
ORIGINAL PAPER

Web 3D: a CityGML viewer for cross-domain problem resolution

Marina Álvarez1 & Javier Fco. Raposo1
& Mónica Miranda1 & Ana Bello2

& Miguel Barbero1

Received: 29 December 2019 /Accepted: 8 June 2020
Società Italiana di Fotogrammetria e Topografia (SIFET) 2020

Abstract
3D urban models are a key component of diverse applications based on geospatial data, such as urban management and urban
planning. CityGML models (OGC standards) are interoperable and allow the integration and dissemination of data within the
spatial data infrastructures (SDI) objectives. 3D web viewers must allow model visualization and user interaction with geospatial
data. This paper presents a system architecture for web visualization of a CityGML urban model. The system allows geospatial
data structuring and storage as well as model visualization and access through a Web3D viewer. During the development of the
system, the cross-domain problem was solved using GeoJSON. This change in format improved user access to the 3D urban
model and its data. This standard also enabled the integrated storage of geospatial information and allows access to information
from other geospatial data servers without cross-domain problems.

Keywords Web3D . CityGML . GeoJSON . Geospatial Databases . Cross-Domain

Introduction

The development of spatial data infrastructures (SDIs)
(Valencia and Muñoz-Nieto 2018) has supposed a revolution
in managing, using and broadcasting geographical informa-
tion (GI). Its standards, such as CityGML (Gröger et al. 2012),
have allowed the development of interoperable and scalable
3D urban models. It is thus desirable that these models be
accessible through the internet, although some issues affecting
potential users can arise.

An important issue is encountered during visualization of
models on the internet. The SDI visualization services (WMS
orWFS) that can display 2D information work well with light
and heavy clients, but the visualization of 3D urban models in
CityGML is more complex. This is because the standard is
designed for 3D model representation, not its direct visualiza-
tion (Di Staso et al. 2015). The visualization of CityGML files
is difficult due to their size, memory limitations or the lack of
supporting features installed in specialized viewers (Arroyo

Ohori et al. 2018). Another issue is the storage of the infor-
mation, which may be in a database or in appropriate models.
The former option is more flexible since it permits information
to be modified without having to make changes in the urban
model.

The language used in CityGML models is based on XML.
These files present cross-domain problems for security rea-
sons (Sierra 2013). This makes it difficult to download and
use documents from a web source other than the one that hosts
the application. To address this problem, it is necessary to use
a different format that does not have such a problem.

The 3DTiles format was rejected, as it addresses storage
problems but not cross-domain problems. GeoJSON (based
on JSON) was the format chosen. This is a geospatial data
exchange format based on JavaScript (Carter 2018), which is
the language implemented byweb browsers. This is why it does
not present a cross-domain problem. GeoJSON also generates
lighter files because it is not a markup language like XML.

The new version 3.0 of CityGML will include new
encoding specifications for other formats in the next future,
such as GeoJSON (Kutzner and Kolbe 2018) (Kutzner et al.
2020). The OGC is finalizing the process to include JSON
among its encoding extensions (OGC JSON 2019).

In this paper, the design and implementation of a web3D
application that allows access to 3D CityGML models—spe-
cifically, a 3D urban model of the historic centre of Lorca
(Spain) is presented (Álvarez et al. 2018)—. At the same time,
the refinement and correction of the system, in order to solve

* Marina Álvarez
marina.alvarez@upm.es

Mónica Miranda
monicamirandam@gmail.com

1 Universidad Politécnica de Madrid (UPM), Madrid, Spain
2 Universidad Complutense de Madrid (UCM), Madrid, Spain

https://doi.org/10.1007/s12518-020-00325-4

/ Published online: 22 June 2020

Applied Geomatics (2021) 13:71–87

http://crossmark.crossref.org/dialog/?doi=10.1007/s12518-020-00325-4&domain=pdf
mailto:marina.alvarez@upm.es

the cross-domain problems encountered in using it, are also
explained. The system was improved by implementing a
CityGML-to-GeoJSON conversion tool and by modifying
part of the system implementation. The aim was to find a
solution that combined the ideas of other applications of the
employed tools by storing CityGML data and viewing them
on the internet, thereby taking a new path through the current
types of existing software solutions.

The achievement of the main goal required the fulfilment
of the following specific aims: (1) The concept of an urban
model and information related to it is adequately presented
and explained. (2) Users can access the 3D model, permitting
interoperability. (3) TheWeb3D server is designed and imple-
mented. (4) The 3D viewer is developed. (5) Options comple-
mentary to the viewer are included, such as the representation
of data layers from different WMS servers.

This paper is divided into the following sections: the
“State-of-the-art” section presents the state-of-art technology
in related fields; the “Materials and methods” section de-
scribes the materials and methods used; the “Development
of the system implementation” section outlines the system
implementation; and in the “Results” section, the results are
ultimately described. Last, a discussion and conclusion are
given.

State-of-the-art

At the end of the twentieth century, different organizations
greatly developed the field of 3D information. ISO 19115
(ISO 19115 2020) was conceived, and with the Web3D
Consortium (Web3D Consortium 2020), founded in 1997,
several standards for the publication of 3D graphics on the
internet, such as X3D (Extensible3D) (X3D 2020), were de-
veloped. The X3D standard arrived after VRML (VRML
2020); it is open, extensible and multi-platform interoperable,
and it is relevant to publishing geospatial information on the
internet. After that time, work on visualization solutions
followed that standard (Yali and Huijie 2018).

