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Abstract
Maize lethal necrosis (MLN) is a severe disease in maize that significantly reduces yields by up to 90% in maize-growing regions
such as Kenya and other countries in Africa. The disease causes chlorotic mottling of leaves and severe stunting which leads to
plant death. The spread of MLN in the maize-growing regions of Kenya has intensified since the first outbreak was reported in
September 2011. In this study, the RapidEye (5 m) imagery was combined with field-based data of MLN severity to map three
MLN severity levels in Bomet County, Kenya. Two RapidEye images were acquired during maize stem elongation and
inflorescence stages, respectively, and thirty spectral indices for each RapidEye time step were computed. A two-step random
forest (RF) classification algorithm was used to firstly create a maize field mask and to predict the MLN severity levels (mild,
moderate, and high). The RF algorithm yielded an overall accuracy of 91.0%, representing highmodel performance in predicting
the MLN severity levels in a complex cropping system. The normalized difference red edge index (NDRE) was highly sensitive
to MLN detection and demonstrated the ability to detect MLN-caused crop stress earlier than the normalized difference vege-
tation index (NDVI) and the green normalized difference vegetation index (GNDVI). These results confirm the potential of the
RapidEye sensor and machine learning to detect crop disease infestation rates and for use in MLN monitoring in fragmented
agro-ecological landscapes.
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Introduction

Agriculture is the primary source of livelihood for most de-
veloping countries in Africa (Worldbank 2018). In Kenya,
agriculture contributes up to 65% of the total labor force and
a third to the Kenyan gross domestic product (GDP) (Omiti
et al. 2009). The population of Kenya is rapidly growing and
is expected to increase from 46million to 95million people by
2050 (Worldbank 2018). This inevitably increases food de-
mand which has profound implications on agricultural pro-
ductivity to ensure food security for the country (FAO et al.
2019).

Maize (Zea mays L.) is the main staple food crop in most
countries in sub-Saharan Africa, covering over 25 million ha
of smallholder farmers in the region and is the main staple
crop for over 85% of the population in Kenya (FAO et al.
2019). In the last decade, Kenya has realized an approximate
12% drop in maize production attributable to a wide range of
abiotic and biotic risk factors (AGRA 2017). The risk factors
include rainfall and temperature variability, pests, and diseases
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that are likely to intensify under the anticipated climate change
(Nhamo et al. 2019). Therefore, effective disease detection
capacity and empirical control and mitigation strategies are
necessary and timely to curb the surge in the loss of crop
productivity in the country (Myers et al. 2017).

Among the many pests and diseases affecting maize pro-
duction in Kenya is the maize lethal necrosis (MLN) which
has emerged as one of the most severe diseases threatening
livelihoods and income across sub-Saharan Africa (Hilker
et al. 2017; Osunga et al. 2017). MLN was firstly reported in
Kenya in September 2011 in the Longisa Division within
Bomet County of Kenya (Wangai et al. 2012; Adams et al.
2013). In the same year, MLN spread rapidly to other major
maize-growing regions along the Rift Valley and the western
part of Kenya towards Lake Victoria (Osunga et al. 2017). In
the following year, Kenya reported a major drop in maize
harvest instigated by MLN. Thus, since 2012, the disease
has continued to spread rapidly into other countries in East
Africa such as Tanzania, Uganda, Rwanda, and Ethiopia,
leading to a serious reduction in maize production across the
region prompting an urgent need to curb and control the dis-
ease (Adams et al. 2013; Mahuku et al. 2015).

Globally, numerous MLN control and management
methods have been proposed. For instance, farmers are ad-
vised to uproot affected plants during the early growing stage
to ensure that the disease does not spread. Another mitigation
measure is crop rotation, but farmers are often reluctant to shift
from the continuous planting of maize because of the demand
and income derived from the crop. Thus, efforts to control the
disease have been less fruitful (Deressa and Demissie 2017).

The detailed information on MLN disease severity, inci-
dence, and the related effects on quality and quantity of maize
production are important prerequisites for improved disease
management (Mahlein 2016). MLN-infected maize plants
show a range of symptoms such as yellowing and mottling
of leaves leading to premature plant death, tasseling failure
resulting in warped maize cobs with little to no seeds
(Ochieng et al. 2016; Deressa and Demissie 2017). Thus, vi-
sual estimates of disease symptoms in the field can determine
disease severity and incidence (Bock et al. 2010). However,
such an approach is expensive, time-consuming, and often
insufficiently accurate because of human bias and insufficient
and timely coverage of the affected areas (Benson et al. 2015).
Consequently, there is a growing demand for more precise and
automated methods of MLN disease monitoring to mitigate
disease outbreaks by enabling the timely adoption of relevant
management practices (Geerts et al. 2006).

