residential-Educational buildings 76 273 273 475 274 141
Residential buildings-Urban vegetation 601 104 13 565 321 264
Residential-Roads 468 87 28 501 271 215
Commercial-Industrial buildings 622 198 899 461 545 254
Commercial-Educational buildings 647 170 49 536 351 248
Commercial buildings-Urban vegetation 1324 0.16 335 627 571 227
Commercial buildings-Roads 16 16 294 563 223 227
Industrial-Educational buildings 24 368 850 76 330 328
Industrial buildings-Urban vegetation 701 199 564 166 408 231
Industrial buildings-Roads 569 182 605 102 365 225
Educational buildings-Urban vegetation 677 170 286 90 306 225
Educational buildings-Roads 544 186 245 26 251 188
Urban vegetation-Roads 132 17 41 64 63 43
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which constitutes a challenge for the classification algorithm. 
To address this challenge, an elimination of the overlapping 
distance windows is performed. For the purpose we kept 
the first inter-class range from 484 to 1089 m unchanged 
since it accommodates at least one of the identified opti-
mal separation distances. Looking at the second distance 
range along the first Principal Component [473–1114 m], 
it can be observed that the end distance 1114 m is greater 
than the end distance of the first distance range 1089 m, 
resulting in the second distance range along PC1 becoming 
[1089–1114 m]. Similarly looking at the third distance range 
along the same Principal Component [374–916 m], it can 
be observed that the starting distance 374 m is smaller than 
473 m, which is the starting distance in the second distance 
range [473–1114 m], this results in the third distance range 
of the first Principal Component becoming [374–472 m].
After eliminating all the overlapping distances and rearrang-
ing the Table 10 results in the following probability matrix 
in Table 11.

Relocating the potential inter-objects’ distances pointed 
out in Table 10 into their respective refined ranges then 
applying Chebyshev’s probability rules while relying on 
other attributes such as spectral reflectance, shape, size, it 
can be revealed that there is 94% of chances that a small or 
medium size building located at about 723 m and 577 m 
respectively from commercial establishments and indus-
trial buildings, would be classified as a residential build-
ing. Similarly a land use/land cover located 132 m from a 
road has 75% of chances to be classified as urban vegetation 
while a linear feature located about 605 m from an indus-
trial building has 94% chances to be classified as a major 

road. Ninety-four percent (94%) would be the probability of 
a building located about 677 m from a sports field to be clas-
sified as an educational building. There is 94% probability 
of a large building located about 563 m from a major road 
to be classified as a commercial building. A large building 
located about 899 m from a large building with brighter 
roofing material has 89% probability to be classified as an 
industrial building. Because of the small number of water 
bodies within the study area, they were not included in the 
principal component analysis; however, their locations with 
reference to residential buildings were between 10 and 25 m.

Spectral properties of features

An analysis of the collected spectral characteristics from 
the segmented objects show that some building roofs have 
digital numbers in the red band ranging between 100 and 
250 while ranging between 98 and 192 in the green band. 
In contrast, urban vegetation class was well described by 
digital numbers ranging between 23 and 94 in the green 
band. Moreover, urban vegetation exhibits a Normalized Dif-
ference Vegetation Index greater than 0.3 to separate itself 
from non-vegetation classes. Reflectance lower or equal to 
one in the red and infrared bands characterized water bodies. 
In opposition, roads were found with high digital numbers 
in red and infrared bands.

Size and shape properties of features

Roads, which share similar spectral properties with some 
tiled roofs, were found with length measures greater than 

Table 10   Projection results of the optimal inter-class distance features per Principal Component axis (in bold) onto Chebyshev’s matrix. The 
best separation distances presented in Table 9 can be identified within their optimal distance ranges

Principal Components’ axes Chebyshev’s inter-class distance(m) features’ classification

|Mean − 2�| |Mean + 2�| |Mean − 3�| |Mean + 3�| |Mean − 4�| |Mean + 4�|

First principal component 222 827 484 1089 746 1351
208 849 473 1114 737 1378
159 701 374 916 589 1131
145 846 393 1094 641 1342
118 1025 109 1252 336 1479
54 869 284 1099 515 1330
145 756 371 982 371 982
125 626 312 813 500 1001
23 150 66 193 109 236

Third principal component 117 703 323 908 528 1113
36 1054 218 1308 472 1563
326 985 654 1313 982 1641
84 814 309 1038 534 1263