At the beginning of the twenty-first century, the 3D
Information Management Working Group of the Open
Geospatial Consortium (OGC) (OGC 2020) was created,
and it included CAD and GIS software providers, administra-
tive agencies and European governments. From its begin-
nings, this group has worked on developing the necessary
standards for forming a 3D SDI (Basanow et al. 2008) and
on investigating the interoperability of 3D geospatial
information.

In this context, in 2008, the term 3D SDI originated (Peláez
2018). CityGML became an OGC standard, providing a mod-
el for describing 3D objects in terms of their geometry, topol-
ogy, semantics and appearance. That same year, OGC began
the creation of a service called W3DS (W3DS 2019) for the

distribution of CityGML 3D data, which was possible due to
advances in language development, geospatial databases and
distribution and visualization services for 3D data. At the
same time, the format of Google Earth, KML (KML 2020)
became an OGC standard due to the many users and large
amount of development related to it.

Spatial databases

Regarding databases, it is worth mentioning, first, that Oracle
introduced the 3D Spatial Engine in version 11 g (Oracle
Spatial 2020) in 2009. Since then, it has been improved and
further developed so that it can store and manage three-
dimensional geometric information. In that same year, the
database manager PostGree, developed by the OSGeo
Foundation, added the PostGIS v2.0 extension (PostGree
2020) to support 3D element storage.

3D City DB then appeared (3DCityDB 2020); it was cre-
ated by the Geoinformatics Department of TU München. It
consists of an open geographic database that allows the stor-
age, representation and management of virtual 3D city models
in a standard relational spatial database. It employs the
CityGML standard and includes tools to convert CityGML
data to KML, COLLADA (COLLADA, wiki 2020) and
gTIFF (gTIFF 2020) formats for visualization in Google
Earth, ArcGIS and Cesium (Yao et al. 2018).

Data formats

Concerning services for 3D model broadcasting, some for-
mats, such as CityGML, face some problems, such as cross-
domain problems. Today, more efficient data formats exist,
such as JSON and GeoJSON, for addressing these issues,
permitting a document to be downloaded from a web service
other than that of the host of the web application used, as
previously mentioned.

GeoJSON (GeoJSON 2020) is a format for geospatial data
transfer based on JavaScript (JSON). Its usage has been re-
cently extended to cartography applications in web environ-
ments, since it permits the transfer of data in a fast, light and
simple way (Sierra 2013). It also has the advantages of being
simpler to read and code, generating lighter files and being a
web- and mobile-friendly format (VRML 2020; OGC 2020).
Its most important feature is that it avoids cross-domain
problems.

Viewers

Regarding web map viewers, the first developments were
made in the 1990s. In 1993, the Xerox Parq Map Viewer
was born, and in 1998, TerraServer (TerraServer 2020) was
created based on servers of the Windows NT Server type and
their related databases of the SQL Server type. The latter

72 Appl Geomat (2021) 13:71–87

model disseminated aerial images along with the first digital
graphical raster, thus becoming one of the world’s most pop-
ular WMS services at the time.

In the first decade of the 2000s, GeoServer was developed
(GeoServer 2020), consisting of an open-code map server in
the Java language, and it would achieve interoperability. It
was able to read, interpret and publish data and standard ser-
vices defined byOGC. In a parallel way, GeoTools (GeoTools
2020) was created; it is a free software written in Java that
provides a library of utilities and implementations of the stan-
dard services proposed by OGC.

In 2005, Google created GoogleMaps and Google Earth as
geospatial information-heavy clients. That same year
OpenLayers (OpenLayers 2020) was defined, consisting of a
library in Javascript dedicated to the implementation of light
clients. In 2012, CartoDB (Carto 2020), later Carto, was
founded. It was the first company to transfer GIS processes
to the cloud using their own servers to transform data into
images. Similarly, MapBox (MapBox 2020) created a new
standard for sending geographical information through the
net in a quicker and more efficient way.

Concerning 3D web visualization, from 2008 onwards,
several viewers and free CityGML tools were developed, such
as FZK Viewer (FZK Viewer, KIT 2020), LandXplorer
CityGML (LandXplorer, Autodesk 2020), Aristoteles
(Aristoteles, koblenz-landau University 2020), 3DGIS cityvu
(Cityvu, 3DGIS 2020), libcitygml C++ library and
citygml2vrml converter (citygml2vrml converter 2020) and
GML Viewer (3DGIS 2020).

In recent years, an increasing amount of research on the net
publication of IG 3D information has been performed
(Costantino et al. 2019; Büyükdemircioğlu and Kocaman
2018; Blut et al. 2017; Prieto et al. 2016).

Materials and methods

In this work, the development of an operative visor that shows
urban 3Dmodels stored on a database, built on a web browser
with free access, is described. This system follows the client/
server model and permits the optimal management of all the
parts employed in the CityGML urban model publication
process.

A complete system has been conceived (Fig. 1), which
incorporates a CityGML-to-KML conversion tool, a web
server and a web client so the geometric and semantic infor-
mation of the 3D model can be viewed.

Then, considering the problems identified during its
first test, the system was improved (Fig. 2) so that a so-
lution to the cross-domain problem could be installed. A
tool for exporting files to GeoJSON was developed, and
thus, some modifications to the system implementation
needed to be made.

Materials

During the system development, the software and data de-
scribed below were employed.

Input data

The input data are certain CityGML files generated in the
framework of a 3D urban model of an area of Lorca’s city
centre based on LiDAR and cadastral data (Spanish Cadastre)
(DG Catastro 2020).

