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Abstract Many geology, mining, and geotechnical applica-
tions require or depend upon some form of modeling of bed-
rock topography. Optimizing the manner with which bedrock
topography is modeled poses a significant challenge because
of the unpredictable or erratic presentation of the surface
shape of bedrock. Unlike surface topography, bedrock topog-
raphy is more difficult to determine because direct observation
points are often not readily or directly accessible, unless the
bedrock outcrops at the surface and is exposed, a relatively
rare occurrence. When bedrock is covered by granular de-
posits, the only methods that allow practitioners to objectively
establish the location of the top of the bedrock are to drill
boreholes or conduct geophysical surveys. This makes the
determination of bedrock topography not only difficult but
also expensive. This study proposes a new approach for opti-
mizing the modeling of complex bedrock topography, whose
originality is based on the addition of “virtual” data points
derived from cross-sections located between known bore-
holes. The proposed methodology is thus composed of four
steps: gathering the maximum amount of relevant surface and
subsurface data (from observation points), selecting the most
appropriate technique for interpolating the observed bedrock
elevations that will be entered into the dataset to be modeled,
enriching the quantity of modeling data by adding “virtual”
data elements based on geological interpretations of cross-
sections (inserted into the model alongside the original objec-
tive data), and finally the modeling itself. The proposed
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approach is illustrated using data from a study area located
in the Canadian Shield. Thousands of borehole records and
surficial geological data as well as geological cross-section
records were integrated to construct a three-dimensional bed-
rock topography model. The new proposed methodology can
be applied to other regions worldwide.
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Introduction

Modeling the geometry of geological formations is relevant
for a variety of applications: mineral exploration (Paulen and
McClenaghan 2003) groundwater resource assessment
(Carmichael and Henry 1977) and geotechnical investigations
(Elmahdy et al. 2010), among others. The bedrock forms the
base of all geologic deposit environments. When the bedrock
does not outcrop at the surface, knowledge of'its topography is
of crucial interest when assessing the thickness of the overlay-
ing deposits. Modeling the topography of the bedrock when it
does not outcrop at the surface is a challenge. Knowledge of
the bedrock location is provided either by borehole observa-
tions that require drilling operations (invasive prospection) or
by non-invasive geophysical measurements (Ugwu and Eze
2009; Farinotti et al. 2014; Tremblay Simard et al. 2015).
Usually, only a limited number of observation points of the
bedrock elevation are available at a regional scale. The obser-
vation points consist of boreholes, outcrops, and occasionally
geophysical observations. The ability to determine an appro-
priate methodology for interpolating the bedrock elevation
that exists between these observation points is the key factor
for establishing a suitably representative layout of the bedrock
topography. The observation data points available to the
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modeler are obtained either from visual observations when the
bedrock outcrops at the surface or from borehole observations
when the bedrock is covered by granular deposits (Van
Hoesen 2014). These borehole observations may come from
groundwater well logs, exploration borehole logs, or geotech-
nical drilling logs. The critical question to be asked by the
modeler is if the number and distribution of observation points
are sufficient to allow a precise and accurate interpolation of
the data. The key factors required for a successful (sufficiently
representative and accurate) model of bedrock topography are
the quantity (or density) of observation points and their
distribution.

