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Abstract
In this study, empirical models were generated to estimate water quality parameters, with the objective of showing the benefits of
the satellite remote sensing application in the characterization of coastal waters. The study area was Playa Colorada Bay, located
in the northwest of Mexico, in the eastern part of the Gulf of California. In two seasons of the year, on-site and laboratory
characterizations were carried out to determine the spatial and temporal variation of phosphates (PO4), electrical conductivity
(EC), total suspended solids (TSS), turbidity, and pH of water. Samplings were selected to match Landsat 8 satellite overpass in
the study area. Radiometric and atmospheric corrections were applied to the images, prior to the generation of the models. The
models were generated using the linear regression technique of successive steps; water quality parameters and their logarithms
were used as dependent variables, and as independent variables were used corrected reflectance values of Landsat images. The
results showed that the concentration of PO4 in the analyzed water samples were higher than those recommended in the Mexican
ecological criteria of water quality, to protect the aquatic life of marine water in coastal areas. In autumn, PO4 was correlated with
turbidity, T, pH, and TSS. The highest correlation coefficients were presented by TSS with PO4 (r = − 0.979) and pH (r = 0.958).
The water quality models that were generated had coefficients of determination (R2) in the range of 0.637 to 0.955 and show the
viability of the application of Landsat 8 images in the characterization of water quality parameters in Playa Colorada Bay.Models
allowed the estimation of the distribution of water quality parameters over the whole bay instead of only at the sampling stations,
favoring a better understanding of their spatial distribution.
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Introduction

Playa Colorada Bay is part of the lagoon system Laguna Playa
Colorada - Santa María La Reforma, declared Ramsar site
since 2004. This system is considered one of the most

significant areas on the Pacific coast of Mexico, being the
habitat of more than 600 species, including birds, fish, am-
phibians, reptiles, and mammals, as well as home of resources
that are exploited in it (Lyle Fritch 2003). Nevertheless, Playa
Colorada Bay receives discharges from agricultural wastewa-
ter drainage systems from irrigation districts (DR) 063 and
074, untreated municipal sewage, and sewage from aquacul-
ture farms. González-Márquez et al. (2014) reported that El
Burrión collector drain, one of the main drains discharging
into the bay, discharged around 0.06 and 0.71 tons of PO4-P
monthly from November 2012 to July 2013. December 2012
and July 2013 generated the highest and lowest load of PO4-P,
respectively. The months that presented the highest loads of
PO4-P coincide with the agricultural cycle, showing the effect
that this activity has on the collector drain water quality.
Another economic activity affecting the water quality of agri-
cultural drainage systems is aquaculture, as shrimp farms
within the area of influence of the bay discharge their
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wastewater into those systems. March is the beginning of the
shrimps sowing and the harvests begin at the end of May,
which finishes generally at the end of October and at the
beginning of November.

Monitoring water quality may have different objectives.
However, the main concerns are related to human and ecosys-
tems health, as well as the effect it may have on economic
activities that depend on it. Based on the fact that optical
properties of water can be altered by variations in the concen-
tration of parameters related to its quality (Pavelsky and Smith
2009) and that there is no restriction on the production and use
of Landsat satellite images, the literature presents an increas-
ing number of research to generate empirical models and es-
timate water quality parameters using the relationship between
on-site and laboratory measurements with reflectance values
captured in satellite images (González-Márquez et al. 2018;
Bonansea et al. 2015; El Saadi et al. 2014; Harvey et al. 2015;
Khattab and Merkel 2013; Lim and Choi 2015; Theologou
et al. 2015; Zheng et al. 2015). In coastal waters, the most
commonly used models are the empirical ones. Models that
are based on the statistical relationship between the concen-
tration of measured water quality parameters and spectral
values captured using remote sensing techniques. Empirical
models generated with linear regression techniques often pres-
ent reliable results when applied on sites where they were
generated. However, their accuracy decreases when applied
to other water bodies, due to the changing site-to-site nature
of the components of coastal and continental waters (Chang
et al. 2014).

The objective of this research was to generate empirical
water quality models to show the viability of the applica-
tion of satellite remote sensing in the characterization of
coastal waters in northwest Mexico. Models generated
using the relationship between the concentration of PO4,
EC, TSS, turbidity, and the bay’s water pH, evaluated
through conventional techniques, and the reflectance re-
corded in Landsat 8 images.

