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Abstract
Land use/land cover changes (LULCC) are one of the foremost aspects of environmental changes caused by human-induced
activities mainly in rapidly developing areas. This study endeavors to evaluate and compare three hybrid models: stochastic
Markov chain (ST-MC), cellular automata-Markov chain (CA-MC), and multi-layer perceptron-Markov chain (MLP-MC) to
predict future land use/land cover (LULC) scenario inVaranasi district. LULC information extracted for years 1988 and 2001was
first employed to predict LULC scenario for 2015 using three hybrid models. The predicted results were compared with the
observed LULC information for the year 2015 to appraise the validity of models through kappa index statistics. The MLP-MC
model yielded reliable and best results. Finally, based on this consequence, the prediction of future LULC scenarios for years
2030 and 2050 was performed. The findings of this study exhibited the constant but overall increase of built up area and a
considerable reduction in agricultural land. The results also demonstrate the potentiality of MLP-MC hybrid model for better
understanding of spatio-temporal dynamics and predicting future landsacpe scenario in Varanasi district of Uttar Pradesh, India.
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Introduction

Land use/land cover (LULC) is assumed to be an integral
component of the terrestrial environmental system. LULC in-
formation plays a crucial role in investigating various environ-
mental transform processes and climate change on local and
global scales (Bonan 2008). The analysis and monitoring of
LULC changes (LULCC) are vital for understanding com-

plex interactions between human activities and global envi-
ronmental changes (Dickinson 1995; Zhu and Woodcock
2014). LULCC focuses mainly on spatio-temporal dynamics,
and the human interferences largely influence the earth’s en-
vironment by changing the dynamics of LULC (Thies et al.
2014). The alteration in LULC by human or natural activities
come to rise various environmental concerns such as biodi-
versity loss, deforestation, global warming, and increase of
natural disasters (Mas et al. 2004; Dwivedi et al. 2005).
With growing population and increasing socioeconomic re-
quirements, a pressure is created on LULC which leads to
changes in it in a spontaneous and uncontrolled manner
(Seto et al. 2002). Therefore, with increasing LULCC, main-
ly because of human activities, it is essential to identify such
changes, appraisal of their trends, and effects on the environ-
ment for future planning and natural resource management
(Prenzel 2004).

A significant amount of data is required for analyzing, mon-
itoring, and quantifying the ongoing changes in LULC of an
area. In recent years, the availability of remote sensing data
from various satellite sensors has been of immense help in
the field of LULCC studies (Miller et al. 1998; Zhu and
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Woodcock 2014; Mishra and Rai 2016). In several studies, the
integration of remote sensing (RS) and geographical informa-
tion systems (GISs) served as an efficient scheme for analyzing
and detecting the spatial allocation of changes in LULC over
large areas (Carlson and Azofeifa 1999; Kilic 2006). In recent
years, the spatio-temporal modeling of LULC dynamics has
drawn a lot of attention in solving the problems that occur due
to the alteration and conversion of LULC (Lambin et al. 2001).
The studies of modeling approaches for future scenarios de-
pend on predictions, whereas the analyses and reviews of the
past to the current depend on facts. However, the prediction of
future situation is directly linked to the changes detected from
the past to the current as well (Bhatta 2010).

The investigation of current situations and that of model
applications both are spatial in nature; thus, the solutions also
need a spatial approach. As a result, it is necessary to apply
spatially explicit models to simulate and predict the changes
in LULC with the purpose to appraise future scenarios.
Consequently, accurate and timely information provided by
RS technologies at regular interval can be applied efficiently
to detect and analyze the past and current trends as well as to
predict future trends of LULC (Dadhich and Hanaoka 2011;
Mishra et al. 2014; Mishra and Rai 2016). The quality of pre-
dicted results is strongly affected by the accuracy of the inves-
tigation of past and current trends, the data quality, and the
model applied for predictions (Mozumder and Tripathi 2014).
Over the years, several spatially explicit models have been de-
veloped and used successfully by integrating RS and GIS to
simulate and predict future LULC scenarios such as Markov
chain (MC) model (Muller and Middleton 1994; Arsanjani
et al. 2011; Fathizad et al. 2015), artificial neural network
(ANN) model (Pijanowski et al. 2005; Mozumder and
Tripathi 2014; Maithani 2015), cellular automata (CA) model
(Clarke and Hoppen 1997; Mitsova et al. 2011), logistic regres-
sion (LR) model (Al-sharif and Pradhan 2014a; Kumar et al.
2014), GeoMod (Giriraj et al. 2008; Paudel and Yuan 2012),
SLEUTH model (Jantz et al. 2003; Hua et al. 2014), and con-
version of land use and its effects (CLUE) model (Veldkamp
and Fresco 1996; Zhu et al. 2010). Every single model exhibits
some advantages and disadvantages that have been described
by Triantakonstantis and Mountrakis (2012).

The MC analysis is an essential approach to model the
landscape changes in describing and predicting the behavior
of complex systems (Fortin et al. 2003). It is a convenient tool
for modeling the LULC changes, when it is difficult to de-
scribe the modifications and processes in the landscapes. The
MC produces a transition matrix by analyzing two qualitative
LULC maps from different dates. A transition matrix is then
employed as a basis to predict future scenario of a landscape.
The MC model also computes the probability that a cell
(pixel) will change from one LULC type (state) to another
from the observed data within a specific period (Eastman
2006). The probability of changing from one state to another

is called a transition probability. The MC model theoretically
assumes that the transition probability is spatially independent
(Brown et al. 2000). However, the tendency of a changing cell
in the future is not a simple function of its current state but is
often influenced also by its neighboring cells. It does not con-
sider the driving forces and processes that produced the ob-
served patterns. As a consequence, the stand-alone MCmodel
ignores the spatial distribution of changes (Araya and Cabral
2010). Therefore, additional steps are required to include both
spatial and temporal information. The shortcomings of an in-
dividual model must be overcome by combining them to work
as complementary to each other.