Remote sensing and geospatial techniques have demon-
strated high potential in detecting the presence and monitoring
of the spread of agricultural pests and diseases includingMLN
(Osunga et al. 2017; Jozani et al. 2020). This is because the
induced crop physiological stress and biophysical changes on
the infested plant leaves can alter the reflectance spectra of

plants that are detected by remote sensing sensors (Fang and
Ramasamy 2015). Using plant leaves and canopy spectral
signature can complement field-based protocols in
distinguishing between healthy and various levels of damage
of infested plants (Albayrak 2008; Mudereri et al. 2019b,
2020a). Moreover, remote sensing technologies can reveal
the spatial and temporal distribution of pests and diseases over
large areas at a relatively low cost.

Early research has demonstrated the utility and capability of
using remotely sensed data to yield accurate results in the wide-
area mapping of crop diseases. For instance, Song et al. (2017)
evaluated Sentinel-2 satellite imagery formapping cotton root rot,
demonstrating that the technique can be used for precise disease
identification if the image set is taken during the optimum root rot
discrimination period. Zhang et al. (2016) used two-date multi-
spectral satellite imagery for accurately mapping damage caused
by fall armyworm (Spodoptera frugiperda) in maize at a regional
scale, while Franke and Menz (2007) evaluated high-resolution
QuickBird satellite multispectral imagery for detecting powdery
mildew (Blumeria graminis) and leaf rust (Puccinia recondita) in
winter wheat. These studies demonstrated that multispectral im-
ages are generally suitable to detect intra-field heterogeneities in
plant vigor, particularly at late stages of fungal infections, but are
only moderately appropriate for distinguishing early infection
levels (Dhau et al. 2018a, 2019; Sibanda et al. 2019). To the best
of our knowledge, research on MLN mapping has emphasized
on the use of inferred species distribution modeling using biocli-
matic variables (Osunga et al. 2017) while the study of Jozani
et al. (2020) has attempted to directly detect the disease or its
infestation level within the complex smallholder farmers’ maize
fields in sub-Saharan Africa using multispectral data.
Notwithstanding, Jozani et al. (2020) detected only the highly
severe MLN-infected maize fields and did not look at the possi-
bility of mapping other MLN severity scores (e.g., mild and
moderate). Detecting crop diseases early enough in the growing
season before highly severe infections are established is of pro-
found importance for timely disease monitoring and
management.

Therefore, in this present study, we evaluated the potential of
space-borne RapidEye multi-temporal data and an advanced
random forest (RF) classification technique for mapping three
MLN severity levels, viz., mildly, moderately, and highly se-
vere in a complex, dynamic, and heterogeneous landscape, typ-
ical for rural sub-Saharan Africa. This information is important
for an improved understanding of the progression of the disease
over a large area and for the formulation and implementation of
site-specific strategies for effective control of MLN.

Study area

The study was conducted in Bomet and Nyamira
Counties located 300 km northwest of Nairobi, Kenya.
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The study sites lie between 34.97° E to 35.06° E and −
0.76°S to − 0.83°S (Fig. 1) with an elevation range
between 1800 and 3000 m above sea level. Bomet falls
in a semi-humid climatic zone with a mean monthly
temperature of 18 °C and a bimodal annual rainfall
ranging between 1100 and 1500 mm (Jaetzold and
Schmidt 1982). The climate is suitable for growing a
wide range of crops; however, maize and tea are the
most dominant crops in the region, with the majority
of farmers practicing a maize-based mono-cropping sys-
tem, especially in the southern part of Bomet County
(Abdel-rahman et al. 2017).

Methodology

Figure 2 summarizes the methodological approach for
mapping severity levels of MLN. A two-step hierarchi-
cal RF classification using bi-temporal RapidEye was
employed. First, a land use/land cover (LULC) classifi-
cation map was generated to delineate cropland from
other LULC classes. We used the extracted maize crop
mask from the first step to classify different MLN se-
verity levels in maize fields (viz., mild, moderately, and
highly infected maize plants).