Fig. 2 Architecture of the improved system

Fig. 1 Architecture of the system

73Appl Geomat (2021) 13:71–87

Software

The OGC software and open-source software solutions were
used: 3DCityDB and MongoDB. 3DCityDB is an open data-
base designed for the storage, representation and management
of 3D CityGML urban models. It is based upon PostGIS, the
spatial extension of PostGreSQL. It permits conversion be-
tween formats and the separation of the geometric and seman-
tic information of the model.

MongoDB (MongoDB 2020) is a NoSQL database system
that does not use tables and rows but an architecture of col-
lections and documents that emulate their behaviour. It is the
free software that performs queries in JavaScript. The queries
are sent and carried out directly on the database. The user has a
key to protect the database from unknown accesses. This sys-
tem is easy to replicate and permits automatic configuration.

The JavaScript programming language was used, as well as
the following tools (Farkas 2017): NodeJS (Node 2020) for

Fig. 4 Example form for
CityGML-to-3DCityDB import

Fig. 3 System design

74 Appl Geomat (2021) 13:71–87

the service layer and JQuery (JQuery 2020) for client peti-
tions. The JavaScript library permits simplifying interactions
with the HTML documents, manipulating the DOM tree,
managing events, developing animations and adding interac-
tion with websites by means of AJAX.

Other libraries from npn used are: CesiumJS (Cesium
2020) and Spreadsheet (Spreadscheets 2020). CesiumJS
(Cesium 2020) was employed for the development of
the viewer. It is an open-source JavaScript library for

3D maps and globes in a web browser without add-ons.
It includes other libraries: Leaflet JS (Leaflet 2020) that
permits implementing and managing 2D maps and Tree
JS (Tree JS 2020) employed in the 3D modelling of var-
ious objects. Spreadsheet (Spreadscheets 2020) is a free
Google cloud service that permits uploading data (such as
tables) to the net.

To conver t KML fi les to GeoJSON was used
Kml2Geojson (Kml2Geojson, Python 2020) was used. It is a

Fig. 5 Dialogue box for database checking

Fig. 6 Thematic data table
configuration

75Appl Geomat (2021) 13:71–87

Python (Python 2020) library that respects every KML and
GeoJSON property.

Methods

First, a system design based on the particular features of the
3D CityGML models was developed, and then, it was
implemented.

System design

The developed system was based on a certain kind of
integrated system employed for image storage in the
net, which consists of storing the net image path in
the database instead of the image data itself. Thus, a
three-level system was designed: Data, Server and
Client.

Fig. 8 KML files from the Lorca model as seen in Google Earth

Fig. 7 Content of a thematic data
table in excel format

76 Appl Geomat (2021) 13:71–87

Data The model data are stored in an external database
employed for storing, validating and transforming the
CityGML data to other formats compatible with the viewer.
After editing the information of the 3D model, the geometric
information is exported to a NoSQL database connected at the
service level. The semantic data are stored separately so they
can be deployed in the viewer.

Server It ensures access to the 3D information of the models
stored in the NoSQL database and their transfer to the viewer.

The files should be uploaded to the net by generating logical
links through which they can be accessed.

Client The graphical interface permits access to the model
visualization and the semantic information as well as query
realization.

The system structure is shown in Fig. 3.
The software requirement specification employed here is

based on the IEEE 830 (IEEE standard 830 2020) and IEEE
29148 (IEEE standard 29148 2020) standards.

Fig. 9 CityGML files of the Lorca model as seen in FZKviewer

Fig. 10 Some of the options in Cesium

77Appl Geomat (2021) 13:71–87

The system functions are spatial data management and
navigation. The spatial data management includes data stor-
age, data verification, data deletion and structured data

representation. The navigation functions are graphical inter-
faces, navigation controls and data layer visualization
management.

Fig. 11 Viewer home page

Fig. 12 Formula menu

78 Appl Geomat (2021) 13:71–87

System implementation

The implementation of the system was performed in three
phases: (1) data processing, (2) web service creation and (3)
web3D creation.

Development of the system implementation

First, the starting data are loaded, which are the previously
generated CityGML models of Lorca. Following this, the
aforementioned steps are performed.

Data processing

Data processing was performed in four successive steps, de-
scribed below.

Data import and transformation

To transform the data, the 3DCityDB database was used,
which permits CityGML files to be transformed to other
formats that are more adequate for web environments,
such as KML, COLLADA or gITF (Kilsedar et al.
2019). Since it is based on PostGIS, PostGreSQL’s geo-
graphical extension, it needs the previous installation of
both tools.

The first step was to create an empty database where
the imported CityGML model data were stored and their
code’s validity was checked (Fig. 4). The dialogue box
shown in Fig. 5 helps to check the validity of the data
import and the database modification process. Then, the
3DCityDB importer/exporter tool was used to transform
the model’s geometric information to KML.

Fig. 13 Viewer with both layers active simultaneously

Fig. 14 Resulting data from the
model data processing

79Appl Geomat (2021) 13:71–87

Data export

The files resulting from the transformation are exported to the
MongoDB database, which is a tool connected to the server
that provides 3D information.

Access to semantic information tables

3DCityDB allows the semantic information table of the model
data to be accessed (Fig. 6). The information table is exported
to a Google spreadsheet so that the information can be directed

Fig. 16 Complementary part of the building

Fig. 15 Part of a building

80 Appl Geomat (2021) 13:71–87

to Web3D from the cloud. The export is bidirectional, since it
is possible to create new SQL tables from the spreadsheet.
Therefore, the input data are the logical links to the model
and their associated thematic data table.