Therefore, in recent years, several hybrid models have been
developed to improve dynamic process representation with
the utility of MC model coupling with other models such as
stochastic Markov chain (ST-MC) (Bozkaya et al. 2015), cel-
lular automata-Markov chain (CA-MC) (Kamusoko et al.
2009; Al-sharif and Pradhan 2014b), and multi-layer
perceptron-Markov chain (MLP-MC) (Thapa and Murayama
2012; Mishra and Rai 2016). TheMCmodel is also integrated
with other methods to improve the prediction of future scenar-
ios of highly complex landscapes. For instance, Arsanjani
et al. (2013) employed an integrated MC-LR model to gener-
ate accurate prediction maps for future land use changes for
2016 and 2026 with reasonable accuracy. Tang et al. (2007)
used LULC information derived from Landsat data between
1979 and 2001 to predict future landscape distribution effi-
ciently with the help of MC and genetic algorithm in Daqing
City, China. Although the hybrid modeling approach provides
better and improved understanding of modeling the changes
in LULC (Guan et al. 2011), it is very challenging to find out a
hybrid model that provides the best result because each study
offers a unique conclusion, since the performance of LULCC
modeling is different for different study areas because of var-
ied environmental conditions and landscapes of that individ-
ual area (Arsanjani et al. 2011). Thus, instead of identifying a
single model, the best result-providing model should be used
for the study area. The comparison of models and prediction
of the future LULC scenario using the best result-providing
model is gaining more popularity in remote sensing commu-
nity (Mas et al. 2014; Mozumder et al. 2016). Although a
substantial number of research usingMC-basedmodels exists,
comparison studies are still limited. The present study aims to
evaluate the performance of three MC-based hybrid models:
ST-MC, CA-MC, andMLP-MC to simulate and predict future
LULC scenarios in Varanasi district of Uttar Pradesh, India.
More specifically, the objectives of the present study are to (1)
analyze the spatial and temporal patterns of LULCC in 1988–
2001–2015; (2) simulate and predict scenarios of future
LULC based on ST-MC, CA-MC, and MLP-MC; (3) deter-
mine the model that provides the better results in the study
area; and (4) predict future scenarios of LULC for years 2030
and 2050 using the model providing best results.
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Varanasi district of Uttar Pradesh, India, is one of the oldest
living places in the world. It experienced rapid population
growth and urban expansion in the last few decades. So, un-
derstanding the past changes in LULC and predicting the fu-
ture scenarios are vital for proper future planning and sustain-
able management of the environment and natural resources.
This information may also be precious for the recently
launched smart city initiative by the Government of India.
The outcomes of this study could be employed in other geo-
graphical locations of India and around the world.

Study area

Varanasi district of Uttar Pradesh, India, is chosen for the
present study. The area under investigation lies geographically
between 25° 10′ to 25° 37′ N latitude and 82° 39′ to 83° 10′ E
longitude, covering an area of approximately 1532.91 km2. It
is located on the bank of holy river Ganga. It is famous for
being a hotspot of heritage, education, and biodiversity for
over many years. It lies physiographically in the middle
Ganga plain and is very fertile and rich in agricultural produc-
tivity. Climatically, it experiences a humid subtropical climate
with a significant difference between summer and winter tem-
peratures. Figure 1 displays the geographical location of the
study area as viewed on Landsat 8-OLI image.

The population expansion is one of the most intimidating
issues in India. The growth of Varanasi district has been disor-
ganized and largely unintended. The Varanasi district has a total
population of 3,676,841 people with 1,921,857 males and
1,754,984 females. While in 2001, Varanasi had a population
of 3,138,671 people with 1,649,187 males and 1,489,484 fe-
males (Census of India 2011). One of the most significant rea-
sons for population growth in the Varanasi is the large-scale
rural-to-urban relocation and rapid urbanization. In the year
2001, the population density was 2045 persons per km2, while
in the year 2011, it increased up to 2395 persons per km2. The
average literacy rate in the year 2001was 66.12% and increased
to 75.60% in the year 2011.

Materials and methodology

Three phases are involved in this study to model and predict the
spatio-temporal dynamics of LULC in Varanasi district of Uttar
Pradesh, India. The first phase involved the collection of remote
sensing images covering the study area and the preparation of
LULC layers for different years. The second phase involved the
analysis of LULCC. In the third and final phase, the factors
affecting the changes in LULC were determined, and the
LULC based on past changes and the factors was simulated
and predicted. For the present study, remote sensing images of
Landsat series satelliteswere employed to generate LULC layers

of Varanasi district of Uttar Pradesh, India. Remote sensing
images of Landsat 5 Thematic Mapper (TM) acquired on 4
November 1988, Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) image acquired on 31 October 2001, and Landsat 8
Operational Land Imager (OLI) image acquired on 15
November 2015 were downloaded from the official website of
the United States Geological Survey (USGS) (http://glovis.usgs.
gov). The details of remote sensing images used in this study are
represented in Table 1. In this study, digital elevation model
(DEM) and road networks were used as auxiliary datasets. The
SRTMDEMwith 90m spatial resolutionwas downloaded from
http://srtm.csi.cgiar.org/ and used to produce slope and aspect.
The vector layer of road network and rail network were
extracted from the toposheet and Google Earth images. All the
subsequent pre-processing, interpretation, and LULC
classification of multi-temporal remote sensing images were
performed using ENVI (v 5.1) image processing software.
Also, to model LULCCs using three hybrid models which are
ST-MC, CA-MC, and MLP-MC, IDRISI Selva software has
been employed as well as to predict the future LULC scenarios.

Pre-processing of remote sensing images

The collected multi-temporal remote sensing images were at-
mospherically corrected using the QUick Atmospheric
Correction (QUAC) module available in ENVI software and
spatially referenced to a common UTM projection system
(zone 44, north) with datum WGS 84. All the images were
resampled to a pixel size of 30 m. An appropriate band com-
bination is required to generate false-color composite (FCC)
for all the images. The band combination of B4, B3, and B2
was used to generate FCCs for Landsat 5 TM and Landsat 7
ETM+ images. The band combination of B5, B4, and B3 was
used to generate FCC for Landsat 8 OLI image. These FCCs
were employed to create training samples (signatures) for
LULC classification purpose. After the generation of training
signatures, the separability analysis using a transformed diver-
gence (TD) method was used to examine the quality of train-
ing signatures prior to image classification. Its values range
from 0 to 2.0 and indicate how well the selected training
signatures are statistically separated from each other. The sep-
arability analysis shows the range of values (from 1.75 to 2.0,
where the average divergence is 1.96) for Landsat 5 TM data
of 1988 (from 1.75 to 2.0, where the average divergence is
1.98), for Landsat 7 ETM+ data of 2001, and (from 1.76 to
2.0, where the average divergence is 1.99) for Landsat 8 OLI
data of 2015, respectively.