Study area

Playa Colorada Bay is located at latitude 25° 13' 30" N and
longitude -108° 21' 30" W, south of the municipalities of
Guasave and Angostura, in the state of Sinaloa, Mexico
(Fig. 1). The climate is tropical dry, with rains from June to
October (Lyle Fritch 2003). In the period from 1962 to 2011,
the annual average temperature was 24.1 °C, the highest tem-
perature was 45.5 °C, and the lowest temperature was − 6 °C,
while the average annual evaporation was 2391 mm; the
months with greater precipitation are July through
September. The average annual precipitation in the period
was 468.8 mm (CLICOM 2016). In the bay, the main eco-
nomic activities are the fishing of shrimp, chelon, crab, and
clams. In its area of influence, aquaculture is developed,

mainly the culture of shrimp, and agriculture of irrigation.
The two DRs located upstream of the bay are DR063, which
has an area of 100,125 ha for cultivation and DR074 with an
area of 40,742 ha. The agricultural cycles, spring-summer and
autumn-winter, occur from the end of September through
June. The wastewater generated in the agricultural area is
transported through a surface drainage system, which collects
municipal and aquaculture wastewater during its course and is
discharged into the bay.

Materials and methods

Sampling and analysis of water quality parameters

Four sampling campaigns were conducted in the months
of December 2014, May and December 2015, and
June 2016. Samplings were carried out to demonstrate
the effect of agricultural activity on the water quality of
the bay, considering that the main contributions of PO4 to
the bay are presented in the months of December and July
(González-Márquez et al. 2014), these months coincide
with the beginning and end of agricultural cycles in the
study area. Seven to 18 sampling sites per campaign were
characterized. The site location was chosen considering
the distribution over the whole water surface of the bay,
which could be accessed by boat and with the aim to
characterize the water bay inflows and outflows.
Sampling stations 1, 3, 4, 5, and 6 were at the northern
part of the bay, on channels located in the mangrove area
where wastewater from agricultural drainage systems en-
ters; stations 2, 10, 19, and 23 were located along the
coast between the mouth of the Sinaloa River and the
mouth of the bay; the rest of the stations were in the
interior of the bay. The station numbering was assigned
according to latitude (Fig. 2). The T, EC, and pH of the
water were measured on-site, through a multiparametric
probe (YSI brand, Professional Plus model); the turbidity
was evaluated with a portable turbidimeter (Hanna brand,
model HI 93703 C).

For the analysis of PO4 and TSS, samples were collected
from the first 40 cm of the water column. A 0.5 L Van Dorn
bottle (brand LaMotte, model JT-1) was used. One hundred
milliliters of water were filtered through 0.45-μm nylon mem-
branes (Millipore, HNWP); the filtered water was stored in
plastic containers. Samples for TSS analysis were stored in
1-L glass containers. Prior to each sampling event, the con-
tainers were washed and rinsed with a 1:1 acidic solution,
hydrochloric acid (analytical grade), and with MilliQ® water
(MilliQ-Plus; resistivity > 18 MΩ cm). The water samples
were stored on ice and transported to the laboratory. In the
filtered water samples, PO4 was analyzed before 48 h of sam-
pling, according to the method 8048, reduction in ascorbic
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acid (HACH 2014). A VIS spectrophotometer (Hach Mark,
model DR 3900) was used for PO4 analysis. For the TSS
analysis, 1 L of water was filtered through 1.5-μm glass fiber
filters (Hach, 934-AH); the analysis was performed according
to the standard methods for water and wastewater analysis
(APHA-AWWA-WEF 2012). Duplicates were analyzed for
quality control.

Landsat 8 image processing

Except for the campaign of December 2014, the sampling
campaigns were matched with the day when the Landsat 8
satellite takes the image over the area where the bay is located.
On-site characterization or sample collection is recommended
to be done the same day of satellite image acquisition, to