Field data collection

Field data collection was conducted to identify different
LULC classes from the study area and to measure the MLN
severity levels withinmaize fields. Stratified random sampling
was followed to collect both the LULC and the MLN severity
reference data. A handheld global positioning system (GPS)
device with an error of ± 3 m was used to locate the reference
control points. Once a field was identified, we delineated the
field boundaries (polygon) within a minimum area of 10 × 10
m. To avoid the edge effect, we collected the polygon data 2m
away from the edge of each field. To mitigate the effect of soil
background on the crop spectral features, we only sampled the
field crops that were about 3 weeks old at the first image
acquisition date. The reference data for both LULC classifica-
tion and MLN severity mapping were randomly divided into
70% training and 30% validation sets. The training set was
used to train the RF classifier, while the validation dataset was
used to evaluate the accuracy.

Disease severity scores were determined using an expert
knowledge approach based on Kusia (2014) and Mwatuni
et al. (2020), whereby we conducted frequent field (4 × 1-
week interval) visits to MLN-affected farms to assess the dis-
ease damage levels. Specifically, for each sampled farm, the
maize plants were grouped in specific severity levels based on
damage levels and visual inspection. The severity was rated

Fig. 1 Location of the study area in the Bomet and Nyamira Counties of Kenya
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using a scale of 0–5 as described by Paul and Munkvold
(2004). The six scales were 0 (no disease), 1 (10–20% leaf
area affected by the disease), 2 (21–40% leaf area affected by
the disease), 3 (41–60% leaf area affected by the disease), 4
(61–80% leaf area affected by the disease), and 5 (81–100%
leaf area affected by the disease). For consistency, MLN dam-
age levels were classified as mild (< 20%), moderate (20–
80%), and high (> 80%) based on a suggestion by Nutter
and Schultz (1995).

RapidEye data preprocessing

Two RapidEye images of the 9th of December 2014 (RE1)
and the 27th of January 2015 (RE2) were used. This period
coincided with the maize stem elongation and the inflores-
cence stages, respectively, and the field data collection period.
RapidEye is a commercial optical earth observation mission
that consists of a constellation of five satellites with 5-m res-
olution and a swath width of 77 km with a revisit cycle of 5.5
days at nadir (RapidEye 2018). The RapidEye imagery is
provided in five optical bands in the 400–850 nm range of
the electromagnetic spectrum (Chabalala et al. 2020).
The images used in this study were delivered as level
3A orthorectified products in the form of 25 × 25 km
tiles georeferenced to the universal transverse mercator
(UTM) projection.

Atmospheric correction was performed for each RapidEye
tile independently using the atmospheric-topographic correc-
tion (ATCOR 3) software (Guanter et al. 2009). This applica-
tion provides a sensor-specific atmospheric database of look-
up-tables (LUT) which contain results of pre-calculated radi-
ative transfer calculations based on the moderate resolution
atmospheric transmission (MODTRAN-5) model (Berk
et al. 2008). All images were co-registered (image-to-image)
to ensure the alignment of the corresponding pixels.
Subsequently, the RapidEye tiles were mosaiced into a single
image file for each acquisition date. For each RapidEye im-
age, 30 spectral vegetation indices (SVIs) were computed and
combined with the individual bands (blue, green, red, red
edge, and near infrared) as input predictor variables to im-
prove the MLN severity level classification accuracy.
Readers are referred to Kyalo et al. (2017) for the full list of
the 30 SVIs.

Random forest algorithm

We used the RF machine learning classifier to predict the
LULC classes, used for generating the crop mask, and in map-
ping the MLN severity levels (Breiman 2001). RF was chosen
as the preferred classification method since it has been proven
to be robust to outliers and noise and consistently demonstrat-
ed capability to handle high-dimensional datasets without suf-
fering from overfitting (Chemura et al. 2017b; Hengl et al.

Fig. 2 Flowchart of the two-step
random forest classification for
mapping maize lethal necrosis
(MLN) severity levels
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2018; Mudereri et al. 2019a). RF builds an ensemble of indi-
vidual decision trees from which the final prediction is based
using majority voting criteria. Each decision tree is trained
using a bootstrap sample consisting of two-thirds of the train-
ing data drawn with replacement, and the remaining one-third
of the data, which is not included in the bootstrapped training
sample, is used to test the classification and estimate the out-
of-bag (OOB) error (Breiman 2001; Chemura et al. 2017a).