The root mean square error (RMS, Eq. 1) is the most fre-
quently used indicator to assess modeling quality in terms of
both accuracy and precision (MacCormack et al. 2011;
Zimmerman et al. 1999; Jones et al. 2003; Wise 2000). As
shown in Eq. 1, the RMS parameter corresponds to the mean
of the differences between the observed and interpolated
values (of the bedrock elevation in the case of our study).
The RMS value consequently indicates the reliability of the
model to represent reality. The lower the RMS, the higher the
quality of the model; a lower value of RMS indicates a better
reliability of the model in terms of accuracy and precision.
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Thus, the quality of an interpolation depends first and fore-
most upon the quality of the initial dataset in terms of density
and spatial distribution of the observation points (Carter 1992;
Chang and Tsai 1991). Figure | represents and allows us to
visualize the resolution quality of the interpolation (accuracy)
that can be obtained depending on the dataset properties:
quantity of data (“low vs. high™) and spatial distribution type
(regular, random, or clustered). The modeling accuracy is rep-
resented by the size of the triangles in Fig. 1, which shows that
a large dataset with a regular distribution of observation points
makes it possible to reach a greater degree of modeling accu-
racy (larger size of the triangles in Fig. 1). Conversely, a
smaller dataset with a clustered distribution yields a lesser
degree of modeling accuracy (smaller size of the triangles in
Fig. 1). Interpolation accuracy and consequently modeling
quality also depend on variations in elevation of the bedrock
that is being modeled. A flat area will be modeled more accu-
rately than an area of more complex elevations (composed of
marked valleys and peaks). Figure 1 also illustrates these dif-
ferences and their impacts on the expected relative accuracy of
the model, with Fig. la corresponding to a simple bedrock
surface and Fig. 1b corresponding to a complex bedrock sur-
face. For both types of surfaces, the more regular the spatial
distribution of the data, the higher the accuracy of the interpo-
lated model. As the relief increases in complexity, the quality
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of the spatial distribution of data becomes more critical in
order to obtain a good quality model. Figure 1b shows that a
complex surface cannot be satisfyingly modeled from source
data that are strongly clustered (note the absence of a triangle
in the lower part of the figure), independently of the quantity
of data contained in the dataset.

The quality of the interpolated result also depends on the
chosen interpolation algorithm (Chaplot et al. 2006). When
the dataset is of good quality, (regular distribution and high
density), this choice is less critical and will have limited im-
pact on the overall quality of the results (Carrara et al. 1997).
Several authors have shown that the ordinary kriging (OK)
interpolation method and the inverse distance weighting
(IDW) interpolation method both yield the best results for
modeling geological formations (Darsow et al. 2009;
Slattery et al. 2011; Van Hoesen 2014). Other works have
led to the same conclusion (Chaplot et al. 2006; Wise 2000)
when comparing different interpolation methods for modeling
surface topography and producing a digital elevation model
(DEM). The same could be expected when modeling bedrock
topography, considering that bedrock topography has a behav-
ior similar to that of the DEM. The DEM is normally con-
trolled by the topography of the bedrock when the thickness of
the deposits is slight. In the case of complex surfaces, model-
ing the topography of bedrock is more challenging and accu-
racy strongly depends on the interpolation method.

This study proposes to develop a methodology for model-
ing the topography of bedrock. We first compared the accura-
cy of the results yielded by different interpolation methods, by
means of a challenging case study in which the most critical
conditions were presented—a complex bedrock topography
combined with a low-quality dataset. The proposed method-
ology could then be used in other similar contexts worldwide.

We determined a sub-region (called test area) used to cali-
brate the chosen interpolation method, based on both density
and distribution of data (observation points). Once the best
interpolation had been selected, it was applied to the entire
study region. In order to improve modeling accuracy, we pro-
pose a technique that makes it possible to produce more ob-
servation points. Using existing geological cross-sections, we
generated what we call “virtual observation points” (issuing
from virtual boreholes). Finally, the regional topography of
bedrock was validated using a dataset of boreholes that do
not reach the bedrock (but that provide known minimal depth
values).

Study case

The bedrock to be modeled is composed of crystalline rocks in
the Canadian Shield. Figure 1b shows the type of bedrock
topography that was targeted. Because the surface is complex,
it is interesting to develop a modeling approach that first
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Fig.1 Relationship between type
of surface, type of data
distribution and number of data
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quality of interpolation results,
i.e., the accuracy of the bedrock
topography model (RMS value
root mean square value) N

High accuracy
(low RMS value)

Low accuracy

(high RMS value)

Regular
|

Smooth surface

Complex surface

4 A

A
E v A A
5 A

g A A

A A

S Ea A A Ao

; Y N W WS |
| T Y
"