Fourth principal component 7 556 148 697 289 838
231 676 458 903 685 1130
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100 m and widths varying between 9 and 11 m near the 
city centre while varying between 2 and 4 m at the periph-
ery especially within Kayamandi area. Roads are also char-
acterized by a length over width ratios between 1 and 17. 
Some digitized sizes of sport grounds were found greater 
than 1500 square meters while some recreational parks were 
found with sizes approximating 900 square meters. Some 
educational buildings were found with sizes near 615 m2 
while some blocks of flats digitized sizes approximated 9576 
m2. Some town houses were found with area sizes approxi-
mating 117 m2. Some industrial buildings had lengths close 
to 55 m while widths approximated 20 m, giving area size 
approximating 700 m2. Some commercial establishments 
reached area sizes close to 877 m2. The digitized area size 
of informal housing units (Fig. 13) varied between 6 and 20 
m2 and a field investigation revealed that some structures 

had roofing materials made of a mixture of wood, plastic 
and iron sheet.

The various objects’ shape compactness thresholds were 
estimated from digitised objects. For instance smaller infor-
mal housing units were characterized by shape compact-
ness values of 0.785 while larger informal housing units 
achieved 0.775 as shape compactness measure. Recrea-
tional parks which are accounted as part of urban vegeta-
tion class, were characterised by shape compactness close 
to 0.45 while Sport fields which presented more regular 
shapes were characterised by shape compactness of 0.75. 
Most residential Reconstruction and Development Program 
(RDP) houses were characterised by a shape compactness 
index of 0.781. Small residential townhouses were charac-
terised with an average shape compactness index of 0.7854. 
Industrial buildings were characterised by shape compact-
ness index of about 0.391 due to the non-regular roof shapes 

Table 11   The refined inter-class distance features’ classification matrix after elimination of overlapping distances which could have resulted in 
mixed pixels during the image classification process

Principal Components’ axes Chebyshev’s inter-class distance features’ classification

|Mean − 2�| |Mean + 2�| |Mean − 3�| |Mean + 3�| |Mean − 4�| |Mean + 4�|

First principal component 222 827 484 1089 746 1351
208 849 1089 1114 737 1378
159 701 374 472 589 1131
145 846 393 1094 1114 1342
118 1025 109 1252 336 371
54 869 284 1099 515 528
145 756 371 982 371 374
125 626 312 813 641 654
23 150 66 193 528 554

Third principal component 117 703 323 908 472 484
36 1054 218 1308 654 1001
326 985 534 548 982 1641
84 814 309 1038 289 336

Fourth principal component 548 556 148 697 556 641
231 676 458 903 685 1130

Fig. 13   Informal housing units 
(shacks), the structures gener-
ally have heterogeneous roofing 
materials
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for the majority of buildings while commercial buildings 
were characterised by an average shape compactness index 
of 0.606. Most of roads were characterised by shape com-
pactness indices approximating 0.2380. Large blocks of flats 
were characterised by an average shape compactness index 
of approximately 0.786 while educational buildings were 
characterised by a shape compactness index of 0.704.

Automatic selection of best fit scale parameters 
and compactness thresholds

After solving Eq. (12), a slop value of 50 was obtained while 
the intersect measure was found at 40 to produce the best 
fitting linear scale model as follows:

With the constraint that the scale parameter S and the 
inter-segment heterogeneity value � must always be posi-
tive integers. The model enables to predict the optimal com-
bination of scale parameter/compactness thresholds that 
would produce meaningful segments. The model was tested 
with the scale parameter 40 which revealed no meaningful 
segments would be produced since the resulting estimate 
of inter-segment heterogeneity values is zero which is an 
attribute of scale parameters that cannot successfully sepa-
rate individual segments from their closest neighbours. The 
test with the scale parameter 20 did not satisfy the condition 
of positive inter-segment heterogeneity estimate and cannot 
produce meaningful segments as previously found in Fig. 7. 
However, the compactness threshold of 0.4 predicted a best 
match with the scale parameter 60 while the compactness 
0.6 predicted a best match with the scale parameter 70 as 
previously found during the local search experiment.

Image segmentation

As per the experiment in Fig. 10, two segmentation lev-
els were performed with scale parameters 60 and 80 with 
respective compactness thresholds of 0.6 and 0.8 in eCogni-
tion. Figure 14 illustrates a segmentation at scale of 60 with 
compactness of 0.3 and 0.6.