RF uses two user-defined parameters, the number of trees
(ntree), and the number of variables used to split the nodes
(mtry). The default ntree is 500, while the default value for
mtry is the square root of the total number of explanatory
variables used in the study. To improve the classification ac-
curacy, the two RF parameters were initially optimized based
on the OOB error rate.

Variable selection and optimization

RF measures the importance of each predictive variable using
the mean decrease in accuracy that is calculated using the
OOB sample data (Georganos et al. 2018). However, the chal-
lenge was to select the least number of predictors that offer the
best predictive power. In this regard, a backward feature elim-
ination method (BFE) integrated with RF regression as part of
the evaluation process was implemented (Mutanga et al.
2012). The BFE uses the ranking to identify the sequence in
which to discard the least important predictors from the input
datasets. The method starts with all the variables and then
progressively eliminates the variable with the least contribu-
tion from the list. For each iteration, the model is optimized by
selecting the bestmtry and ntree, using a grid search and a 10-
fold cross-validation method (Huang and Boutros 2016). The
least contributing variable is eliminated, and the OOB error is
calculated. The subset of the least number of variables with
the smallest RMSE is then selected for the final classification
model.

Accuracy assessment

The classification accuracy of the RF classifier was assessed
using an independent set of field data (30%). The overall
accuracy (OA) and the F1 score values were computed from
the confusion matrices to evaluate the accuracy of generated
classes. Also, the class-specific producer’s accuracy (PA) and
user’s accuracy (UA) were calculated to evaluate the general-
ization ability of the RF classifier (Congalton 2001). A con-
fusion matrix provides information on the correct predictions
by comparing the classified map with ground information col-
lected from the field. OA refers to the ratio of the correctly
classified pixel to all pixels considered in the model evalua-
tion. The F1 score is a per-category measure that corresponds
to the harmonic mean of the UA and PA (Kyalo et al. 2017).
PA refers to the error of omission which expresses the

probability of a certain class to be correctly recognized, while
UA is the error of commission which represents the likelihood
that a sample belongs to a specific class and the classifier
accurately assigns it to this class. Kappa statistics were also
calculated to compare the significance between different error
matrices generated from the generated classification results
(McHugh 2012). The Kappa coefficient measures the actual
agreement between the reference data and a random classifier
with a value close to one, signifying perfect agreement. To
reduce the common salt-and-pepper noise that is associated
with high spatial resolution classification maps, a 3 × 3 cell
majority filter was applied (Fierens and Rosin 1994; Su 2016).
This approach replaces secluded cells with the class that
matches a 3 × 3 cell matrix. Each filtered classified map was
finally tested for accuracy.

Results

Random forest optimization

RF parameters (ntree and mtry) were optimized for the two-
step classification for the different data sets using the grid
search technique with tenfold cross-validation. The ntree val-
ue of 500 and mtry value of 3 settings yielded the least OOB
error for the LULC classification. Also, the ntree value of
1000 and mtry of 5 yielded the best OOB error (4.8%) for
the MLN severity mapping (Fig. 3).

Crop masking

Six major LULC classes were identified based on field obser-
vations made within the study area. Table 1 presents a sum-
mary of the results (OA and F1 score) when using 30% as
evaluation data. The results revealed that the use of the
RapidEye spectral bands gave an OA of 72.3% and 74.8%
for a single classification of RE1 and RE2, respectively. The
combination of the two RE1 and RE2 spectral bands im-
proved the OA to 80.6%. Also, the F1 score for each class
was generally above 0.80, except for soil class for the combi-
nation of RE1 and RE2.

Figure 4 shows the LULC map generated from the optimal
combination of the two RE1 and RE2 images revealing that
cropland and grassland are the major classes in the study site,
with few tea plantations on the northern side of the study area.
However, there was slight confusion between cropland with
natural vegetation and forest resulting from the presence of big
trees and pockets of bushes inside the cropland as observed
from the field.

Table 2 represents the confusion matrix for the per-pixel
evaluation for the LULC classification using RF. In general,
all LULC classes achieved > 90% UA, except for natural
vegetation which had 79.89% due to spectral confusion with
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cropland. All LULC classes achieved > 90% PA except for
cropland and natural vegetation classes which achieved
83.23% and 86.34%, respectively. Consequently, the UA
was generally > 90% for all classes except the natural vegeta-
tion class which had 79.89%. The latter can be attributed to the
observed confusion between the “cropland” and “natural veg-
etation” classes as shown in the confusion matrix.