Low High >| Low High>
Number of Data Points 1 Number of Data Points
(a) ! (b)

includes a trial of different methods of interpolation and an
assessment of their accuracy, in order to recommend the most
efficient of these methods before going forward. To perform
this comparative test between interpolation methods, it was
necessary to carefully select a study area which offered a large
number of observation/controlling points of the bedrock to-
pography. These points could be either a large density of bore-
holes or a widespread area where the bedrock outcrops at the
surface and can be directly observed. Considering the cost of
drilling, areas with a high density of boreholes are rare; areas
of widespread outcrops are easier to find, relatively speaking.
Access to a specific area with known or observable elevations
of the bedrock makes it possible to better test and calibrate an
interpolation method requiring a large number of observation
points. It is then possible to better calculate the RMS values
(Eq. 1) which are considered indicators of interpolation accu-
racy and ultimately, indicators of the quality of the proposed
bedrock topography model.

This study will focus on a representative bedrock located in
the province of Quebec in Canada in the Saguenay-Lac-St.-
Jean (SLSJ) region, where the Precambrian crystalline rocks
are part of the Grenville Province within the Canadian Shield

(Fig. 2). The crystalline rocks of the Canadian Shield are
mainly composed of three families: anorthosite/granite/sye-
nite-migmatite-gneiss. The Kenogami uplands is a fractured
bedrock composed of anorthosite (Fig. 3), which is a
phanerozoic-aged structure in meridional Quebec (south of
the 52nd parallel). The Kenogami upland structure consists
of a 600-km? rock plateau bounded by the Saguenay River
to the North and the Kenogami Lake to the South. Its eastern
and western borders are marked by a sharp topographical
transition to the plain (Fig. 2). Its surface undulates at eleva-
tions ranging from 150 to 200 masl, whereas the surrounding
lower plain varies between 50 and 150 masl. The area pre-
dominantly presents exposed bedrock at the surface with a
complex topography type as targeted for this study (Fig. 2).
Much of the Kenogami uplands is covered by a thin and min-
imal soil cover over the Precambrian crystalline anorthosite
(Chesnaux 2013), with many outcrops distributed throughout
the area. As explained in more detail below, the Kenogami
uplands area of the SLSJ region will first be used as an exper-
imental area to determine the best interpolation method, be-
cause the topography of this sub-area is well known. Once the
most appropriate interpolation method has been selected, it
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Fig. 2 Study area (Saguenay-Lac-St-Jean region) and test area (Kenogami uplands) locations and topography (digital elevation model, DEM).
Crystalline rock aquifer of the Kenogami uplands in the province of Quebec, Canada (modified from Chesnaux 2013)

will be applied to the entire SLSJ region (13,210 km?) to
model the topography of the bedrock on a larger, regional
scale (Fig. 2).

During a previous hydrogeological characterization project
of this region (Chesnaux et al. 2011), a spatial database for the
Saguenay-Lac-St-Jean region (Fig. 2) had been generated

Fig. 3 Outcrop of fractured crystalline bedrock (anorthosite) in the
Saguenay-Lac-St-Jean region located in Quebec, Canada (after
Chesnaux 2013)
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using ArcGIS. It was designed to provide relevant information
on aquifers and groundwater properties and was generated
using information from boreholes, among other sources of
hydrogeological information (Chesnaux et al. 2011). This da-
tabase was used for the present study. It contains stratigraphic
information derived from 7627 boreholes and 40,473 outcrops
providing surficial information (Fig. 4). Slightly more than
70% (5426) of the boreholes reach the top of the bedrock,
providing direct observation of the bedrock elevation. The
remaining boreholes are too shallow to reach the bedrock
(2201), but nevertheless provide a minimal depth value of
bedrock elevation (forcibly located below the bottom tip of
the borehole). The total amount of boreholes represents a den-
sity of less than 0.26 observation points per square kilometer
over the entire study area (SLSJ region), a territory where
deposits cover most of the total surface of the bedrock.
Moreover, approximately half the boreholes were drilled for
purposes of installing residential groundwater supply wells.
This introduces a bias in the distribution of the data, since
most of these residential wells are located along roads or wa-
terways (Fig. 4). The dataset is consequently of poor quality
since it offers a limited quantity of observation points that are
spatially distributed according to a random-clustered pattern.
Furthermore, considering that the bedrock topography is of a
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Fig. 4 Data points of bedrock elevation. a Boreholes reaching the bedrock (5426 observation points). b Boreholes not reaching the bedrock (2201