(13)S = 50� + 40

For each segmentation, we put a high value on the shape 
weighting factor so that it is more accounted for during the 
segmentation than the colour weighting. The compactness 
weights were selected from the experimental results with 
their respective scale parameters as illustrated in Table 12.

It can be observed that the smaller the scale parameter the 
larger is the smoothness weight. The scale parameter of 60 
requires a compactness weight of 0.6 and smoothness weight 
of 0.4 while the scale parameter 80 requires a compactness 
weight of 0.8 and smoothness weight of 0.2.

Image classification

The first classification level was performed with scale 
parameter 60 and compactness threshold of 0.6 to extract 
five land use/land cover classes including roads, formal, 
informal residential buildings, water bodies and urban veg-
etation in eCognition software. The second level classifica-
tion was performed using the segmentation results at scale 
parameter 80 and compactness thresholds of 0.8 to extract 
three land use/land cover classes including commercial, 
industrial and educational buildings.

Merging both levels produced a final classification map 
of five classes in which industrial, commercial and education 
building classes were merged to produce one ‘Formal’ build-
ing super class since the goal was to separate informal struc-
tures from formal ones. The simple random sampling method 
was used for the accuracy assessment with a minimum of 50 

Fig. 14   Illustration of two 
segmentation results at scale 
parameter 60 with compactness 
thresholds 0.3 (a) and 0.6 (b)

Table 12   Segmentation parameter settings. The level 1 segmentation 
was performed at scale parameter 60 with a compactness weight of 
0.6 as experimentally estimated, the shape weight was set at its maxi-
mum so that the algorithm accounts for it more than colour during the 
segmentation

Shape settings

Smoothness Compactness Colour Shape Scale 
Param-
eter

Segmen-
tation 
Levels

0.4 0.6 0.1 0.9 60 Level 1
0.2 0.8 0.1 0.9 80 Level 2
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samples per class as suggested in (Barow et al. 2019). The 
analysis of the confusion matrix of the first level classification 
shows that ‘water bodies’ class produced the highest producer’s 
accuracy of 1 due to its unique low reflectance in the infra-
red band while roads produced the second highest producer’s 
accuracy of 0.982. The formal housing class was found with 
the third highest producer’s accuracy while informal housing 
class reached a producer accuracy of 94.20. The highest error 
of omission was found with industrial building class at a value 
of 8.57%. The greatest error of commission was found with 
informal building class that achieved a value of 15.58%. The 
greatest user’s accuracy was achieved with the class water while 
the road class takes the second place with 99.099%. Formal 
housing units achieved a greater user’s accuracy than informal 
housing class with respectively 96.40% and 84.42% as sum-
marised in Table 13. The overall classification of the first level 
segmentation was at 95.52% with kappa at 94.78%.

Table 14 shows the confusion matrix of the second level 
classification. The formal structures super class is described 
as the merge of industrial class, commercial, educational 

class and formal residential class. The class achieved a pro-
ducer’s accuracy value of 0.951. Road class achieved the 
second highest producer’s accuracy at 0.982 after water 
bodies and urban vegetation classes at the value of 1 each. 
The overall classification accuracy was obtained at 96.73% 
with kappa index (Brian 2016; Hoque and Lepcha 2020) at 
95.45%. The classification of informal housing structures 
achieved a producer accuracy of 94.20%.

Table 15 represents accuracies comparison of our pro-
posed methods and that of Kemper et al. (2015). Among 
the compared metrics are the overall accuracy of the clas-
sification, the sensitivity accuracy, the Specificity accuracy, 
the Precision accuracy, the True Skill Statistic, the Omis-
sion and Commission errors. The sensitivity is the prob-
ability of the approach to classify correctly a building pixel 
as part of the Formal structure class. It shows how good is 
the classification in correctly identifying a building based 
on the attribute measures defined by the reference dataset 
(Zhu et al. 2010). The measure can also be derived from the 
omission error as follows:

Table 13   Level 1 classification confusion matrix

Reference data

industrial informal formal Commercial educational water roads Grassland Total

Classification 
datadata

industrial 64 0 0 1 1 0 1 0 67
informal 1 65 11 0 0 0 0 0 77
formal 1 4 134 0 0 0 0 0 139
commercial 2 0 0 56 1 0 1 0 60
educational 1 0 0 2 54 0 0 0 57
water 0 0 0 0 0 72 0 0 72
roads 1 0 0 0 0 0 110 0 111
Grassland 0 0 1 0 0 0 0 64 65
Total 70 69 146 59 56 72 112 64 619
%PA 91.429 94.203 91.781 94.915 96.429 100 98.214 100
%EO 8.571 5.797 8.2191 5.085 3.571 0 1.786 0
%UA 95.522 84.416 96.403 93.333 94.737 100 99.099 98.462
%EC 4.478 15.584 3.597 6.667 5.2632 0 0.901 1.538

Table 14   Level 2 classification 
confusion matrix

Informal Formal Water Roads Grassland Total

Informal 65 12 0 0 0 77
Formal 4 251 0 2 0 257
Water 0 0 72 0 0 72
Roads 0 0 0 110 0 110
Grassland 0 1 0 0 64 65
Total 69 264 72 112 64 562
PA 0.942 0.951 1 0.982 1
EO 0.058 0.049 0 0.018 0
UA 0.844 0.977 1 1 0.985
EC 0.156 0.023 0 0 0.015
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Since the measure presented in (Kemper et al. (2015) 
defines the sensitivity of the built-up class, we estimated 
our measure as the average for the classified build up classes 
including formal building structure, informal building struc-
tures and road, which was done as follows:

The obtained value positively deviates by 0.15461 from 
the result achieved by the first method in Table 15. Our 
proposed classification strategy has successfully identified 
non-built-up pixels which include water bodies and urban 
vegetation and this led to specificity accuracy measure of 1 
which is slightly superior to the Kemper et al. (2015) met-
ric. The correctness metric (Precision accuracy) achieved 
by our approach is close to double the measure achieved by 
the Kemper’s approach. This measure reveals the ability of 
the classification strategy to correctly classify non-built up 
classes. For our results, we had 72 pixels of water bodies out 
of 72 reference pixels that were correctly classified as water 
bodies. Similarly 64 pixels of the urban vegetation class out 
of 64 in the reference data were successfully identified as 
urban vegetation. The measures can be recovered from the 
error of commission as follows:

In Eq. (16), the error of commission was considered as 
an average value for the built-up classes that includes For-
mal structure class, the informal structure class and the road 
class from our final classification. The metric was estimated 
as follows:

The True skill Statistic accuracy describes the agreement 
between the number of building pixels correctly classified 

(14)Sensitivity = 1 − error of omission

(15)Sensitivity = 1 − (0.058 + 0.049 + 0.018∕3) = 0.958

(16)Precision = 1 − error of commission

(17)Precision = 1 − ((0.156 + 0.023 + 0)∕3) = 0.940

with regards to reference pixels. It can be calculated by 
adding the sensitivity accuracy plus the specificity accu-
racy minus one (Kemper et al. (2015). An alternative way 
of estimating this metric is to add the number of correctly 
classified Formal building pixels plus the number of cor-
rectly classified informal building pixels divided by the sum 
of their respective reference pixel totals. Both methods pro-
duce two very close estimates of the metric. The value of the 
metric for the proposed classification strategy reached about 
0.95 compared to 0.781 achieved by the first classification 
strategy.

Due to the fact that our non-built up pixels were suc-
cessfully identified, the classification strategy achieved 
a zero error of omission in comparison to 0.164 achieved 
by the first classification method. The average built-up and 
non-built-up error of commission were found very low as 
outcome of our proposed classification strategy. Figure 15 
presents the final classification map displaying the Formal 
structures class in red and the informal class in dark colour.

In the map, water class is represented by blue polygons 
while urban vegetation superclass is represented in green. 
The majority of water reservoirs were identified in the 
Northern part of the city which suggests some important 
agricultural activities. A certain number of water bod-
ies were also found near the city centre while few others 
were successfully identified south of the city centre. The 
entire road network has been successfully classified and is 
represented in grey colour. The majority of informal hous-
ing units are found in Kayamandi shantytown in the North 
West of the city represented in black colour. Some dark spots 
were identified within the city centre and the field investi-
gation revealed the objects were large cars and trucks with 
sizes approximating those of some informal housing units. 
This occurrence could be explained by the fact that con-
textual information relating cars to parking or roads were 
not accounted for through the principal component distance 
analysis and it is considered as a ‘blind spot’ during our 
image classification preparation. Some formal housing 
units were successfully classified within the shantytown of 
Kayamandi and these were identified as Reconstruction and 
Development Program houses. The majority of urban veg-
etation, mainly sport fields, were located at the periphery of 
some residential areas as predicted in the fourth Principal 
Component with both classes having opposite signs.