Fig. 2 Location of sampling
stations

Fig. 1 Location of Playa
Colorada Bay
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reduce errors and to obtain a better calibration of the algo-
rithms generated to estimate water quality (Bonansea et al.
2015; Brezonik et al. 2005; Kloiber et al. 2002). In this paper,
three Landsat 8 images, type GeoTIFF level 1 (path 33; row
42), were used. The images were downloaded from the US
Geological Survey (USGS) database using the Global
Visualization Viewer (http://glovis.usgs.gov/). Landsat 8 is a
satellite that has two sensors, the Operational Land Imager
(OLI) mutispectral sensor and the Thermal Infrared Sensor
(TIRS), as well as a 12-bit radiometric resolution (Roy et al.
2014). The images have 11 spectral bands, band B1 (coastal/
aerosol), B2 (blue), B3 (green), B4 (red), B5 (near infrared,
NIR), B6 and B7, (SWIR1 and SWIR2), band B9 (cirrus),
which all have a resolution of 30 m, and band B8 (panchro-
matic), which has a resolution of 15 m, and bands B10 and B11

(TIR-1 and TIR-2), a resolution of 100 m.
Radiometric and atmospheric corrections were applied to the

images. The radiometric correction was performed to transform
the relative values of the pixels, or digital numbers, to absolute
measurements of radiation per unit wavelength of light or to
reflectance, while the atmospheric correction was performed to
eliminate the atmospheric effects, and thereby transform the
radiometric values into radiation or surface reflectance, so that
the water quality parameters could be estimated and compared
in time and space. Atmospheric correction was made applying
the dark object subtraction method (Chavez 1996), which con-
siders that in an image, some dark objects have values of re-
flectance close to zero; however, due to atmospheric dispersion
and absorption, non-zero reflectance values are recorded in the
pixels where such objects are located. These values must be
subtracted from the different spectral bands of the image. The
images were processed in QGIS (version 2.14), using the Semi-
Automatic Classification Plugin (Congedo 2016).

Models for estimating water quality parameters

For the determination of the statistical models, the water qual-
ity parameters and their logarithms were used as dependent
variables, and as independent variables were used values of
reflectance (individual band, combinations of bands, square
roots, reciprocals, square, cubic, powers, sums, subtractions,
logarithms, and band ratios) of the processed Landsat images.
The models were generated using the linear regression tech-
nique of successive steps, using Matlab version 2015. The
root mean square error (RMSE) and the determination coeffi-
cients (R2) were used to evaluate precision of the fit of the
regression model to water quality parameters.

Statistical analysis

The differences between the evaluated parameters in sampling
I and sampling II were evaluated statistically by Student’s t
tests (P < 0.05). Correlation analysis was performed using the

Pearson correlation coefficient (r), a coefficient that can have
values between − 1 and + 1, passing through zero. Values
close to − 1 indicate that the variables are inversely associated
strongly, while values close to + 1 indicate that the variables
have a strong direct relationship. Values close to zero are not
associated (Berthouex and Brown 2002). The Pearson corre-
lation coefficient formula is defined as follows (Eq. 1):

r ¼
∑n

i¼1 xi−x
� �

yi−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 xi−x
� �2

∑n
i¼1 yi−y

� �2
r ð1Þ

where, xi and yi are concentrations of different water quality
parameter; x̄ and are the mean concentrations of the water
quality parameters. It was considered that the parameters are
related when the level of significance is less than 0.05
(P < 0.05). The objective of the correlation analysis was to
identify if the parameters not optically active were related to
those that do are, and therefore to know the potential to be
evaluated through models generated from Landsat 8 images.

Results

On-site water quality results

In the autumn of 2014 and 2015, PO4 concentrations in the
bay water samples were higher than those recommended in
the Mexican ecological criteria of water quality for the protec-
tion of aquatic life in marine waters in coastal areas, PO4 =
0.002 mg/L (DOF 1989). The maximum, average and mini-
mum concentrations of PO4 were 0.27, 0.131, and 0.05 mg/L,
respectively (Table 1). In spring, the concentrations were also
higher than those recommended in the ecological criteria of
water quality. The maximum, average, and minimum concen-
trations of PO4 were 0.20, 0.08, and 0.05 mg/L, respectively
(Table 2). The concentration of PO4 presented a significant
difference (P < 0.05) in the samplings performed in autumn
and spring, showing higher concentrations in autumn. The
average concentrations of PO4 in autumn were 1.6 higher than
in spring. The average water temperature in autumn and
spring was 23.3 and 28.3 °C, respectively. In general, EC,
TSS, and water turbidity presented a similar attendance, with
values higher in spring than in autumn. Parameters that were
not evaluated were represented with ND in the cells of
Tables 1 and 2.