observation points). ¢ Outcrops (40,473 observation points). d Thin till

complex type corresponding to the case represented in Fig. 1b,
itis expected to produce a model of poor quality (of high RMS
value). This is precisely the type of situation where the choice
of interpolation algorithm becomes a critical decision that will
exert significant impact on the quality of the modeling
(Chaplot et al. 2006).

Methodology

The proposed methodology for generating a model of the
bedrock topography in a study area (SLSJ region in the illus-
trated case) is composed of four main steps: (1) gathering the
maximum amount of available and relevant data; (2) deter-
mining which of three different algorithms (ordinary kriging
(OK), inverse distance weighting (IDW), and triangulated ir-
regular network (TIN)) is the most appropriate interpolation
method by comparing their performance on a test area
(Kenogami uplands) contained within the wider region (study
area) where the topography of the bedrock is to be modeled
(Fig. 2); (3) using outcrop data and geological cross-sections
to enlarge the pool of observed data in the study area (by
creating “virtual” borehole data points) and to increase model-
ing quality; and (4) applying the selected interpolating method

to model the bedrock topography of the study area (SLSJ
region) and validating the model.

Note that this study was entirely conducted using ESRI’s
Geographical Information System ArcGIS version 10.2.

Selecting the interpolation algorithm
Selecting a test area

The bedrock of the Canadian Shield presents a highly irregular
surface composed of successive peaks and valleys, qualifying
it as a complex surface for modeling. Figure 1 shows that
modeling such a complex surface would normally require a
dataset of numerous and well-distributed observation points.
In the case of the SLSJ region, the available hydrogeological
database provides scarce data on bedrock elevations.
Furthermore, the distribution of this information is clustered
rather than regularly distributed. As a consequence, any inter-
polation results are expected to be of poor quality. To counter
this, the choice of interpolation algorithm can be critical and
will exert a significant impact on the modeling results.

We identified the area of the Kenogami uplands (Fig. 2) as
an appropriate test area with a topography controlled by bed-
rock, i.e., an area where the bedrock is mainly outcropping or
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covered by only a thin layer of deposits. In other words, the
bedrock topography is reflected relatively accurately by the
topsoil topography, as represented by the DEM. We may thus
assume that the bedrock topography is well known in the
selected test area. A series of datasets that represent different
configurations of data density and distribution can be gener-
ated from the DEM (Fig. 5).

Following dataset generation, the different interpolation
algorithms can be applied to each of these datasets. Each of
the models thus produced can then be compared against the
DEM to assess the RMS values and ultimately identify the
interpolation approach that produced a model closest in accu-
racy compared to the test area (Fig. 5).

Creating datasets for the test area

Ten datasets with two different spatial distributions of data
points of the bedrock’s top elevation and with different quan-
tities of data points were randomly extracted from the DEM
(Fig. 5). Five datasets with a random distribution (Fig. 5a)
were chosen and five additional datasets with a clustered dis-
tribution (Fig. 5b) were chosen. The datasets belonging to a
same spatial distribution type differed according to the quan-
tity of data points (observation points) and they contained the
following: 50, 100, 500, 1245, and 3376 points in both
random- and clustered-distribution dataset groups. These
quantities correspond respectively to data densities of 0.08,
0.17,0.8,2.1, and 5.6 observation points per square kilometer.
The five random-distribution datasets (Fig. 5a) were created
by means of the Create Random Point tool in ArcGIS, where-
as the five clustered-distribution datasets (Fig. 5b) were creat-
ed by means of the Create Random Selection tool that ran-
domly selects observation points in ArcGIS.