LULC classification and accuracy assessment

In this study, support vector machine (SVM), a machine
learning technique, was used to produce LULC maps for
years 1988, 2001, and 2015, respectively. SVM is a
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Fig. 1 Geographical location of the study area as viewed on Landsat 8-OLI image
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supervised classification method based on statistical learn-
ing theory (Vapnik 1999). The radial basis function (RBF)
kernel was used in the present study. This kernel requires
less computational effort and can handle the nonlinear re-
lationship between the training data and the entire dataset
(Mishra et al. 2017). Two parameters of RBF kernel that is
penalty parameter (C) and gamma parameter (γ) were set
as default values. The pyramid parameter was set to be zero
value to process the image at full resolution. Based on field
information and landscape of the study area, all the images
were classified into seven major LULC classes: agricultur-
al land, dense vegetation, sparse vegetation, fallow land,
built up, water bodies, and sand. The error matrix was
calculated in order to examine the accuracy of classifica-
tion results obtained for all the years. The accuracy assess-
ment was carried in terms of the overall accuracy (OA),
producer’s accuracy (PA), user’s accuracy (UA), and kappa
coefficient (Kc) (Congalton and Green 1999). In addition,
the F-score was computed for better evaluation of class-
wise accuracies (Mishra et al. 2017)

Analysis of LULCC

The analysis of LULCC illustrates and quantifies the differ-
ences between the images of the same area at different years.
The LULC maps based on classification of Landsat TM/
ETM+/OLI images of years 1988, 2001, and 2015, respective-
ly, were used in order to quantify the LULCCwithin the study
area. The changes occurred drastically affect the natural re-
sources and environment. Thus, the recognition of changes
and their causes would be helpful to determine probable future
changes and various LULC scenarios. The analysis and detec-
tion of LULCC is based on the changes in LULC classes from
time 1 to time 2 (Eastman 2009). In this study, cross-tabulation
analysis was performed to quantify LULCC throughout
1988–2001 (period 1), 2001–2015 (period 2), and 1988–
2015 (period 3), respectively. The gains and losses experi-
enced by various LULC classes, contributions to net change
in built up area, and analysis of the spatial trend of change for
built up area and agricultural land were also investigated with-
in the study area for period 1, period 2, and period 3.

Table 1 Details of remote
sensing images used in the study Satellite sensor Path/row Date of acquisition Spatial

resolution (m)
Spectral bands (μm)

Landsat 5 TM 142/42

142/43

4 November 1988 30

30

30

30

30

120

30

B1 (blue), 0.45–0.52

B2 (green), 0.52–0.60

B3 (red), 0.63–0.69

B4 (NIR), 0.76–0.90

B5 (SWIR), 1.55–1.75

B6 (TIR), 10.40–12.50

B7 (MIR), 2.08–2.35

Landsat 7 ETM+ 142/42

142/43

31 October 2001 30

30

30

30

30

60

30

15

B1 (blue), 0.45–0.52

B2 (green), 0.52–0.60

B3 (red), 0.63–0.69

B4 (NIR), 0.77–0.90

B5 (SWIR-1), 1.55–1.75

B6 (TIR), 10.40–12.50

B7 (SWIR-2), 2.09–2.35

B8 (PAN), 0.52–0.90

Landsat 8 OLI/TIRS 142/42

142/43

15 November 2015 30

30

30

30

30

30

30

15

30

B1 (coastal aerosol), 0.43–0.45

B2 (blue), 0.45–0.51

B3 (green), 0.53–0.59

B4 (red), 0.64–0.67

B5 (NIR), 0.85–0.88

B6 (SWIR-1), 1.57–1.65

B7 (SWIR-2), 2.11–2.29

B8 (PAN), 0.50–0.68

B9 (cirrus), 1.36–1.38

100

100

B10 (TIRS-1), 10.60–11.19

B11 (TIRS-1), 11.50–12.51
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Prediction of future LULC scenarios

In the present study, three hybrid models, namely ST-MC,
CA-MC, and MLP-MC, were employed to simulate and pre-
dict the LULC scenarios to a specified future date. A brief
description of hybrid models is given as follows.

ST-MC model

The functioning of the Markov model as a chain is known as
Markov chain. It is used as a stochastic process in this model
that integrates each single category as the state of a chain (Weng
2002). MC has been used broadly to model LULCC at large
spatial scales (Muller and Middleton 1994) using discrete state
spaces. The first model applied in this study is the ST-MC
model because it combines both the stochastic processes and
Markov chain analysismethods (Eastman 2009). The stochastic
Markov chain model has been carried out using IDRISI Selva
software. Before applying the stochastic module, Markov chain
analysis was performed between LULCmaps in 1988 and 2001
to predict LULC in 2015. This type of predictive LULCCmod-
el is appropriate when the past trend of a LULCC pattern is
known (Basharin et al. 2004; Eastman 2009).

In Markovian processes, the future state of a system can be
predicted not based on the past but rather the present. In the
beginning, MC generates a transition probability matrix
(Table 2), a transition area matrix (Table 3), and a set of
Markovian conditional probability images (Fig. 2) by analyzing
twoLULCmaps from two different dates (1988–2001) (Eastman
2009). After that, a single LULC map for future prediction is
produced by aggregating all theMarkovian conditional probabil-
ity images. A stochastic choice decisionmodel is used to perform
this prediction. It generates a stochastic LULC map by assessing
and combining the conditional probabilities in which each LULC
can exist at each pixel location adjacent to a rectilinear random
distribution of probabilities (Ahmed and Ahmed 2012).

CA-MC model

In this study, CA-MC hybrid modeling approach was used to
predict LULC scenarios for 2015, 2030, and 2050. It binds the
concepts of CA, MC, multi-criteria evaluation (MCE), and
multi-objective land allocation (MOLA) (Eastman et al. 1998)
resultant into a distinct dynamic model. Cellular automaton can
be defined as an agent or object having the capability to change
its state from a rule that describes the new state to its previous
state and those of its neighbors. The CA model is spatially
dynamic in nature and commonly used for LULCC analysis
and prediction (Adhikari and Southworth 2012). TheCA system
consists of four components: cells, states, neighborhoods, and
rules (Barredo et al. 2003). A cell is the smallest spatial unit, and
the cells immediately nearby to a certain cell are referred as the
neighborhood. The next state of each cell is established by the

states of its neighborhood cells. The rules were used to describe
the states of the cells for the future time step (Ahmed and
Ahmed 2012). In the CAmodel, the transition rule of a cell from
one LULC to another is based on the state of the neighborhood
cells (Verburg et al. 2004). The spatial component can be incor-
porated easily into CA, and simple rules are used by it to address
dynamism with increased computational efficiency. The funda-
mental equation of the CA model can be given as

S t; t þ 1ð Þ ¼ f S tð Þ;Nð Þ ð1Þ

where S, t, t + 1, andN are the states of discrete cellular, the time
instant, the next future time instant, and the cellular field, respec-
tively, and f represents the transition rule of cellular states in local
space, respectively.