Correlation between water quality parameters

In December of 2014, there were no significant correlations
between the water quality parameters evaluated in the bay, a
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non-shaded region of Table 3. In the shaded region of Table 3,
the coefficients of correlation between parameters evaluated in
December 2015 are presented. In that month, significant cor-
relations were presented. The concentration of PO4 was cor-
related (P < 0.01) with T (n = 18), pH (n = 17), turbidity (n =
18), and TSS (n = 5). The pH of the water also presented
correlations with T (n = 17) (P < 0.01), turbidity (n = 17)
(P < 0.05) and TSS (n = 5) (P < 0.05), as well as with EC
(n = 17) (P < 0.01). The strongest correlations were presented
by TSS with pH (r = 0.958) and with PO4 (r = − 0.979). In
spring, different correlations were presented to those of au-
tumn (Table 4). In the unshaded region of Table 4, it can be
observed that in May of 2015, only pH and EC were correlat-
ed (n = 15), presenting a positive and significant correlation
(P < 0.01). In June of 2016, the shaded region of Table 4, the
water temperature presented positive correlations with turbid-
ity (n = 15) and with TSS (n = 13), while TSS was positively
related to turbidity (n = 13).

Water quality models

Through linear regression technique of successive steps, sat-
isfactory models were obtained to estimate PO4, EC, TSS,
turbidity, and pH in bay water. The generated models (P <

0.05), as well as the R2 and the RMSE are presented in
Table 5. In spring 2015 and 2016, the PO4 concentration pre-
sented R2 of 0.755 and 0.867, respectively, being significantly
related to bands B5, B6, and B7, in both years (Fig. 3). PO4 is
not an optically active molecule, so it cannot be measured
directly through optical instruments. However, because it
can be correlated with other water constituents which are op-
tically active (Gholizadeh et al. 2016; C. Wu et al. 2010), it
was possible to generate models to estimate their concentra-
tion in the bay. Nevertheless, in spring, PO4 did not present a
positive correlation with any of the parameters evaluated in
the bay. Probably, optically active parameters that were not
evaluated, and that could have presented correlation with
PO4, were responsible for the highR

2 of the generated models.
The concentration of TSS was related to bands B1, B2,

and B3 in May of 2015 and bands B5 and B6 in June of
2016, whereas in December of the same year, it was only
related to B6. Different authors have reported that reflec-
tivity in the range of 760 to 1100 nm plays an important
role in the characterization of TSS (Ma and Dai 2005;
Zheng et al. 2015). Also, TSS has been reported to be
related to bands B2, B3, and B8 (Zhang et al. 2015), co-
inciding with the relationships found in this research.
Turbidity was related to bands B2 and B4 in May of

Table 1 Average evaluation
results of water quality
parameters in Playa Colorada
Bay, in autumn 2014 and 2015

Station T (°C) PO4 (mg/L) TSS (mg/L) Turbidity (NTU) pH EC (mS/cm)

1 22.5 0.27 24.7 9.0 7.98 46.38

2 23.0 0.25 ND 7.7 8.30 54.78

3 22.8 0.24 28.6 6.5 8.02 46.75

4 22.4 0.24 24.6 7.2 8.00 42.05

5 22.4 0.20 40.9 7.2 8.03 46.53

6 22.7 0.17 ND 4.5 8.09 48.13

7 23.2 0.10 57.9 5.1 8.08 49.52

8 22.9 0.13 ND 3.8 8.14 47.39

9 ND ND ND ND ND ND

10 22.9 0.06 ND 3.8 8.35 51.52

11 23.6 0.10 ND 7.7 8.24 49.41

12 24.1 0.08 ND ND 8.10 50.74

13 23.8 0.13 ND 3.1 8.11 48.27

14 ND ND ND ND ND ND

15 24.5 0.10 ND ND 7.99 49.38

16 23.4 0.11 ND 7.0 8.41 47.56

17 23.1 0.08 ND 4.6 8.37 48.95

18 23.4 0.10 ND 1.2 8.18 48.89

19 23.2 0.09 ND 3.2 8.39 51.61

20 23.5 0.06 ND 2.3 8.23 49.94

21 24.4 0.05 ND 4.7 8.40 49.73

22 ND ND ND ND ND ND

23 24.2 0.08 ND 4.9 8.23 52.06

ND no data
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2015, with B3, B4, B5, and B6 in June 2016. While in
December 2015, it was related to bands B1, B4, B5, and
B6. Previous studies indicate that turbid waters have high
reflectance in bands B4 and B5 (Kumar et al. 2016;
Khattab and Merkel 2013; Wu et al. 2009), being in line
with what was found in the present investigation.
However, it was also related to other bands, which may
be because water of the bay presented a great variability
in the composition of its constituents, presenting turbid
waters in the north part and little turbid or transparent in
the south part. TSS was associated with bands B1, B2, and
B3 in May 2015, with B5 and B6 in June 2016, and with