Random distribution datasets

(a)

# of data points 50

Clustered distribution datasets

(b)

# of data points 50

Testing process of the different interpolation methods

Thirty different test models were generated using the 10
datasets (5 random, 5 clustered) and the 3 interpolation
methods (TIN, IDW, OK). In order to assess their accura-
cy, each one of the 30 models was compared against what
we called the validation dataset. The validation dataset
was composed of 1000 observation points that were ran-
domly extracted from the DEM (which has a 10-m, grid-
spaced resolution) of the study area (Fig. 6) using the
Create Random Point tool available in ArcGIS. For the
validation, we compared the same 1000 points of the
DEM and of each of the 30 models. This validation pro-
cess is presented in Fig. 7. For each of the 30 models, an
RMS value was generated (representing the average of the
differences between elevations of the model and of the
DEM for each of the 1000 observation points). It should
be remembered that the DEM of the test area is assumed
to be accurately representative of the bedrock topography,
which in this area is either outcropping or covered by a
thin (of negligible thickness) layer of deposit. The lower
the RMS value of a model (or the lower the differences
between the modeled elevations and the observed eleva-
tions), the better the accuracy of the model in representing
reality. Therefore by comparing RMS values, it is possible
to select the best interpolation method (lowest RMS
values) for both the random and the clustered distribution
of data. Figure 7 summarizes the entire process described
above, which was designed to select the best interpolation
method for modeling our chosen bedrock topography.
Note that the results of the interpolations are compared
against the DEM by using the ArcGIS tool called
Extract Values to Point available in the Spatial Analyst
extension of ArcGIS.

Fig. 5 Generating random (a) and clustered (b) datasets from the digital elevation model (DEM) for the test area (Kenogami uplands). The red dots
represent the observation points of the top of the bedrock provided by the DEM
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Fig. 6 Validation dataset created from the DEM for the test area
(Kenogami uplands). A total of 1000 observation points were extracted
from the DEM (red dots on the figure) and used to compare their real
elevations against the modeled elevations

The tested interpolation methods
Three different methods of interpolation are tested using the
datasets that have been previously described (Fig. 5). These

methods are applied using the algorithms available in ArcGIS
10.2. The tested interpolation algorithms are ordinary kriging

Tested dataset

[
Y Y DEM values
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0 o 1o,
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o 200 o
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200 [ 200 | 200 | 199

201|200 | 200( 199

The values 199, 200 and 201 are
examples of top of bedrock elevations

(OK), inverse distance weighting (IDW), and triangulated ir-
regular network (TIN).

OK is a probabilistic method based on statistics, used for
predicting and modeling surfaces. OK assigns a weight to the
observation points based on the degree of similarity between
these points, i.e., the covariance between the observation
points as a function of the distance between the points. OK
is executed using the analysis of a variogram and is used for
interpolating a stationary variable of unknown mean, but it
supposes that there exists a constant mean. In the framework
of this study, the same kriging parameters were used for each
dataset; these parameters were established using the 1000
points of the validation dataset. A spherical model of the
semi-variogram was chosen. The Searching Neighborhood
tool was applied from an ellipse with four sectors and the
minimum number of points was set at 2, whereas the maxi-
mum number of points was set at 5.

The IDW method of interpolation is deterministic. It allows
the interpolation of bedrock surface topography when consid-
ering the weighted average of neighboring observation points.
The weight of the observation points is determined as a func-
tion of the distance between the points. The greater the dis-
tance between two points, the lower the influence of the ob-
served values between these points. The IDW method can
sometimes generate a “bull’s eye” effect in the vicinity of
the observation points. In the present study, the IDW interpo-
lation was conducted by using a variable radius of influence
which included a minimum of 12 observation points.