The table configuration can be saved as a .txt file for future
use. The result is an excel file, as shown in Fig. 7. It is worth
mentioning that the results vary depending on the choice of
data and the kind of thematic data table.

After this process is complete, the KML files are obtained.
Immediately, a double-check of the data transformation pro-
cess is performed. First, the CityGML data are viewed in
Google Earth (Fig. 8), and then, FZKviewer is used to perform

the second check (Fig. 9). It is verified that neither errors nor
information loss have occurred.

Importing data to MongoDB

The last step of data processing is importing the managed data
to the MongoDB database, a non-relational database system
that permits the fast search of a huge dataset. Therefore, an
API Key associated with the user is established so that access
to the server data query can be controlled. The system also
permits the storage of information related to the IDs associated

Fig. 18 Home page of Web3D

Fig. 17 Improved system design

81Appl Geomat (2021) 13:71–87

with the API Key account in addition to information about the
location and accessing browser of the last connected device.

Web service creation

The implemented service has to be able to store the locations
of the models in its database depending on the employed

library. Node.js was chosen for building servers in the design
of this system.

After the installation of Node.js, the following tools were
used: (1) Express JS (Express JS 2020), (2) Mongoose
(Mongoose 2020), because MongoDB is used, (3) The
BodyParser libraries (BodyParser, npm 2020), which permit
middleware to be built for configuring the format of message
bodies, (4) BlueBird (BlueBird 2020), so programming can be
simplified and, (5) W3C and the CORS specification (CORS,
W3C 2020), which permit inter-domain communication from
a web browser.

Web3D creation

CesiumJS was used to develop the presentation layer of the
viewer. It is a library containing numerous widgets that can be
used in designing the appearance of the site where the viewer
is implemented. It also permits behaviours to be configured by
means of the prototype attributes (Fig. 10).

From the client, the database can be accessed with
MongoDB Compass. To connect the two, some necessary
JavaScript methods were developed to fulfil the base
connecting functions with HTML by means of the user-
associated API Key.

Results

The home page of Web3D is shown in Fig. 11. It includes a
menu where the model to be loaded in the application can be
selected. The user can visualize the model and perform other
operations using the formula panel for queries and data inser-
tion from the possible 3D models.

Access to the 3D models from the presentation page is
obtained by using the query menu, which adds them as layers
(Fig. 12). The access routes to the KML files and the corre-
sponding thematic table need to be provided. Additionally, the
viewer implements calls to WMS services.

Figure 13 shows two layers of the model simultaneously.Fig. 20 Web3D GIS framework (Rodrigues et al. 2013)

Fig. 19 Files of the Lorca urban model transformed to GeoJSON in the developed Web3D

82 Appl Geomat (2021) 13:71–87

Although the visualization of the models was correct, some
problems were detected. Although the KML format is ade-
quate for publishing 3D models in the net because it is native
to Google Earth, the results are very heavy for data exchange.
Also, the transformation to KML forces the division of geo-
metric and semantic information. As previously mentioned,
the sole usage of the visor presents cross-domain problems.
In this context, it acts as a protection mechanism that prevents
the downloading of data from a server other than the one
hosting the web application used (Sierra 2013).

Considering these problems, it was decided that the files
containing 3D models would be exported to another geo-
graphic data format. GeoJSON, which is derived from the
concepts of other existing spatial standards, was chosen. It
simplifies coding in adapting to web environments.

GeoJSON has the following advantages: (1) it generates
files of smaller size and less complexity, (2) it is a format for
spatial data that reunites spatial and semantic information, (3)
it is a more adequate format for the features of web

environments, and (4) it is designed in JavaScript. This lan-
guage is used to implement most of the existing servers and
web viewers, so it avoids cross-domain problems.

To solve the aforementioned problems in the integrated
system, some modifications were made to its implementation.
Specifically, the data processing, web server deployment and
Web3D stages were improved.

Data processing

A three-stage process was performed: KML to GeoJSON
transformation, file subdivision or splitting and extension
modification.

KML to GeoJSON transformation

All the KML files stored in the 3DCityDB were transformed
to GeoJSON format by means of Kml2Geojson, a Python
library that respects the properties of both formats. The

Fig. 21 Architecture of Web3D GIS (Zhu and Qiao 2013)

83Appl Geomat (2021) 13:71–87

process is automated by applying a batch script that permits
the processing of all files with a .kml extension so that they
can be transformed to GeoJSON. Only a single script execu-
tion is needed.

File splitting

Before importing the files, now in GeoJSON format, they
needed to be subdivided into files with a maximum size of
25 KB so the characteristics and restrictions of MongoDB
could be met. This process was performed with the Geojsplit
tool (Geojsplit 2020), and another script was developed for
automating this process.

Extension changes

Last, given that the database accepts files with a .json exten-
sion, the names of the split files were modified to end with that
extension. The .geojson-to-.json extension replacement was
automated in the same manner as the two previous steps, with
a script that creates JSON files. The resulting files contain the
CityGMLmodel data transformed into JSON format (Fig. 14).

Figures 15 and 16 show how some buildings can be seen
only partially, with an incomplete volume, due to the file
subdivision. This problem is solved when all the files are
stored in the database, and thus, the complete model can be
represented.