B6 in December 2015. Considering that TSS may be as-
sociated with the presence of phytoplankton in the bay,
the bands that would relate would be B4 and B5 bands;
however, as well as turbidity, the variability of water com-
position causes it to be related to other bands of the elec-
tromagnetic spectrum (Yacobi et al. 2011); Bands B2 and
B3 generally yield good results when estimating chloro-
phyll a (Yunus et al. 2015). EC was associated with bands
B1 and B5 in May 2015 with B1, B2, B3, B5, and B6 in
June 2016 and with B1, B3, B6, and B7 in December 2015.
The increase in water salinity causes changes in the
amount of reflected radiation in the visible and infrared

Table 2 Average evaluation
results of water quality
parameters in Playa Colorada
Bay, in spring 2015 and 2016

Station T (°C) PO4 (mg/L) TSS (mg/L) Turbidity (NTU) pH EC (mS/cm)

1 27.70 ND 60.70 9.1 7.87 50.01

2 27.55 0.07 58.70 8.2 7.95 51.82

3 27.75 0.06 60.30 7.8 7.90 50.63

4 29.60 0.07 49.40 4.7 7.53 52.61

5 28.55 0.09 50.47 2.2 7.79 45.09

6 28.05 0.07 34.64 7.3 7.88 50.04

7 28.90 0.11 51.52 4.3 7.84 50.27

8 29.10 0.05 45.40 5.7 7.72 53.90

9 27.10 0.07 40.00 6.4 8.19 50.02

10 ND ND ND ND ND ND

11 30.40 0.10 ND 7.0 7.67 54.29

12 28.50 0.06 ND 2.7 8.15 51.54

13 28.70 0.08 41.48 9.3 7.95 51.63

14 27.40 0.12 47.35 34.7 8.16 48.15

15 28.70 0.07 134.55 64.5 8.17 51.12

16 29.35 0.07 58.80 17.0 7.95 53.00

17 28.90 0.09 40.60 8.4 7.94 52.65

18 26.70 0.07 53.33 ND 8.17 51.75

19 28.80 0.08 37.80 2.6 7.82 52.39

20 27.60 0.11 47.10 1.7 8.17 52.07

21 29.40 0.06 41.40 4.7 7.78 53.13

22 26.70 0.11 ND ND 8.11 52.01

23 27.75 ND ND 1.1 7.95 52.37

ND no data

Table 3 Linear correlation of water quality parameters. The unshaded data correspond to autumn, December of 2014 and the shaded ones to December
of 2015

T EC pH PO4 Turbidity TSS

T 1 0.263 0.140 0.697 ND ND

EC 0.439 1 0.591 -0.205 ND ND

pH 0.672** 0.664** 1 -0.391 ND ND

PO4 -0.613** -0.386 -0.790** 1 ND ND

Turbidity -0.157 -0.237 -0.494* 0.656** 1 ND

TSS 0.561 0.553 0.958* -0.979** -0.772 1
ND no data

*The correlation is significant at 0.05

**The correlation is significant at the level 0.01
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spectrum bands (Khattab and Merkel 2013; Theologou
et al. 2015). Regarding pH, it was related to bands B1,
B3, B4, and B5 in May 2015 with R2 of 0.637, being the
lowest relation between water quality parameters and
spectral bands. In June of 2016, it was related to B2, B3,
and B5 and in December 2015, with B1 and B5. pH is the
negative logarithm of H+ ion concentration and has been
associated with short wave infrared bands (Theologou
et al. 2015).