Model
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Fig.7 Schematic diagram showing the interpolation testing algorithm used to calculate the RMS values, which are used to determine the accuracy of the

generated models. Note that the DEM grid definition is 10 x 10 m
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The TIN method is a vectorial structure used to represent a
surface model in which the observation points are linked to
each other by adjacent triangles which do not overlap
(Delaunay triangles). These triangles form a continuous sur-
face that in its entirety represents the surface topography of the
bedrock in our case. The TIN method is particular in that it
does not modify the observed input values (of the bedrock
elevation) following the application of the interpolation. The
TIN method is created from the 3D Analyst feature in ArcGIS
and is then transformed into a matricial format.

Note that all three interpolation methods were performed
using a 10-by-10 m resolution of the surface grids.

Increasing the quantity of “observed data points”:
observing outcrops and creating “virtual” boreholes

Once the best-suited interpolation method had been selected
for the test site, an additional step was taken to improve the
quality of the modeling, before applying the chosen interpo-
lation method to the entire study area in view of modeling its
bedrock topography. This intermediary step consists in in-
creasing the number of “indirectly” observed data points. It
should be remembered that different types of observation data
are used to model the bedrock topography. The relevant ob-
servation data are as follows: (1) bedrock elevations observed
in boreholes; (2) bedrock elevations observed at the surface
when the bedrock outcrops or is located under a thin layer of
deposits; (3) “virtual” bedrock elevations that are not directly
observed but are deduced from geological cross-sections (note
that such observations are artificially created); (4) non-
observed bedrock elevations (“bedrock deeper than” in bore-
holes that are not deep enough to reach the bedrock). In this
last case, such information is still relevant because it indicates
that the elevation of the bedrock is at least below the end of
the borehole. This pool of “deeper than” data was kept in
reserve for a late-stage validation of the final model that we
obtained for the entire SLSJ region, after application of the
chosen (best) interpolation method. The following paragraphs
describe in more detail the four abovementioned types of data
that are used in our approach to model the topography of the
bedrock.

Boreholes, outcrops, and thin deposits

The prime data for observing the locations of the top of the
bedrock are the boreholes and the outcrops. For the SLSJ
region, Fig. 4 shows the locations of these observation points
(9272 boreholes and 40,473 outcrops). The mapping of sur-
face deposits can also be useful to obtain more information
about the location of the bedrock in a given region. Zones of
minor deposit thickness are in fact zones of shallow bedrock.
In this study, when deposits are less than 1 m in thickness and
the bedrock was almost outcropping, it was considered to be
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outcropping. This assumption made it possible to consider-
ably increase the quantity of observation data on bedrock out-
crops used in this study. In order to define the zones of thin
deposit coverage (less than 1 m), the polygons on the map
defined as these deposits (on the surficial deposits map of
our database) are converted into a grid with a mesh of
100 m (Fig. 8). To each centroid of this grid is assigned a
value of the bedrock elevation which corresponds to the
DEM value at the center minus 1 m; that indicates that we
designated the rock as outcropping at these locations (Fig. 8).
Note that in the study region (SLSJ), the thin deposits (less
than 1 m) are represented by till formations (Fig. 4). Figure 8
illustrates an example of the grid that is obtained with the two
pools of data: real outcropping of the bedrock where the ele-
vation of the bedrock is defined by the DEM and top of bed-
rock locations that are 1 m below the DEM in presence of a
thin layer of till deposits.