Next, the divided archives are imported toMongoDB along
with a test to verify their correct visualization in the viewer.

Web service improvements

The MongoDB database was stored in the cloud net by
Amazon Web Services (AWS) (Amazon Web Service
2020). AWS receives client petitions; therefore, there is no
need for the system to store the files locally. The database
stores data in GeoJSON format and permits files to be modi-
fied and new data to be imported in addition to receiving
server petitions (Fig. 17).

Web3D improvements

To work with the database in Web3D and easily access the
data starting from the home page, the following improvements
were added: (1) the access function login() connects to
MongoDB with the help of a user’s API key. (2) The file
importing function InsertCollection() permits loading a file
from the server’s “data_geo” directory and importing it to
the database. (3) The data-loading function getcollection()
loads the first found element of the database into Web3D.

Additionally, some function access buttons were added in
the main window of the viewer for managing the connection
to the database. Import button permits loading a file stored in

the server. InsertBD function grants access to a selected
GeoJSON file so it can be imported into the database.
LoadBD function relates to the aforementioned getcollection()
function.

Once these modifications are introduced, the home page of
Web3D is as displayed in Fig. 18. As can be observed, the
viewer has the navigation functionalities of the initial version
in addition to the new data accessing functions.

Figure 19 shows the interface ofWeb3 loaded with Lorca’s
3D City Model superimposed on an aerial photograph taken
by PNOA (PNOA, IGN 2019), accessed through a connection
with the implemented WMS service.

Discussion

The designed Web3D system follows a client/server architec-
ture and consists of three levels. The division into three levels
is a common structure in the design of 3D web viewers and
web-GIS based on geospatial data.

At the first level, the data level, the CityGML Model is
stored in a database that allows spatial information to be
stored. We used MongoDB, a non-relational database. Non-
relational databases can better handle the large volumes of
data in Urban 3D Models. (Laksono 2018). The use of these
NoSQL databases is increasing compared with the usual
PostGIS or 3DCityDB (Laksono 2018) used in many devel-
oped geospatial applications (Aleksandrov et al. 2019; Prandi
et al. 2015).

In the first design of our system, CityGML files are trans-
formed into KML format, so the geometric and spatial infor-
mation have to be stored separately.

The splitting of the information at this level has been seen
in other Web3D studied (Tang et al. 2019, Prandi et al. 2015,
Zhu and Qiao 2013, Rodrigues et al. 2013) (Fig. 20). The
Web3DGIS system in the research consulted is primarily used
for simulation models, thematic mapping, monitoring and ba-
sic spatial analysis. Many of the systems studied (Zhu and
Qiao 2013) read CityGML data through a WFS and convert
it to X3D for viewing on the internet, and they also provide
tools to display and analyse geospatial information in a 3D
environment (Fig. 21).

In the final design of our Web3D viewer, the CityGML
files are transformed into GeoJSON format. GeoJSON sup-
ports the integration of geometric and semantic information.
The data can be integrated into the JSON-based database
(MongoDB) (Baralis et al. 2017). Other common databases,
such as 3DCityDB, export geometric information to KLM/
COLLADA (Prandi et al. 2015), and the semantic information
has to be stored in other formats (Zhu and Qiao 2013).

The objectives of the implemented system are to visualize
CityGML models optimally and to be able to access informa-
tion from other agency servers related to city management and

84 Appl Geomat (2021) 13:71–87

maintenance without cross-domain problems. To achieve
these objectives, a single server was developed (Fig. 2) that
allows all the files to be published—raster, vector and DEM—
in an integrated way. The publication of the models would not
be optimal using the architecture proposed by Web3D GIS
through a WMS for raster data and a server developed with
Tomcat (e.g.) or aWFS for vector data (Rodrigues et al. 2013)
(Fig. 21).

The user interaction with the model is improved by solving
the cross-domain problems of other formats, such as
CityGML and KML (Prandi et al. 2015). The application is
innovative because it facilitates interoperability with the
CityGML model by eliminating the problem of the domain
(Sun et al. 2019), which allows access to information from
other geospatial data servers.

CesiumJS was used for the Web3D viewer. Today, it is the
best option (3D globe map) for 3D geospatial information
visualization (Aleksandrov et al. 2019, Prandi et al. 2015).
As GeoJSON is compatible with JavaScript (Ledoux et al.
2019), which is the language used by Cesium, the use of this
format improves the visualization of the model.

Conclusions

This paper shows the development of an integrated system for
publishing 3D urban models of the town of Lorca, allowing
them to be visualized via a web browser through accessible
data stored in a functioning database. This development, al-
though it does not present any difficulty on a conceptual level,
is somewhat complicated to implement in practical terms dur-
ing some of the necessary processes described, since the sys-
tem required some modifications during its implementation.

The disadvantages faced in publishing CityGML models
on the net required transforming the data used to KML and
then to GeoJSON as the final format. The latter is more ade-
quate for web environments and permits faster model data
transfer than the CityGML format. In addition, the transfor-
mation to JSON allows model data to be downloaded without
presenting cross-domain problems.

To store the exported files in KML and GeoJSON, a non-
relational database, in this caseMongoDB, was used. It admits
files from different formats, and it is adequate for very large
quantities of data, which is common in 3D City Models.

A web application able to store and visualize data models
in GeoJSON was deployed on an Amazon Web Services da-
tabase. Thus, scalability was taken into account through the
infrastructure of cloud services. This allows access to the data
from different clients in a safe, secure and concurrent manner,
and it allows a register of all queries made in the database to be
created. Issues such as security and data access are thereby
addressed. This development of diverse implementations did

not incur problems and was performed simply, so the adequa-
cy of the chosen software is evident.