Spatial distribution of water quality parameters

The application of the generated models to the satellite
images is allowed to generate maps of spatial variation
of PO4, EC, TSS, turbidity, and pH in Playa Colorada
Bay (Fig. 3). The highest concentrations of PO4 occur in

the areas closest to the coast, mainly in the northeastern
part of the bay and in their tributaries. The highest con-
centration of PO4 was presented in December of 2015,
evidencing the contribution of PO4 from the agricultural
drainage systems to the bay, as described by González-
Márquez et al. (2014). In May of 2015, the TSS concen-
tration also showed higher values in the northeast part of
the bay, with concentrations higher than 100 mg/L. In
December of the same year, the concentrations of TSS
were less than 40 mg/L. However, in June of 2016, con-
centrations between 60 and 100 mg/L of TSS were pres-
ent in the northeast part of the bay. The turbidity of the
water also presented murkier waters in the northeast part
of the bay. In May of 2015, the highest values of turbidity
were presented and in July, they presented clearer waters,
with turbidity values lower than 25 NTU in most of the

Table 5 Models for estimating water quality parameters, generated from Landsat 8 images

Parameters and equations R2 RMSE

Spring of 2015

Log PO4ð Þ ¼ −0:95224þ 0:00010714* 1
B52

� �� �
þ −0:0000018412* 1

B63

� �� �
þ 0:000000000090663* 1

B75

� �� �
0.755 0.060

TSS = 45.209 + 7.5403 ∗ ((B1 −B3)/(B1 −B2)) 0.818 13.600

Log(Turbidity + 15) = 1.4562 + 42.333 ∗ (B4 −B2) + 1527.6 ∗ (B4 −B2)2 0.784 0.108

pH= 8.1391 + 5.698 ∗ (B1 −B4) − 0.3226 ∗ ((B1 −B3)/(B1 −B5)) 0.637 0.038

EC ¼ 62:856−0:77356* 1
B1

� �þ 0:0014973* 1
B52

� �
0.694 2.130

Autumn of 2015

Log PO4ð Þ ¼ −0:64983−0:00000000000025586* 1
B57

� �
0.660 0.159

TSS = 276.44 − 18960 ∗B6 0.955 3.480

Log (Turbidity) = − 10.399 + 78.55 ∗ (B4 + B5) + 12.37 ∗ ((B1 −B6)/(B1 + B4)) 0.777 0.110

pH ¼ 7:4059þ 0:25376* B1
B5

� �
0.947 0.037

EC = − 682.74 + 1399.7 ∗B1 − 484.9 ∗B3 + 57161 ∗B6 + 59602 ∗B7 − 5079300 ∗B6 ∗B7 0.849 1.250

Spring of 2016

Log(PO4) = − 14.383 + 107.32 ∗ Log(B5) − 36.249 ∗ Log(B6) − 82.972 ∗ Log(B7) + 33.252 ∗ (Log(B5))2 − 34.867 ∗ (Log(B7))2 0.867 0.063

Log(TSS) = 5.7888 + (15.864 ∗ Log(B5)) + (−9.6808 ∗ Log(B6)) + (5.1006 ∗ (Log(B5)) ^ 2) + (−2.8631 ∗ (Log(B6)) ^ 2) 0.853 0.029

Log(Turbidity + 15) = 1.1093 + 8.6654 ∗B3 − 5.3409 ∗B4 + 18.239 ∗B5 − 21.055 ∗B6 0.778 0.025

pH= 8.4392 + 2.2981 ∗ Log(B2) − 1.3567 ∗ Log(B3) − 0.37299 ∗ Log(B5) 0.884 0.033

EC = 52.412 + 157.56 ∗ (B1 −B2) + 0.0044809 ∗ (1/(B1 −B3)) − 0.36922 ∗ ((B1 −B6)/(B1 −B3)) − 2.2498 ∗ ((B2 −B3)/(B2 −B5)) 0.884 0.445

Table 4 Linear correlation of water quality parameters. The unshaded data correspond to spring, May of 2015 and the shaded ones to June of 2016

T EC pH PO4 Turbidity TSS

T 1 0.123 0.178 0.125 0.484 0.418

EC 0.061 1 0.726** 0.216 0.096 0.129

pH -0.288 0.331 1 0.305 0.403 0.045

PO4 0.418 0.124 -0.142 1 0.084 0.154

Turbidity 0.599* 0.175 -0.254 0.007 1 0.441

TSS 0.807** -0.136 -0.259 -0.114 0.748** 1
*The correlation is significant at 0.05

**The correlation is significant at the level 0.01
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water mirror. The pH had the lowest values in May 2015
and June 2016, while the EC presented an inverse behav-
ior, with lower values in December 2015.