The MC is a potential model for predicting land change
demand when it is ambiguous to describe the changes and pro-
cesses in LULC. It defines the future state of the environment
solely according to the previous state. The MC model is a sto-
chastic process that explains how likely one state is to transform
into another and use it as the base to project changes in the
future. The critical attribute of the MC is the development of
transition probability matrix of changes in LULC from time to
time, which can be used to predict the future status through the
analysis of past situations. Although it is convenient to model
the changes and determine the future trends using the MC ap-
proach, MC cannot be used solely for providing the information
about the spatial allocation of these phenomena. Thus, the CA is
utilized to describe the spatial components. In an integrated CA-
MC model, CA deals with spatial dynamics using local transi-
tion rules while MC illustrates the temporal dynamics between
LULC classes using transition probabilities (Eastman 2006).

In this study, cellular automata analysis was carried out by
the CA_Markov module in IDRIS Selva software. It uses a
transition area matrix, a transition probability matrix, and a set
of transition probability maps showing the probability of each
pixel to a specific LULC class. A transition probability matrix
based on the cross-tabulation of two LULC maps of different
years is produced and determines the probability of changing
of a pixel from a LULC class into another class during that
time epoch. Also, a transition area matrix includes the number
of pixels that are probable to change to a LULC class from
another class during the time epoch. Thus, a contiguity filter of
5 × 5 kernel size accounting the neighborhood pixels is ap-
plied to predict LULC from a time epoch to a later time epoch.

Generation of suitability maps for LULC classes In CA-MC, it
is required to determine the transition potentials to model the
changes in LULC. The suitability maps are used as transition
potential (Olmedo et al. 2013). The pixels that will change as per
the highest suitability of each LULC class are determined by the
suitability maps. If the suitability of a pixel is higher, the likeli-
hood of the neighboring pixels to change into that particular
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class is higher. But, it is complicated to prepare suitability maps
for LULC classes in terms of data and information availability.
Also, the incorporation of all types of factors or constraints that
exist in the study area is not possible. Therefore, a fuzzy factor
standardization procedure is assumed to be a simple assumption
in this case. In suitability images, values 0 and 255 are unsuit-
able and highly suitable, respectively (Eastman 2009).
Therefore, in this case, a simple linear distance decay function
is appropriate. In this study, multi-criteria analysis based on a
fuzzy linear function was utilized to generate suitability images
of seven for each LULC class and is shown in Fig. 3. The criteria
of suitability maps were established by the observable pattern of
past land transformation circumstances. The fuzzy linear func-
tion is a decision-making process used to decide weights of
selected criteria and constraints. Eventually, the prediction of
LULC map of 2015 is carried out by utilizing the Markov tran-
sition area matrix, all the suitability images, the 5 × 5 CA conti-
guity filter, and the LULC of 2001 as a base map.

MLP-MC model

The world’s ANN is synonymic to the human brain (Mas and
Flores 2008). ANN has advantages over statistical methods be-
cause it does not assume probabilistic models of data. It can
understand complex patterns present in the database and model
complex nonlinear relationships (Ji 2000; Atkinson and Tatnall
1997). Although many neural network models have been devel-
oped, the multi-layer perceptron neural network (MLPNN) is
broadly used in different applications (Hu and Weng 2009;

Mozumder and Tripathi 2014; Mishra et al. 2014). The
MLPNN includes an input layer, many hidden layers, and an
output layer. One of the main advantages of MLPNN is its
capability tomodel several or even all the transitions at one time.
It is trained by supervised backpropagation (BP) algorithm and
provides the best generalization potential for transition of each
LULC and simulation (Maithani 2015; Mishra et al. 2014). It
also combines the variables affecting the LULC transitions
(Mishra and Rai 2016). The MC quantifies changes in LULC
and determines transition probability areas to predict probable
LULCC in the future (Dadhich and Hanaoka 2011). In MLP-
MC hybrid approach, the transitions are modeled using an
MLPNN. The integration of MLP andMC takes the advantages
of both themodels. A predictionmodel of future LULC scenario
was designedwithin theMLP-MC structure available in the land
change modeler (LCM) module embedded in IDRISI Selva
software. The LCM is a suite of tools for the rapid assessment
of changes, evaluation of gains and losses, net change, persis-
tence and identification of transitions between LULC classes
both in map, and statistical and graphical appearance (Eastman
2006). It facilitates users to model and predict the future land-
scape scenario by incorporating user-defined drivers of changes
(Eastman 2009). The LCM has more mapping facilities: the
map transition and spatial trend of change are also utilized for
further representation of the change detection and analysis.

Selection of transitions and variables for model development
All the minor and major transitions occurred in LULC between
two dates. With the aim of this study, only some of the major

Table 3 A transition area matrix (1988–2001)

LULC class Agricultural land Dense vegetation Sparse vegetation Fallow land Built up Water bodies Sand

Agricultural land 1,060,174 260,787 1,091,732 372,931 37,290 20,767 810

Dense vegetation 172,386 75,721 247,299 22,441 17,138 4817 0

Sparse vegetation 978,102 247,028 700,018 221,868 61,844 15,746 172

Fallow land 347,646 69,466 280,430 100,088 6918 12,198 5040

Built up 17,446 4947 34,768 7053 98,705 3079 1260

Water bodies 12,635 8380 27,295 13,804 3394 75,175 20,322

Sand 2694 46 2821 10,190 46 11,824 17,994

Table 2 Markov transition probabilities of change among LULC (1988–2001) for 2015

LULC class Agricultural land Dense vegetation Sparse vegetation Fallow land Built up Water bodies Sand

Agricultural land 0.1722 0.0811 0.3304 0.1471 0.2632 0.0057 0.0003

Dense vegetation 0.3185 0.1403 0.4581 0.0416 0.0318 0.0089 0.0008

Sparse vegetation 0.4396 0.1110 0.3147 0.0997 0.0278 0.0071 0.0001

Fallow land 0.4230 0.0845 0.3413 0.1218 0.0084 0.0148 0.0062

Built up 0.0365 0.0296 0.0389 0.0372 0.8293 0.0194 0.0091

Water bodies 0.0785 0.0520 0.1695 0.0857 0.0211 0.4669 0.1263

Sand 0.0591 0.0010 0.0618 0.2234 0.0010 0.2595 0.3945
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transitions that occurred among LULC classes were considered.
Only the significant transitions were included in transition
submodel to improve the performance ofMLPNN and get better
results (Eastman 2006). The possible factors driving LULCC in
Varanasi district of Uttar Pradesh, India, are characterized by
nine major transitions: agricultural land to fallow land, agricul-
tural land to built up, fallow land to agricultural land, fallow land
to built up, dense vegetation to built up, dense vegetation to
sparse vegetation, sparse vegetation to built up, sparse vegeta-
tion to fallow land, and water bodies to sand.