Discussion and conclusion

The study dealt with some of the challenges faced when 
mapping urban areas in general and hybrid urban areas in 
particular where formal and informal housing units are 
located within the same cadastral boundaries of the city. 
Image classification relying solely on spectral properties 

Table 15   Accuracy metrics comparison between our proposed strat-
egy and that of Kemper et al. (2015)

Accuracy Measures Kemper et al.
(2015) method

The 
proposed 
approach

Accuracy 0.97 0.97
Sensitivity 0.804 0.958
Specificity 0.98 1
Precision 0.477 0.940
True Skill Statistic(TSS) 0.781 0.95
Average built up class Omission error 0.196 0.042
Average non-built up Omission error 0.164 0
Average built-up class Commission error 0.523 0.060
Average non-built-up Commission error 0.585 0.008
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has been proven insufficient to separate distinct classes 
with similar spectral properties. The introduction of con-
textual information such as spatial inter-class separation 
distance features, objects’ sizes, into the classification 
process also comes with some drawbacks in the sense that 
selecting the optimal features within a larger dimensional-
ity of data is not an easy task and is sometimes performed 
using a trial and error approach. Combining poor quality 
descriptive features can result in poor image classification 
results in object-based image analysis. The other challenge 
is how to balance the five parameters involved in the image 
segmentation process that include scale parameter, colour, 

compactness, shape and smoothness weights, in order to 
achieve an acceptable outcome which will ensure a good 
image classification outcome. Several studies in the litera-
ture have suggested methods to find the optimal segmenta-
tion scale parameter, however the success of a segmenta-
tion does not solely rely on the scale parameter but rather 
on a well-balanced adjustment of all the parameters. An 
approach to select optimal descriptive features was pro-
posed in this study and tested on inter-distance measures in 
order to isolate the best measures and predict their impact 
on the image classification outcome. This was made possi-
ble through a combination of principal component analysis 

Fig. 15   Image classification 
of urban area. Most of the 
land use/land cover classes are 
clearly defined
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and Chebyshev’s probabilities approaches. The selected 
distance features, combined with additional attributes such 
as but not limited to spectral reflectance, shape compact-
ness, size properties, have ensured an overall classifica-
tion accuracy of 97% and a kappa index of 95.45%. The 
proposed strategy outperformed some of the most robust 
classification strategies in certain accuracy assessment 
metrics. The proposed approach also gives image analysts 
the control over 60% (3 out of 5) of parameters involved 
in the image segmentation process including the scale 
parameter, the compactness and the smoothness weights as 
presented in Table 12, through local and global parameter 
searches which also determine the number of segmentation 
level(s) needed for a given image. Moreover, the approach 
proposed a scale parameter search function that can predict 
the optimal scale parameter/compactness weight combina-
tion that would guarantee a good intra segments’ homo-
geneity. To the best of our knowledge, such a strategy has 
not yet been proposed in image analysis although one of 
the strategy components, namely the principal component 
analysis has widely been used to identify the best spectral 
bands that could well describe certain features.

Currently, there is no standard within the remote sensing 
community to define a best accuracy assessment threshold. 
However, for homogeneous areas such as vegetation areas, 
an accuracy of 90% would be acceptable while in complex 
areas such as urban areas, an accuracy of 85% would be 
adopted as a perfect agreement (Ye et al. 2018). Thus, since 
achieved overall accuracies of 96% and 97% for the first-
level and second-level classifications respectively fall within 
this range, they can be considered as successes considering 
the complexity of the study area as illustrated in the Fig. 16.

The use of size, shape metrics, spectral metrics, and 
spatial context offers more advantages than a combination 
of texture, morphological and radiometric features in clas-
sification of urban areas as proposed in Table 7. The study 
also added new knowledge to the existing body of litera-
ture with regards to spectral and spatial metric attributes 
that describe urban areas. Further studies would look at 
incorporating elevation data into the classification proce-
dure and test the approach with different image resolutions 
and on different study areas since the proposed technique 
can be repeated on a different area.
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