Discussion

Water quality

Anthropogenic activities in the area of influence of Playa
Colorada Bay generate wastewater which is discharged in
the bay without previous treatment, affecting the quality of
its water. The results of the present study coincide with those
reported on the higher concentrations of PO4 in autumn than
in the spring (P < 0.05), which were reported by González-
Márquez et al. (2014), evidencing the effect of wastewater
from the agricultural sector on the water quality of the bay.
In the spring sampling campaigns of 2015 and 2016, the
shrimp harvest on aquaculture farms had already begun.
During that time, discharges of untreated aquaculture and do-
mestic wastewater, located in the bay basin, appear to be the
main sources of PO4, since there is no input of residual water
from agriculture. Eighty-eight and 92% of the samples ana-
lyzed in autumn and spring, respectively, presented concen-
trations higher than the problematic value of phosphorus
(0.02 mg/L) for eutrophication of receiving water bodies pro-
posed by (Correll 1998); the highly unacceptable concentra-
tion of 0.1 mg/L was not exceeded in the autumn or spring.
From the evaluated on-site results, it is observed that in au-
tumn of 2015 the PO4 concentration tended to decrease as a
function of the latitude of the sampling stations, indicating a
possible dilution effect and/or assimilation of the compound
during its stay in the bay. In spring, the average PO4 concen-
tration did not show a tendency to decrease or increase with
respect to the location of the sampling stations. This could be
explained by the absence of agricultural wastewater inputs to
the bay in spring, and therefore, lower PO4 loads in the tribu-
taries, as well as lower phosphate concentrations at sea (Fig. 3)
that favored the dilution process in the bay. The highest con-
centrations of TSS and the highest values of turbidity were
present in the sampling stations closest to the tributaries of the
bay, as well as the lowest values of pH and EC.

Correlation analysis

In December 2014, there were no significant correlations be-
tween the evaluated water quality parameters, may be due to
the small number of characterized sampling sites (n = 7).
Unlike what has been reported in the literature (Uusitalo

et al. 2000), where it has been found that TSS is not related
to PO4, in this study, the concentrations of PO4 evaluated in
December of 2015 had a strong negative relation with the
concentration of TSS (Table 3). This relationship can be ex-
plained if the TSS were constituted mainly by phytoplankton,
since PO4 could be incorporated by the latter (Sosa-Avalos
et al. 2013) or by dilution of PO4 in the bay, as described
above. Turbidity is a measure of the clarity of water. The
decrease in clarity or increase in turbidity is usually caused
by suspended or dissolved solids or particles, which cause the
dispersion and absorption of light in the water column.
Turbidity presented a significant positive correlation with
PO4 (P < 0.01), as well as a negative relation with pH
(P < 0.05); this can be explained by the influence of the fresh-
water currents of the agricultural drainage systems that dis-
charge in the bay, which influence the concentration of dis-
solved and suspended solids, affecting the clarity of the water
of the bay and favoring the concentration of PO4. The stations
with the highest turbidity and lower pH are located in the
vicinity of the tributaries of the bay, in the northern part, while
in the stations closer to the sea, in the southern part, there was
lower turbidity and higher pH. TSS showed a negative relation
with turbidity (r = − 0.772); however, it was not significant
(P = 0.12), may be due to the small number of TSS samples
analyzed. Considering that turbidity was negatively correlated
with pH and positively with PO4, as well as in most of the bay,
the PO4 concentration is high, mainly in the tributaries, where-
as the TSS have an inverse behavior; these correlations could
support the assumption that TSS were constituted mainly by
phytoplankton. As in continental and coastal waters, which
are generally turbid and productive, the concentration of
non-algal particles or solids is not related to the concentration
of phytoplankton (Yacobi et al. 2011). Therefore, the turbidity
may be controlled mainly by suspended or dissolved solids
less than 1.5 μm, which were not retained in the filters for TSS
analysis. In spring 2016, TSS and turbidity once again showed
a strong correlation; however, this time, it was positive and
significant (P < 0.01). This could be because in spring, a larger
number of sampling stations (n = 13) were evaluated than in
autumn, since from late May shrimp farms discharge waste-
water with high concentrations of TSS to the bay. Results are
consistent with those reported in the literature (Pavelsky and
Smith 2009), where it has been suggested that TSS is the main
factor controlling water clarity.