The transition potential was determined by developing
submodels in the MLP-MC approach. All the observed
LULC transitions were collected into a set of submodel.
Each submodel is added by significant variables as either stat-
ic or dynamic (Eastman 2006). A total of six environmental
variables are considered in this study. Elevation, slope, and
aspect were considered as the static variables, while the dis-
tance from major roads, distance from rail network, and dis-
tance from built up area were regarded as the dynamic

variables. An empirical likelihood to change map which is a
qualitative variable was also produced besides these six quan-
titative variables. For producing this, a map showing changes
from all LULC classes to built-up area was prepared. An em-
pirical likelihood transformation is an effectual way of includ-
ing categorical variables into the analysis. It is produced from
the frequency of each LULC class that occurred within the
areas of transition (Eastman 2009). All the seven explanatory
variables used for the transition potential modeling are shown
in Fig. 4. Now, the potential explanatory power of these var-
iables was tested using Cramer’s V statistics. It is recommend-
ed that the variables having a Cramer’s V value of about 0.15
or higher are regarded as useful while those of about 0.4 or
above are good (Eastman 2009). After getting acceptable
Cramer’s V values for all the driving variables, now, the
MLPNN model was run using BP algorithm.

The prediction results are also influenced by constraints and
factors. The expansion of built up area is restricted by some
criteria known as constraints. In the present study, major roads

Fig. 2 Markovian conditional probability images
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and rail network were considered as the constraints and are
shown in Fig. 5. The reason behind choosing the distance from
major roads as a factor is that most of the construction and
developmental activities are supposed to take place along the
roads. Twomodel variables such asmajor LULC transitions and
driving factors were previously defined. On the basis of this
information, transition potential maps were created to visualize
the suitability of LULC classes for the future LULC scenario.

Transition potential modeling The transition potential maps
were produced using seven variables as input, LULC transitions
to be modeled, and MLPNN integrated into LCM. The MLP
first creates a random sample of cells that transitioned among
LULC classes during the required time and starts the automatic
training process. It keeps 50% of the samples for training and the
remaining 50% for testing the performance. In this study, the
minimum number of cells that transitioned during 1988 to 2001
was chosen as 7959 to run MLP with 10,000 iterations. After
runningMLP, it was completed with an accuracy rate of 87.56%

which is a measure of calibration. It is recommended that accu-
racy rate more than 80% is acceptable (Eastman 2009). After the
successful execution of MLP training, transition potential
modeling is applied to generate transition potential maps. The
amount of changes using the previous and later LULC maps
was determined by the MC process and used to estimate the
changes during the prediction process. The MC analysis also
calculates the transition probability matrix of changing from
one LULC class to another using past and current probabilities.
Finally, the generated transition potential maps were further ap-
plied to predict LULC scenarios for future dates. By using this
information, transition potential maps were produced to visual-
ize the suitability of LULC classes for future scenarios.

Validation of predicted results

If the evaluation of prediction provides convincing results, the
hybrid models can be applied further for the prediction of
future LULC scenarios (Moghadam and Helbich 2013). In

Fig. 3 Suitability images of each LULC class
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general, the model validation is carried out by comparing the
predicted and observed results. For this purpose, the LULC
for the year 2015 was first predicted by ST-MC, CA-MC, and

MLP-MC hybrid models based on LULC information from
1988 and 2001. The predicted results were then compared
with the actual LULC information observed by remote

Fig. 4 Explanatory variables. a DEM. b Slope. c Aspect. d Distance from built up. e Distance from major roads. f Distance from rail network. g
Empirical likelihood image

Fig. 5 Constraints used in this study. a Major roads. b Rail network
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sensing image of 2015 with the help of kappa index statistics
to test the validity regarding quantity and location (Kamusoko

et al. 2009; Wang et al. 2012). The kappa index statistics
includes the kappa for no information (Kno), kappa for grid

Fig. 6 Classified LULC maps of Varanasi of years 1988 (a), 2001 (b), and 2015 (c)

Table 4 Area distribution of
LULC of years 1988, 2001, and
2015

LULC class Year

1988 2001 2015

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Agricultural land 965.86 63.01 873.78 57.00 909.83 59.35

Dense vegetation 86.64 5.65 121.54 7.93 65.94 4.30

Sparse vegetation 178.82 11.67 263.66 17.20 204.74 13.36

Fallow land 225.68 14.72 182.68 11.92 193.86 12.65

Built up 26.71 1.74 45.63 2.98 123.48 8.06

Water bodies 39.68 2.59 35.26 2.30 23.48 1.53

Sand 9.51 0.62 10.36 0.68 11.59 0.76

Total 1532.91 100 1532.91 100 1532.91 100
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cell-level location (Klocation), kappa for stratum-level location
(Klocation strata), and kappa standard (Kstandard) which is similar
to kappa (Pontius 2000).

Results and discussion

To understand spatio-temporal dynamics of LULC, the results
were divided into four components: (1) composition of the
LULC maps and an accuracy assessment for the years 1988,
2001, and 2015; (2) change analysis of the periods 1988–2001
(period 1), 2001–2015 (period 2), and 1988–2015 (period 3);
(3) prediction for the year 2015 by the ST-MC, CA-MC, and
MLP-MC models, comparison of the prediction results with
the observed LULC map of 2015, and identification of the
model that provides the highest accuracy in the study area;
and (4) prediction of future scenarios of LULCC for the years
2030 and 2050 using the best result-providing model that
produced the best results in the prediction of year 2015.