Variable selection for maize lethal necrosis severity
classification

The progressive removal of the least important predictor var-
iables resulted in the selection of seven spectral variables (in-
dices and/or bands) which gave the least OOB error as shown
in Fig. 5. The model with a fewer number of predicted vari-
ables was compared with the model of all the predictor vari-
able dataset.

Four and three spectral variables, respectively, were select-
ed as important variables from the two RE1 and RE2 images,
captured during the maize stem elongation and inflorescence
development stages, respectively (Table 3). Only one spectral

band (band 5) for RE2 was selected among the most important
variables. Also, Chlorophyll Index red edge (ChlRed-edge)
vegetation indices calculated from both acquisitions were se-
lected among the most significant predictor variables too.
Besides, the variable importance technique in the RFwas used
to determine the influence of each spectral variable selected on
the mapping accuracy. ChlRed-edge vegetation index from
RE1 was the most important variable with a mean decrease
accuracy of 0.22% followed byChlRed-edge vegetation index
from RE2 with a mean decrease accuracy of 0.19%. Band 5
and the transformed soil-adjusted vegetation index red edge
(TSAVI) from RE2 were the third and fourth most significant
variables, respectively (Table 3).

RE1 and RE2 are RapidEye 1 and RapidEye 2 images,
respectively

Maize lethal necrosis severity classification

Table 4 presents the accuracy assessment error matrix for the
classification map generated by the RF’s most important spec-
tral variables to map three MLN severity classes (i.e., mild,

Fig. 3 Results of the random
forest optimization grid for the
land use/land cover classification
result (a) and the maize lethal ne-
crosis severity mapping result (b).
The internal out-of-bag error rate
calculated using the tenfold cross-
validation and the training data.
The color grids show the out-of-
bag (OOB) error rate.

Table 1 Overall and class-wise
accuracies for land use/land cover
mapping using 30% of test data

Class-wise accuracies—F1 score

Image Overall accuracy (%) Cropland Forest Grassland Natural vegetation Soil Tea

RE1 72.34 0.69 0.81 0.69 0.74 0.83 0.81

RE2 74.80 0.73 0.87 0.84 0.77 0.84 0.70

RE1 + RE2 80.63 0.82 0.92 0.89 0.85 0.78 0.82
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moderate, and high). The OA for mapping MLN disease was
73.33%. The PA, which indicates the probability of actual
areas being correctly classified, was 60.48% for the mild
MLN severity, 60.95% for the moderate, and 98.57% for the
high severity classes. The UA attained was 66.84% for the
mild, 61.24% for the moderate, and 89.61% for the high se-
verity classes.

To improve the MLN disease mapping accuracy, we
combined the mild and moderate severity classes which

depicted high confusion because of similar spectral
characteristics for most of the sampled farms. This im-
proved the OA from 73.33% to 90.18% and Kappa
from 0.60 to 0.92. The final thematic MLN severity
map for the two severity classes (mild and high) pro-
duced via the RF algorithm is shown in Fig. 6. The red
color represents maize farms with high severity, while
the blue color depicts the mildly infected fields. As
shown in the zoomed portion of the map, some of the

Fig. 4 Land use/land cover map obtained using a random forest classifier and the two RapidEye images (RE1 and RE2)

Table 2 Confusion matrix for
land use/land cover classification
using random forest classification
with two early-season RapidEye
images (RE1 and RE2) and one
late-season Landsat image. UA
is user’s accuracy and PA
is producer’s accuracy

Class Cropland Forest Grassland Natural
vegetation

Soil Tea Total PA (%)

Cropland 268 0 1 48 0 5 322 83.2

Forest 0 303 0 7 0 12 322 94.0

Grassland 2 0 304 4 12 0 322 94.5

Natural vegetation 18 12 8 278 0 6 322 86.3

soil 9 0 5 3 305 0 322 94.7

Tea 0 13 0 8 0 301 322 93.5

Total 297 328 318 348 317 324 1932

UA (%) 90.2 92.4 95.6 79.9 96.2 92.9

*Overall accuracy = 91.0% and Kappa = 0.89
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maize fields harbored both mildly and highly severe
MLN-affected plants which agree with our field obser-
vations (Fig. 6).