Water quality models

The water quality models generated in this study show the
viability of Landsat 8 images application in the characterization
of PO4, EC, TSS, turbidity, and pH in Playa Colorada Bay.
Models allowed the estimation of water quality parameters dis-
tribution over the whole bay instead of only at the sampling
stations, favoring a better understanding of their spatial

�Fig. 3 Concentrations of water quality parameters, estimated through
models generated from Landsat 8 images (Left: in May 2015; Center:
December 2015; Right: June 2016)
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distribution. The reflectance of the spectral bands of Landsat 8
images and water quality parameters showed relatively high
correlations (R2 ranging between 0.637 and 0.955). Models
presented in Table 5 showed satisfactory results according to
the RMSE and R2. TSS presented the highest R2 value, while
pH presented the lowest value, but these results show the via-
bility of these types of models, mainly in the estimation of

water constituents which are optically active. Even when
TSS, an optically active component in water, did not present
correlations with all not optically active parameters, it was pos-
sible to obtain satisfactory models, since such parameters could
have been related to optically active parameters that were not
evaluated in this study, such as chlorophyll a and color of
dissolved organic matter (Li et al. 2017). Figure 4 shows

Fig. 4 Parameters measured on-site versus estimated using Landsat 8 images (Left: in May 2015; Center: December 2015; Right: June 2016)
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graphically the relationship between water quality parameters
estimated through the models and the results evaluated on-site.
The seven bands of Landsat 8 contributed to the generation of
water quality models. From the simplest models, PO4 and TSS
generated for autumn of 2015, which were generated with a
single band to more complex models such as EC in the spring
of 2016. However, the models generated in the present study
differ from reported models in the literature (El Saadi et al.
2014; Khattab andMerkel 2013; Lim and Choi 2015), showing
the need for a recurring parameterization and calibration due to
the changing nature of the components of coastal waters
(Yacobi et al. 2011). This is one of the main disadvantages of
empirical models (Chang et al. 2014).

Conclusions

Agricultural, aquaculture, and domestic activities in the area
of influence of Playa Colorada Bay discharge wastewater to
the bay without previous treatment affecting its water quality
and environmental health. Between autumn and spring, the
concentration of PO4 presented a significant difference
(P < 0.05). The average concentrations of PO4 in autumnwere
1.6 times higher than in spring, showing the negative effect of
agricultural effluents in the bay. PO4 exceeds the recommen-
dations established by the Mexican Ecological Criteria of wa-
ter quality in most of the bay, which represents a potential
negative impact on aquatic life.

The diminution in clarity or increase in turbidity is usually
caused by suspended or dissolved solids or particles, which
cause the dispersion and absorption of light in the water col-
umn. Turbidity presented a significant positive correlation
with PO4 (P < 0.01), as well as a negative relation with pH
(P < 0.05); this can be explained by the influence of the fresh-
water currents of the agricultural drainage systems
discharging in the bay, which influence the concentration of
dissolved and suspended solids, affecting the water clarity of
the bay and favoring the concentration of PO4.

The estimation of water quality parameters through satellite
remote sensing techniques can complement and improve tra-
ditional methods of water characterization. The water quality
models generated from Landsat 8 images and concentrations
of PO4, EC, TSS, turbidity, and pH evaluated presented coef-
ficients of determination ranging from 0.637 to 0.955, show-
ing their potential in the estimation of water quality parame-
ters in Playa Colorada Bay, mainly in the estimation of water
constituents which are optically active. However, the models
generated in this study were different in each of the evaluated
seasons and differ from reported models in the literature,
showing the need for a recurring parameterization and calibra-
tion due to the changing nature of the components of coastal
waters.

Unlike the results obtained with the traditional methods,
through the results generated with the models, more detailed
patterns of the distribution of water quality parameters
throughout the bay can be identified. Models allowed the es-
timation of the value of water quality parameters over the
whole bay instead of only at the sampling stations.

The implementation of a traditional monitoring system,
complemented with the application of satellite remote sensing
for the estimation of parameters of water quality, could facil-
itate the environmental, economic, and social management of
Playa Colorada Bay.
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