LULC maps and accuracy assessment

In this study, an SVM classifier was used to derive
LULC maps for years 1988, 2001, and 2015. The distri-
bution of different LULCs quantitatively and spatially for
three different years (1988, 2001, and 2015) is shown in
Table 4 and Fig. 6, respectively. After the classification
of multi-temporal remote sensing images, the obtained
OA is the indicator of the reliability and usability of
classified results. The outcome of this procedure signifies
whether the LULCC has been correctly identified and
extracted. The PA, UA, and F-score were achieved by
an error matrix approach, and the OA and Kc are listed
in Table 5. The OA values of LULC maps for years 1988,
2001, and 2015 are 86.94, 88.84, and 89.25%, respective-
ly. The Kc values for years 1988, 2001, and 2015 are
0.8475, 0.8697, and 0.8745, respectively. In this study,
the accuracy assessment of the classified products of the
respective years confirmed that the results are acceptable
for many applications.

Table 6 Amount of changes in
LULC during period 1, period 2,
and period 3

LULC class Amount of changes

Period

1988–2001 2001–2015 1988–2015

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Agricultural land − 92.08 − 6.01 36.05 2.35 − 56.04 − 3.66
Dense vegetation 34.90 2.28 − 55.59 − 3.63 − 20.70 − 1.35
Sparse vegetation 84.83 5.53 − 58.92 − 3.84 25.91 1.69

Fallow land − 43.00 − 2.81 11.18 0.73 − 31.82 − 2.08
Built up 18.93 1.23 77.85 5.08 96.78 6.31

Water bodies − 4.43 − 0.29 − 11.78 − 0.77 − 16.21 − 1.06
Sand 0.85 0.06 1.22 0.08 2.07 0.14

Table 5 Accuracy assessment of classified LULC maps of years 1988, 2001, and 2015

LULC class Year

1988 2001 2015

PA (%) UA (%) F-score (%) PA (%) UA (%) F-score (%) PA (%) UA (%) F-score (%)

Agricultural land 83.78 84.55 84.55 87.27 88.07 87.67 88.29 89.91 89.09

Dense vegetation 89.36 91.30 90.32 90.53 92.47 91.49 89.32 90.20 89.76

Sparse vegetation 86.61 87.39 87.00 87.16 87.16 87.16 88.39 90.00 89.19

Fallow land 84.91 79.65 82.19 85.98 81.42 83.64 85.71 84.96 85.33

Built up 88.29 90.74 89.50 89.09 91.59 90.32 88.99 88.99 88.99

Water bodies 88.35 94.79 91.46 91.58 96.67 94.05 92.39 94.44 93.41

Sand 87.76 81.90 84.73 90.83 86.84 88.79 92.71 87.25 89.90

OA (%) 86.94 88.84 89.25

Kc 0.8475 0.8697 0.8745
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Analysis of LULCC

The study area experienced drastic changes in LULC and was
analyzed during period 1, period 2, and period 3. There are
significant changes that occurred in all LULC classes partic-
ularly in agricultural land, fallow land, built-up area, and water
bodies over the year (1988–2015).

The agricultural land in 1988 covered an area of
965.86 km2 (63.01%), and it decreased to 873.78 km2

(57.00%) and 909.83 km2 (59.35%) in 2001 and 2015, respec-
tively. During period 1, the agricultural land reduced by
6.01%, while during period 2, it raised by 2.35%, and during
period 3, it again reduced by 3.66%. The area covered by
dense vegetation in 1988 was 86.64 km2 (5.65%), and it in-
creased to 121.54 km2 (7.93%) in 2001 while it decreased in
2015 to 65.94 km2 (4.30%). During period 1, the dense veg-
etation raised by 2.28%, while during period 2, it decreased by
3.63% and again decreased by 1.35% during period 3. The
sparse vegetation covered an area of 178.82 km2 (11.67%) in
1988, and it increased to 263.66 km2 (17.20%) and
204.74 km2 (13.36%) in 2001 and 2015, respectively.
During period 1, the sparse vegetation raised by 5.53%, while
during period 2, it decreased by 3.84% and again increased by
1.69% during period 3. The fallow land occupied an area of
225.68 km2 (14.72%) in 1988, and it reduced to 182.68 km2

(11.92%) and 193.86 (12.65%) in 2001 and 2015, respective-
ly. During period 1, the fallow land reduced by 2.81%, while
during period 2, it slightly increased by 0.73% and again re-
duced by 2.08% during period 3. It was examined that in
1988, built up area covered an area of 26.71 km2 (1.74%)
and it increased to 45.63 km2 (2.98%) in 2001 and
123.48 km2 (8.06%) in 2015, respectively. The built up area
raised by 1.23, 5.08, and 6.31% during period 1, period 2, and

Table 7 Annual rate of change during period 1, period 2, and period 3

LULC class Annual rate of change (%)

Period

1988–2001 2001–2015 1988–2015

Agricultural land − 0.77 0.29 − 0.22

Dense vegetation 2.60 − 4.37 − 1.01

Sparse vegetation 2.99 − 1.81 0.50

Fallow land − 1.63 0.42 − 0.56

Built up 4.12 7.11 5.67

Water bodies − 0.91 − 2.90 − 1.94

Sand 0.66 0.80 0.73

Fig. 7 Contributions to net change in a built up and b agricultural land (in % change)
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Fig. 8 Spatial trend of change in built up and agricultural land during a period 1, b period 2, and c period 3
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period 3, respectively. The continuous decrease in water bod-
ies is observed by 0.29, 0.77, and 1.06% during period 1,
period 2, and period 3, respectively. Sand is increased slightly
by 0.06, 0.08, and 0.14% during all the periods.

An enormous change of 6.31% in built up area is observed
between 1988 and 2015. Following this, there is a loss of 3.66,
2.08, and 1.35% in agricultural land, fallow land, and dense
vegetation, respectively. The loss of agricultural land, fallow
land, and dense vegetation contributed to an increase in the
built up area between 1988 and 2015. This could be due to
population growth linked with the requirement of land and
urban supplies. The amount of changes in LULC during peri-
od 1, period 2, and period 3 is given in Table 6. The changing
pattern between LULC classes and contributions to net change
in built-up area and agricultural land during period 1, period 2,
and period 3 is demonstrated in Fig. 7a, b.

During period 3, the rate of loss of water bodies is found
maximum with − 1.94% followed by dense vegetation with −
1.01%, fallow landwith − 0.56%, and agricultural land with −
0.22%. The highest positive rate of change is found for built
up area with 5.67% followed by sand with 0.73% and sparse
vegetation with 0.50%. It signifies that built-up areas have the
highest positive rate of change while the water bodies had the
highest negative rate of change during period 3. The water
bodies and dense vegetation with the higher negative rate of
change may be a major concern in the study area. The com-
plete information about the rate of change for each LULC
class during period 1, period 2, and period 3 is shown in
Table 7.