Discussion

This study explored the usefulness of bi-temporal RapidEye
imagery and a RF classification tool for mapping the MLN
severity levels in heterogeneous agro-ecological landscapes in
Kenya. A two-step optimized RF classification was used to
extract a crop mask from LULC classification and finally to
generate an MLN severity map for the Bomet County and
southern part of Nyamira County, a major maize-growing area
in Kenya heavily affected by the disease.

Utilization of the two RE1 and RE2 images acquired for the
study area during the maize early growing stages did not yield
promising results in delineating cropland from other LULC
classes. This could be attributed to the late plowing of some
fields as observed during field visits. Thus, the use of early-

season RE1 image alone captured insignificant portions of the
phenological development of the maize plants, hence the fail-
ure to produce an accurate crop mask (Forkuor et al. 2014).
Subsequently, due to the high costs of RapidEye imagery, the
study managed two acquisitions during the maize stem elon-
gation and inflorescence stages, respectively. Combining the
two acquired RE1 and RE2 images improved the classifica-
tion accuracy by providing additional information on late cul-
tivated fields which significantly improved the accuracy for
extracting the crop mask from LULC classification from
80.63% to 91.05%. Similarly, Crnojevic et al. (2014) used
freely available Landsat-8 data with a single RapidEye image
to improve the classification of small agricultural fields in
northern Serbia.

The high OA of our LULC classification map supports the
growing evidence that RF is a reliable classifier for heteroge-
neous landscapes (Nguyen et al. 2018). For instance, our re-
sults revealed a good separability for all the LULC classes
apart from the slight confusion between cropland and natural
vegetation classes. These results demonstrate the effectiveness
of RF classifier to distinguish cropland from other LULC
classes in a highly fragmented landscape. The observed over-
laps between cropland and natural vegetation classes are well
known and can be attributed to the spectral similarity among
the vegetation and cropland caused by the presence of small
pockets of shrubs within the agricultural land (Forkuor et al.
2015). Most farmers in our study area maintain fruit trees such

Fig. 5 The optimal number of predictor variables selected based on the
random forest backward feature elimination search function using out-of-
bag (OOB) error

Table 3 Spectral variables
selected as the most important
predictor variables for mapping
maize lethal necrosis severity
levels using the random forest
backward feature elimination
procedure

Acquisition Spectral variable Abbreviation Mean decrease
accuracy (%)

RE1 Chlorophyll Index red edge ChlRed-edge 0.22

RE2 Chlorophyll Index red edge ChlRed-edge 0.19

RE2 RE band 5 (red edge) Band 5 0.09

RE2 Transformed soil-adjusted vegetation index red edge TSAVI 0.091

RE1 Green normalized difference vegetation index GDVI 0.09

RE1 Normalized difference vegetation index NDVI 0.08

RE1 Normalized difference red edge NDRE 0.08

Table 4 Random forest classification confusion matrix for three maize
lethal necrosis (MLN) severity classes (mild, moderate, and high) using the
seven most important spectral variables with a 30% test dataset. UA is user’s
accuracy and PA is producer’s accuracy

MLN class Mild Moderate High Total PA (%)

Mild 127 78 5 210 60.48

Moderate 63 128 19 210 60.95

High 0 3 207 210 98.57

Total 190 209 231 630

UA (%) 66.84 61.24 89.61

*Overall accuracy = 73.33% and Kappa = 0.60
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as mangoes and banana trees within their fields, resulting in
heterogeneity and spectral confusion between crops and other
vegetation classes (Ayanu et al. 2015).

Essentially, MLN severity levels can accurately be distin-
guished if there are no other major stressors present that produce
similar plant symptoms to those of the disease (Zhang et al.
2012). Field observations confirmed that MLN disease was the
dominant stressor and that there was a minimal amount of inter-
ference from other biotic and abiotic factors in the sampledmaize
fields. Tominimize such interference, we collected training poly-
gons 5 m away from the farm edges to avoid edge effects and
waterlogging which was observed to affect maize growing at the
field edges in some of our sampled maize fields. Nevertheless,
care was taken to ensure that infected fields were correctly iden-
tified by visually comparing each classification map with its
original NDVI and true color images in the study.