The designedWeb3D viewer improves the interoperability
of the CityGML model by solving cross-domain problems.
The developed system allows access to information from oth-
er geospatial data servers. In addition, the GeoJSON format
allows geospatial information to be stored in an integrated
way, which is suitable for geospatial information-based web
applications.

In future work, an improvement of the design of Web3D is
proposed that augments the precise interface to allow the ad-
dition andmodification of information, taking into account the
newly implemented functions for data management.

As a final conclusion, given the described circumstances,
the development of tools allowing access to 3D models is
necessary even today. These tools have to enable advanced
analytical and processing capabilities in a light, intuitive and
easily interactable navigation environment. The proposed
work aims to address this need.

Acknowledgements The authors of this paper would like to thank the
students from ETSI Informáticos (UPM) Kevin Cubero and David Flores
for their collaboration.

Funding information This research did not receive any specific grant
from funding agencies in the public, commercial or not-for-profit sectors.

References

Aleksandrov M, Diakite A, Yan J, Li W, Zlatanova S (2019) Systems
architecture for management of BIM, 3d GIS and sensors data.
ISPRS Ann Photogramm Remote Sens Spatial Inf Sci IV-4/W9:3–
10. https://doi.org/10.5194/isprs-annals-IV-4-W9-3-2019

Álvarez M, Raposo JF, Miranda M, Bello AB (2018) Metodología de
Generación de Modelos Virtuales Urbanos 3D para ciudades
inteligentes. Informes de la Construccion 70(549):3–13. https://
doi.org/10.3989/id.56528

Arroyo Ohori K, Biljecki F, Kumar K, Ledoux H, Stoter J (2018)
Modeling cities and landscapes in 3D with CityGML. In:
Borrmann A, König M, Koch C, Beetz J (eds) Building information
modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-
92862-3_11

Baralis E, Dalla Valle A, Garza P, Rossi C, Scullino F (2017) SQL versus
NoSQL databases for geospatial applications:3388–3397. https://
doi.org/10.1109/BigData.2017.8258324

Basanow J, Neis P, Neubauer S, Schilling A, Zipf A (2008) Towards 3D
spatial data infrastructures (3D-SDI) based on open standards—ex-
periences, results and future issues. In: Van Oosterom P, Zlatanova
S, Penninga F, Fendel EM (eds) Advances in 3D Geoinformation
systems. Springer, Berlin, pp 65–86

Blut C, Blut T, Blankenbach J (2017) CityGML goes mobile: application
of large 3D CityGML models on smartphones. Int J Digital Earth
12:25–42. https://doi.org/10.1080/17538947.2017.1404150

Büyükdemircioğlu M, Kocaman S (2018) A 3D campus application
based on city models and WebGL. ISPRS - international archives
of the photogrammetry, remote sensing and spatial information sci-
ences. XLII-5. https://doi.org/10.5194/isprs-archives-XLII-5-161-
2018

85Appl Geomat (2021) 13:71–87

https://doi.org/10.5194/isprs-annals-IV-4-W9-3-2019
https://doi.org/10.3989/id.56528
https://doi.org/10.3989/id.56528
https://doi.org/10.1007/978-3-319-92862-3_11
https://doi.org/10.1007/978-3-319-92862-3_11
https://doi.org/10.1109/BigData.2017.8258324
https://doi.org/10.1109/BigData.2017.8258324
https://doi.org/10.1080/17538947.2017.1404150
https://doi.org/10.5194/isprs-archives-XLII-5-161-2018
https://doi.org/10.5194/isprs-archives-XLII-5-161-2018

Carter PA (2018) SQL server advanced data types: JSON, XML, and
beyond. Apress, Berkeley. https://doi.org/10.1007/978-1-4842-
3901-8

Costantino D, Angelini MG, Alfio VS, Claveri M, Settembrini F (2019)
Implementation of a systemWebGIS open-source for the protection
and sustainable management of rural heritage. Appl Geomat 12:41–
54. https://doi.org/10.1007/s12518-019-00275-6

Di Staso U, Prandi F, Soave M, Devigili F, Amicis R (2015) 3D web
visualization of huge CityGML models. ISPRS Int Arch
Photogramm Remote Sens Spatial Inf Sci XL-3/W3. https://doi.
org/10.5194/isprsarchives-XL-3-W3-601-2015

Farkas G (2017) Applicability of open-source web mapping libraries for
building massive web GIS clients. J Geogr Syst 19:273–295. https://
doi.org/10.1007/s10109-017-0248-z

Gröger G, Kolbe T, Nagel C, HÄfele K (2012) OGC City Geography
Markup Language (CityGML) Encoding Standard. OpenGeospatial
Consortium Inc. (OGC), Wayland

Kilsedar CE, Fissore F, Pirotti F, Brovelli MA (2019) Extraction and
visualization of 3D building models in urban areas for flood simu-
lation. In: Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol
XLII-2/W11, pp 669–673. https://doi.org/10.5194/isprs-archives-
XLII-2-W11-669-2019

Kutzner T, Kolbe T (2018) Citygml 3.0: Sneak preview. In: Kersten TP,
Gülch E, Schiewe J, Kolbe T, Stilla U (eds) Publikationen der
Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und
Geoinformation (DGPF) e.V, Munich, pp 835–839