Analysis of spatial trend of change

The spatial trend of change analysis is an effectual approach to
visualize and provide the generalized patterns of changes by
using two observed LULC maps. The spatial trend of transi-
tions from all LULC classes to built up area and agricultural
land during period 1, period 2, and period 3, respectively, is
shown in Fig. 8a–c. The spatial trend of change maps is cre-
ated with the help of third-order polynomial parameter. The

numeric values in legends do not have any meaning (Eastman
2012). The lower or higher values exhibit less or more chang-
es. The spatial trend of change maps shows that the agricul-
tural land is shifted towards the eastern and southern direc-
tions during all the periods. It is also observed that the transi-
tion of built up area is more concentrated in the middle of the
study area and expanding towards the northern and western
directions during all the periods relative to other directions.

ST-MC model-based prediction

The prediction of future LULCC scenario was conducted
using a spatial transition ST-MC model. Firstly, MC produces
a transition probability matrix, a transition area matrix, and a
set of Markovian conditional probability images by analyzing
LULC maps of two different dates (1988 and 2001) (Eastman
2009).

The transition probability matrix illustrates the probability
that each LULC class will change to other classes in 2015. The
Markovian conditional probability images are the probabilistic
prediction based on the trends of past 13 years (1988–2001).
The Markovian conditional probability of being built-up
ranges up to 0.59, which is highest among all other LULC
classes. The probability values range up to 0.44 for agricultural
land, up to 0.14 for dense vegetation, up to 0.46 for sparse
vegetation, up to 0.22 for fallow land, up to 0.47 for water
bodies, and up to 0.39 for sand. Now, by aggregating all the
produced Markovian conditional probability images, a single
LULC map for future prediction is generated. A stochastic
choice decision model is used to perform this prediction. It
creates a stochastic LULC map by assessing and combining
all the conditional probabilities in which each LULC class can
be present at each pixel location against a rectilinear random
allocation of probabilities (Ahmed and Ahmed 2012).

CA-MC model-based prediction

To predict an LULC map for the year 2015, two different
LULC maps of the years 1988 and 2001 were used to create

Table 8 Transition probabilities of change among LULC for Markov chain (1988–2001) for 2015 in MLP modeling

LULC class Agricultural land Dense vegetation Sparse vegetation Fallow land Built up Water bodies Sand

Agricultural land 0.1835 0.0751 0.3256 0.1145 0.2945 0.0065 0.0003

Dense vegetation 0.3104 0.1650 0.4445 0.0405 0.0308 0.0087 0.0001

Sparse vegetation 0.4041 0.1020 0.3702 0.0916 0.0255 0.0065 0.0001

Fallow land 0.4127 0.0825 0.3328 0.1433 0.0082 0.0145 0.0060

Built up 0.0289 0.0226 0.0451 0.0315 0.8546 0.0117 0.0056

Water bodies 0.0663 0.0440 0.1433 0.0725 0.0178 0.5494 0.1067

Sand 0.0523 0.0009 0.0547 0.1977 0.0009 0.2294 0.4641
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the transition probability matrix. The suitability images are
created by setting transition rules from one LULC class to
another class. In the present study, physical factors are only
regarded as drivers of changes in LULC.

The physical proximity to an existing LULC class is
assumed to be a driver of change into a specific LULC
class in the future. The rules and suitability maps were
prepared for each LULC class. The fundamental supposi-
tion for producing suitability images is the pixel nearer to
an existing LULC class that has the higher suitability. In
suitability images, the values ranged from 0 to 255, with 0
being unsuitable and 255 being highly suitable. Therefore,
for this fundamental supposition, a simple linear distance
decay function is adequate. It provides the fundamental
idea of contiguity, and a fuzzy-set membership analysis
procedure (Eastman 2009) is used to standardize LULC
maps to the same continuous suitability scale (0–255).

MLP-MC model-based prediction

The MLPNN analysis was used to determine the weights of
transitions for the period of 1988 to 2001 that will be in-
cluded in the transition probability matrix using MC anal-
ysis for future prediction. The transition probability matrix
is the cross-tabulation of two LULC maps of different
years (1988 and 2001) and is shown in Table 8. In the
transition probability matrix, rows and columns stand for

the earlier and later date images. The MC analysis is a
random process and very helpful in determining the mea-
sure, behaviors, and frequencies of LULCC in a region by
analyzing LULC maps of two dates. Based on all transition
potential maps created for various LULC transitions, the
MLPNN was applied with an accuracy of 87.56% with
10,000 iterations.

Further, Table 8 exhibits that the probability of change
of agricultural land into built up area in the future date in
2015 from 1988 to 2001 is 29.45%, while the probability
of changing of agricultural land into agricultural land in
the future is only 18.35%. The probabilities of changing
of agricultural land into built up area raised up to 32.85
and 33.55% in 2030 and 2050, respectively. Alternatively,
the probabilities of changing of agricultural land into ag-
ricultural land in future dates reduced continuously to
16.52 and 15.85% in 2030 and 2050, respectively. On
the other hand, the probabilities of changing of agricultur-
al land into built up area increased remarkably from 29.45
to 32.85 and 33.55% in 2030 and 2050, respectively.
Markov transition probability matrices of changing among
LULC classes for years 2030 and 2050 are given in
Tables 9 and 10. It is notified through the quantitative
and qualitative analyses of LULC maps of different years
that there is rapid expansion of built up area in Varanasi
district of Uttar Pradesh, India, which needs to be ana-
lyzed and modeled further.