The optimal predictor variables selected using optimized
RF backward feature elimination technique were four SVIs

(NDVI, GDVI, ChlRed-edge, and NDRE) extracted from
the RE1 image acquired during the maize stem elongation
stage combined with two SVIs (TSAVI and ChlRed-edge)
and one spectral band (band 5) from the RE2 image acquired
during maize inflorescence. These variables proved capable to
discriminate two distinguishable MLN severity classes (mild
and high) with the highest OA of 90.18% and a Kappa value
of 0.92.

TSAVI was selected among the important variables for
mapping MLN severity because of its ability to minimize soil
brightness that influences spectral vegetation features involv-
ing red edge and NIR wavelengths (Mudereri et al. 2020b).
Besides, TSAVI reduced soil background conditions which
imposed extensive influence on partial canopy spectra and
calculated SVIs. Similar results were reported by Dhau et al.
(2018b) who found that soil-adjusted vegetation index (SAVI)
was among the most important vegetation indices for detect-
ing and mapping of maize streak virus using RE imagery.

Fig. 6 The spatial distribution of maize lethal necrosis severity levels using the seven most important spectral variables selected by the random forest
algorithm
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Also, GDVI, NDRE, and NDVI were sensitive to MLN se-
verity probably because severely infected maize plants are
characterized by a low chlorophyll ratio followed by ultimate
variations in leaf area. Previous studies showed the impor-
tance of NDVI in the monitoring of crop stress and disease
detection (Eitel et al. 2011). Yet, GNDVI can better predict the
leaf area index (LAI) than the conventional NDVI, while
NDRE has demonstrated the ability to detect crop stress earlier
than NDVI and GNDVI which are traditionally used for plant
health monitoring (Wang et al. 2007). Inclusion of these veg-
etation indices by RF variable selection showed that changes
in chlorophyll content are more sensitive to disease severity
than changes in water content (Wang et al. 2016). Most nota-
bly, the presence of the red-edge band provided critical and
subtle measurements of vegetation properties such as chloro-
phyll content necessary for distinguishing between healthy
and disease-affected plants (Song et al. 2017). Therefore, our
study supports the conclusion that strategically positioned
bands such as the red edge found in new generation multi-
spectral imagery contain more spectral information, useful for
disease mapping in crop plants (Eitel et al. 2011; Chabalala
et al. 2020).

Comparing the classification results generated using three
MLN severity classes (mild, moderate, and high) with only
two severity classes by merging mild and moderate-severe
classes (mild and high) improved the overall accuracy by
16%. This implied that there was enormous spectral confusion
between maize fields that were mildly and moderately affect-
ed by MLN. This confusion can be attributed to the fact that
disease estimation is faced with much difficulty at the onset of
early symptoms due to spectral similarity between slightly
infected and non-infected fields (Ashourloo et al. 2014).

Based on the results from this study, a better understanding
of the spatiotemporal characteristics of plant diseases is crucial
in developing detection tools that are applicable for multi-
temporal analyses and the temporal dimension of crop dis-
eases. Therefore, sensor-based identification must be explored
further to establish on what resolution and magnitudes disease
infestation can be mapped with other sensors (Fang and
Ramasamy 2015). Considering that the occurrence of plant
diseases is dependent on explicit environmental factors and
that diseases often exhibit a heterogeneous distribution, opti-
cal sensing techniques are useful in identifying primary dis-
ease foci and within field disease severity patterns (Melesse
et al. 2007).

Conclusions

Monitoring of MLN severity levels is of immense practical
importance, given that the disease tends to develop rapidly
and that it is presently very difficult to precisely forecast its
development. In this study, a method for mapping MLN

severity using bi-temporal RapidEye satellite remote sensing
data and optimized machine learning algorithm was developed
and tested, ensuring systematic monitoring of MLN damage
levels over a large area. Our results indicate the suitability of
remote sensing data as a complementary tool for disease mon-
itoring which could help in the development of effective dis-
ease control strategies. Although a low temporal resolution
dataset with the high spatial resolution is a restrictive factor
for practical implementation, the launch of future observation
systems with improved repetition rates such as Sentinel-2 can
broaden the field of applications. Therefore, explicit geospatial
and timely synoptic tools are needed for the monitoring of pests
and disease damage levels to facilitate better and more targeted
mitigation measures in maize and other important crops.
Besides, the effectiveness of remote sensing based on the spa-
tiotemporal dynamics of MLN should be investigated in future
studies to understand linkages between maize pests and disease
hotspots with the underlying ecological factors for better and
precise monitoring and management practices.
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