Kutzner T, Chaturvedi K, Kolbe TH (2020) CityGML 3.0: new functions
open up new applications. In: Journal of Photogrammetry, Remote
Sensing and Geoinformation Science, vol 88, pp 43–61. https://doi.
org/10.1007/s41064-020-00095-z

Laksono D (2018) Testing Spatial Data Deliverance in SQL and NoSQL
Database Using NodeJS Fullstack Web App 1, 1–5. https://doi.org/
10.1109/ICSTC.2018.8528705

Ledoux H, Arroyo OK, Kumar K, Dukai B, Labetski A, Vitalis S (2019)
CityJSON: a compact and easy-to-use encoding of the CityGML
data model. Open Geospatial Data Softw Standards 4:1–12.
https://doi.org/10.1186/s40965-019-0064-0

Peláez A (2018) Evolución de los mapas en la Web. Mapping, vol 27,
192, pp 12–16. ISSN: 1131-9100

Prandi F, Devigili F, Soave M, Di Dtaso U, De Amicis R (2015) 3D web
visualization of huge CityGML models. ISPRS Int Arch
Photogramm Remote Sens Spatial Inf Sci 3/W3:601–605. https://
doi.org/10.5194/isprsarchives-XL-3-W3-601-2015

Prieto I, Izkara J, Béjar R (2016) Web-Based tool for the sustainable
refurbishment in historic districts based on 3D city model.
Advances in 3D Geoinfo rmat ion , Lec tu re Notes in
Geoinformation and Cartography, 159. https://doi.org/10.1007/
978-3-319-25691-7_9

Rodrigues, J., Figueiredo, M., Costa, C. (2013). Web3DGIS for city
models with cityGML and X3D. Proceedings of the 17th
International Conference on Information Visualisation, July 16-18,
London, UK. https://doi.org/10.1109/IV.2013.102

Sierra A (2013) GeoJSON y TopoJSON: comparación entre los formatos
de intercambio de Información Geográfica alternativos a GML. IV
Jornadas Ibéricas de Infraestructura de Datos Espaciales, Toledo

Sun K, Zhu Y, Pan P, Hou Z, Wang D, Li W, Song J (2019) Geospatial
data ontology: the semantic foundation of geospatial data integration
and sharing. Big Earth Data 3:269–296. https://doi.org/10.1080/
20964471.2019.1661662

Tang F, Yu X, Bell S, Yu H, ZengW, Phung T, Natcher D (2019) A web
GIS platform for environmental livelihood value assessment in
northeastern British Columbia. CEUR Workshop Proceedings 6:
2323. https://doi.org/10.1007/s10109-004-0127-2

Valencia J, Muñoz-Nieto A (2018) Infraestructuras de Datos Espaciales
tridimensionales. Hacia un modelo real de la información
geográfica. Mapping 26(186):56–65

Yali LU, Huijie Z (2018) Three-dimensional campus 360-degree video
encoding VR technology based on OpenGL. Multimedia Tools and
Applications, 1-9. https://doi.org/10.1007/s11042-018-6306-9

Yao Z, Nagel C, Kunde F, Hudra G, Willkomm P, Donaubauer A,
Adolphi T, Kolbe TH (2018) 3DCityDB - a 3D geodatabase solu-
tion for the management, analysis, and visualization of semantic 3D
city models based on CityGML. Open Geospatial Data Softw
Standards 3(2). https://doi.org/10.1186/s40965-018-0046-7

Zhu, G., Qiao, W. (2013). Design and realization of thematic mapping in
Web 3 DGIS. GEOProcessing 2013: The Fifth International
Conference on Advanced Geographic Information Systems,
Applications, and Services

Webs

3DCityDB (2020) https://www.3dcitydb.org/3dcitydb/. Accessed 10
Apr 2020

3DGIS (2020) https://www.3dgis.it/it/. Accessed 10 Apr 2020
Amazon Web Service (2020) https://aws.amazon.com/es/. Accessed 10

Apr 2020
Aristoteles, koblenz-landau University (2020) https://www.uni-koblenz-

landau.de/de/koblenz/fb4/uebergreifend/er/stormodelling/tools/
aristoteles. Accessed 10 Apr 2020

BlueBird (2020) http://www.bluebirdcorp.com. Accessed 10 Apr 2020
BodyParser, npm (2020) https://www.npmjs.com/package/body-parser.

Accessed 10 Apr 2020
Carto (2020) https://carto.com/. Accessed 10 Apr 2020
DG Catastro (2020) http://www.catastro.meh.es/. Accessed 10 Apr 2020
Cesium JS (2020) https://cesiumjs.org/. Accessed 10 Apr 2020
Citygml2vrml converter (2020) https://code.google.com/archive/p/

libcitygml/wikis/citygml2vrml.wiki. Accessed 10 Apr 2020
Cityvu, 3DGIS (2020) https://www.3dgis.it/it/prodotto/cityvu-

visualizzatore-3d-geografico/. Accessed 10 Apr 2020
COLLADA, wiki (2020) https://en.wikipedia.org/wiki/COLLADA.