Table 10 Transition probabilities of change among LULC for Markov chain (2001–2015) for 2050 in MLP modeling

LULC class Agricultural land Dense vegetation Sparse vegetation Fallow land Built up Water bodies Sand

Agricultural land 0.1585 0.0759 0.2871 0.1421 0.3355 0.0007 0.0002

Dense vegetation 0.2852 0.1682 0.4529 0.0528 0.0371 0.0037 0.0001

Sparse vegetation 0.3952 0.1102 0.3916 0.0806 0.0205 0.0017 0.0002

Fallow land 0.4356 0.0309 0.3353 0.1494 0.0372 0.0061 0.0055

Built up 0.0248 0.0131 0.0504 0.0115 0.8953 0.0019 0.0030

Water bodies 0.0549 0.0292 0.1197 0.0595 0.0379 0.5795 0.1193

Sand 0.0496 0.0091 0.0062 0.1473 0.0108 0.2005 0.5765

Table 9 Transition probabilities of change among LULC for Markov chain (2001–2015) for 2030 in MLP modeling

LULC class Agricultural land Dense vegetation Sparse vegetation Fallow land Built up Water bodies Sand

Agricultural land 0.1652 0.0695 0.2967 0.1383 0.3285 0.0011 0.0007

Dense vegetation 0.2892 0.1602 0.4312 0.0683 0.0475 0.0034 0.0002

Sparse vegetation 0.3865 0.1051 0.3823 0.0927 0.0315 0.0017 0.0002

Fallow land 0.4311 0.0465 0.3422 0.1563 0.0114 0.0057 0.0068

Built up 0.0104 0.0118 0.0642 0.0281 0.8802 0.0038 0.0015

Water bodies 0.0694 0.0312 0.1264 0.0779 0.0216 0.5603 0.1132

Sand 0.0454 0.0001 0.0009 0.1708 0.0052 0.2129 0.5647
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Validation and selection of model

In the present study, three hybrid models (ST-MC, CA-MC,
and MLP-MC) are used to predict future LULC scenarios.
Three hybrid models were first compared to facilitate a valid
prediction for future LULC scenario. The values of kappa
index statistics for all three models are given in Table 11. It
is clear from the table that Kno, Klocation, Klocation strata, and
Kstandard values for the MLP-MC-based, predicted LULC
map of 2015 are higher in comparison to those of CA-MC
and ST-MC models. It is showing a strong-to-perfect agree-
ment between predicted and observed LULCmaps because all
values of kappa index statistics are greater than 0.80. The
MLP-MC hybrid model provided the best results in compar-
ison to other modeling methods for the study area. Finally, the
future LULC scenarios were predicted quantitatively and

spatially for year 2030 and 2050 by the better result-
providing MLP-MC model.

Prediction and analysis of future LULC scenarios
for 2030 and 2050 using the MLP-MC model

The LULC maps of 2001 and 2015 were used to predict the
future LULC scenarios for years 2030 and 2050 using the
MLP-MC model. Here, the method followed is the same as
stated in the MLP-MC modeling section of this paper. The
transition potential maps and transition probability matrices
were produced using LULC maps of 2001 and 2015. By uti-
lizing the LULC of 2015 as the base map, the transition po-
tential maps, and the transition probability matrices of period
2001–2015, the future LULC scenarios were predicted for
2030 and 2050 as shown in Fig. 9a, b. The resultant statistics
of the area for various LULC classes are represented in
Table 12. The MLP-MC-based prediction results for 2030
showed that there will be a slight decrease in agricultural land
(from 59.35% in 2015 to 58.32% in 2030), dense vegetation
(from 4.30% in 2015 to 2.87% in 2030), sparse vegetation
(from 13.36% in 2015 to 10.56% in 2030), and fallow land
(from 12.56% in 2015 to 12.12% in 2030) while an increase in
built up area (from 8.06% in 2015 to 14.07% in 2030).

Nevertheless, the prediction results for 2050 showed that it
would experience the decrease in agricultural land (from

Fig. 9 Predicted LULC maps of years 2030 and 2050

Table 11 Kappa index statistics for the ST-MC, CA-MC, and MLP-
MC prediction results

Agreement ST-MC CA-MC MLP-MC

Kno 0.7835 0.8581 0.8860

Klocation 0.7977 0.8684 0.8948

Klocation strata 0.7977 0.8684 0.8948

Kstandard 0.7684 0.8302 0.8681
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59.35% in 2015 to 56.09% in 2050), dense vegetation (from
4.30% in 2015 to 2.35% in 2050), and sparse vegetation (from
13.36% in 2015 to 8.67% in 2050) while an increase in fallow
land (from 12.56% in 2015 to 13.43% in 2050) and built up
area (from 8.06% in 2015 to 17.59% in 2050). The overall loss
of agricultural land and sparse vegetation occurred because of
the rapid spreading of built up area while slight changes were
shown by other LULC classes during 1988–2050. These re-
sults propose a worrisome change for the future scenario of the
landscape of Varanasi district of Uttar Pradesh, India.
Therefore, it deserves attention regarding sustainable manage-
ment and development of the landscape.

Conclusions

In this study, a combined approach of satellite remote sensing
images, GIS, and prediction models was explored to under-
stand the spatio-temporal dynamics of LULC and future sce-
nario in Varanasi district of Uttar Pradesh, India. For this pur-
pose, LULC patterns were examined by using Landsat TM/
ETM+/OLI images of respective years 1988, 2001, and 2015.
After that, the future scenario of LULC was performed profi-
ciently using ST-MC, CA-MC, and MLP-MC hybrid models
in the study area. The validation of prediction models was
assessed for 2015 using kappa index statistics. Based on val-
idation results, the MLP-MC model pointed out a descriptive
capability of future prediction and was foundmost appropriate
in comparison to ST-MC and CA-MC models.

The prediction model provides not only the description of
changes quantitatively and spatially in the past but also the
trend and amount of future changes. The prediction results for
2030 showed an increase of 92.20 km2 in built-up area where-
as a slight decrease of 15.90 km2 in the agricultural land be-
tween 2015 and 2030. Furthermore, the prediction results for
2050 showed an increase of 146.20 km2 in built up area
whereas a decrease of 49.97 km2 in agricultural land between
2015 and 2050. The analysis of LULCC between 1988 and

2050 demonstrated that there is a vast increase in built up area
while a considerable reduction in agricultural land, dense veg-
etation, and sparse vegetation.

In this study, multiple simulation models were used to re-
alize the future LULC prediction more accurately.
Comparison of three different models enabled the recognition
of prediction results using the better-performing model for the
study area. However, the accuracy of prediction results is
strongly related to many factors. Firstly, the accuracy of
LULC maps and the prediction results is negatively affected
by the moderate resolution of multi-temporal Landsat images.
Second, it is assumed to have uniform transition probability in
the Markov chain model. It is still not easy to include the
unpredictable influence of other variables, like government
policy or socioeconomic aspects. So, to achieve improved
results, image quality should be increased, and new prediction
models should be developed by incorporating more socioeco-
nomic and physical variables. Moreover, this kind of study
exhibited a high prospective to contribute towards the sustain-
able development and management of an area at the local as
well as global level around the world.
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