Accessed 10 Apr 2020
CORS, W3C (2020) https://www.w3.org/TR/cors/. Accessed 10

Apr 2020
Express JS (2020) https://expressjs.com/es/. Accessed 10 Apr 2020
FZK Viewer, KIT (2020) https://www.iai.kit.edu/1302.php. Accessed 10

Apr 2020
GeoJSON (2020) https://geojson.org/. Accessed 10 Apr 2020
Geojsplit (2020) https://www.npmjs.com/package/geojsplit. Accessed 10

Apr 2020
GeoServer (2020) http://geoserver.org/. Accessed 10 Apr 2020
GeoTools (2020) https://geotools.org/. Accessed 10 Apr 2020
gTIFF (2020) https://gdal.org/drivers/raster/gtiff.html. Accessed 10

Apr 2020
IEEE standard 29148 (2020) https://standards.ieee.org/standard/29148-

2011.html. Accessed 10 Apr 2020
IEEE standard 830 (2020) https://standards.ieee.org/standard/830-1998.

html. Accessed 10 Apr 2020
ISO 19115 (2020) https://www.iso.org/standard/53798.html. Accessed

10 Apr 2020
JQuery (2020) https://jquery.com/. Accessed 10 Apr 2020
KML (2020) https://developers.google.com/kml/documentation/kml_

tut?hl=es-419. Accessed 10 Apr 2020
Kml2Geojson, Phython (2020) https://pypi.org/project/kml2geojson/.

Accessed 10 Apr 2020
LandXplorer, Autodesk (2020) http://download.autodesk.com/us/

landxplorer/docs/ldx_citygml_viewer/html/index.html?topic.htm.
Accessed 10 Apr 2020

Leaflet JS (2020) https://leafletjs.com/. Accessed 10 Apr 2020
MapBox (2020) https://www.mapbox.com/
MongoDB (2020) https://www.mongodb.com/es. Accessed 10 Apr 2020

86 Appl Geomat (2021) 13:71–87

https://doi.org/10.1007/978-1-4842-3901-8
https://doi.org/10.1007/978-1-4842-3901-8
https://doi.org/10.1007/s12518-019-00275-6
https://doi.org/10.5194/isprsarchives-XL-3-W3-601-2015
https://doi.org/10.5194/isprsarchives-XL-3-W3-601-2015
https://doi.org/10.1007/s10109-017-0248-z
https://doi.org/10.1007/s10109-017-0248-z
https://doi.org/10.5194/isprs-archives-XLII-2-W11-669-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W11-669-2019
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.1109/ICSTC.2018.8528705
https://doi.org/10.1109/ICSTC.2018.8528705
https://doi.org/10.1186/s40965-019-0064-0
https://doi.org/10.5194/isprsarchives-XL-3-W3-601-2015
https://doi.org/10.5194/isprsarchives-XL-3-W3-601-2015
https://doi.org/10.1007/978-3-319-25691-7_9
https://doi.org/10.1007/978-3-319-25691-7_9
https://doi.org/10.1109/IV.2013.102
https://doi.org/10.1080/20964471.2019.1661662
https://doi.org/10.1080/20964471.2019.1661662
https://doi.org/10.1007/s10109-004-0127-2
https://doi.org/10.1007/s11042-018-6306-9
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.1109/IV.2013.102
https://doi.org/10.5194/isprsnnals-V-W9-2019

Mongoose (2020) https://mongoosejs.com/. Accessed 10 Apr 2020
Node JS (2020) https://nodejs.org/es/. Accessed 10 Apr 2020
OGC JSON (2020) OGC JSON encoding extension to moving features

standard. https://www.opengeospatial.org/standards/requests/196.
Accessed 10 Apr 2020

Open Geoespatial Consortium (OGC) (2020) http://www.opengeospatial.
org/. Accessed 10 Apr 2020

OpenLayers (2020) https://openlayers.org/. Accessed 10 Apr 2020
Oracle Spatial (2009), https://docs.oracle.com/cd/B28359_01/appdev.

111/b28400/title.htm. Accessed 10 Apr 2020.
PNOA, IGN (2020) http://www.ign.es/wms-inspire/pnoa-ma? Accessed

10 Apr 2020

PostGree (2020) PostGree/PostGIS versión 2.0 https://postgis.net/2013/
08/17/postgis-2-1-0/. Accessed 10 Apr 2020

Python (2020) https://www.python.org/. Accessed 10 April 2020.
Spreadscheets (2020) https://docs.google.com/spreadsheets/u/0/.

Accessed 10 Apr 2020
TerraServer (2020) https://www.terraserver.com/. Accessed 10 Apr 2020
Tree JS (2020) https://threejs.org/. Accessed 10 Apr 2020
VRML (2020) https://www.ecured.cu/VRML. Accessed 10 Apr 2020
W3DS (2020) http://w3ds.org/doku.php. Accessed 10 Apr 2020
Web3D Consortium (2020) https://www.Web3d.org/. Accessed 10

Apr 2020
X3D (2020) http://www.Web3d.org/x3d/what-x3d. Accessed 10

Apr 2020

87Appl Geomat (2021) 13:71–87

https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019
https://doi.org/10.5194/isprsnnals-V-W9-2019

	Web 3D: a CityGML viewer for cross-domain problem resolution
	Abstract
	Introduction
	State-of-the-art
	Spatial databases
	Data formats
	Viewers

	Materials and methods
	Materials
	Input data
	Software

	Methods
	System design
	System implementation

	Development of the system implementation
	Data processing
	Data import and transformation
	Data export
	Access to semantic information tables
	Importing data to MongoDB

	Web service creation
	Web3D creation

	Results
	Data processing
	KML to GeoJSON transformation
	File splitting
	Extension changes

	Web service improvements
	Web3D improvements

	Discussion
	Conclusions
	References
	Webs