“Virtual” boreholes generated from cross-sections

One original aspect of the proposed approach for modeling
bedrock topography consists in the use of geological cross-
sections (developed from the database) to generate new obser-
vation points that we called “virtual boreholes.” One hundred
thirty-four stratigraphic cross-sections were generated and
drawn based on the geological data available in the database
(Chesnaux et al. 2011). Some of this geological information is
derived from the stratigraphy observed in the boreholes.
Figure 9 shows the locations of these cross-sections. The
cross-sections were distributed according to a regular spatial
pattern to ensure a good coverage of the entire region. A
simplified stratigraphic model was developed comprising on-
ly 5 categories: sand, gravel, clay, till, and rock. The cross-
section lines (134 in total) each intercept several boreholes;
the simplified stratigraphy of each borehole is reproduced
along the lines. Based on this information, stratigraphic sec-
tions were produced based on a geological interpretation of a
geologist of our research team who interpolated the stratigra-
phy between the projected boreholes. The cross-sections are
georeferenced in a 3D environment and represented in what
are called barrier diagrams (Chesnaux et al. 2011). Once the
barrier diagrams are created, it becomes possible to extract the
estimated elevation values of the bedrock at regular distances
along the 134 cross-sections (in our study, every 500 m).
These extraction points have been made to represent observa-
tion points that do not physically exist but have been artifi-
cially created; these have been called “virtual” boreholes for
the purposes of this study. Each “virtual” borehole provides
stratigraphic information (in actual fact, provided by the cross-
section) including the elevation of the top of the bedrock.
Figure 10 shows an example of one of the 134 stratigraphic
cross-sections drawn in the SLSJ region. In this example, the
cross-section intercepts 4 real boreholes and 6 outcrops. Of
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Fig. 8 Grid showing the additional, virtual “top of bedrock” elevation points created from maps showing both the presence of thin deposits (less than
1 m in thickness) and the absence of deposits (outcrops)

these 4 real boreholes, it should be noted that only 2 intercept ~ of interest because they provide partial information on the
the bedrock; nevertheless, the remaining 2 boreholes are still ~  stratigraphy.
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Fig. 9 Distribution of the 134 cross-sections throughout the study area (SLSJ region)
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Fig. 10 View of real and virtual boreholes along an A-A’ cross-section. (a) Plan view. (b) Sectional view

In this manner 26 “virtual” boreholes (spaced 500 m apart)
were created from the stratigraphy that had been drawn from
real boreholes and outcrop observations. These new “virtual”
boreholes make it possible to significantly increase the quan-
tity of observation data indicating bedrock elevation.
“Virtual” boreholes also make it possible to improve the den-
sity of information as well as its spatial distribution. Indeed,
the resulting cross-section network covers certain areas of the
SLSJ region where very little stratigraphic information is
available (Fig. 4). Consequently, improved coverage of obser-
vation points on a regional scale may be expected to yield
significantly better results in the interpolated bedrock topog-
raphy model. Figure 11 shows the distribution of the 7304
“virtual” boreholes that were created from the 134 cross-
sections (on average, approximately 54 “virtual” boreholes
per cross-section).

Interpolation, modeling, and validation of the topography
of bedrock on a regional scale

After selecting the interpolation method and integrating addi-
tional virtual data into the complete dataset, the next steps of
the proposed methodology consist in executing the interpola-
tion of the observation points throughout the entire SLSJ

@ Springer

region, including all previously described observation points:
real and virtual boreholes, outcrops and thin deposits.
Figure 11 shows the locations of all of these types of data
points. The interpolation is executed by means of the most
appropriate interpolation method selected after the test inter-
polation done for the Kenogami uplands study area.

One possible type of validation, called cross-validation (not
conducted for this study), would consist in keeping aside a
portion of existing objective data points located in the study
area, separate from the data actually used for the interpolation.
After the model is generated, it can then be compared against
the data that was kept aside. RMS values calculated for the
data kept aside and for the model may be compared against
each other to assess the model’s accuracy.

Instead, we chose another type of validation process (using
the set of boreholes not reaching the bedrock), less quantita-
tive and more qualitative, which was deemed more appropri-
ate for the characteristics of the SLSJ region. The justification
for this decision lies with the clustered nature of data distribu-
tion in this case. Indeed, when data is clustered, the cross-
validation method will usually yield good RMS values in
any case, because the dataset used for verifying the model’s
accuracy is necessarily located in the same areas where the
interpolation is accurate, since the modeled data points and the
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Virtual boreholes along a cross-section (7,304)

Borehole reaching the bedrock (5,426)

Borehole not reaching the bedrock (2,201)

Outcrop (40,473)

Thin till (thickness less than 1 m)

Lake and river

Fig. 11 Complete set of data points of bedrock elevation, including real and virtual data

verification data points are forcibly located close to each other.
Clustered distribution thus introduces a bias in the cross-val-
idation, by yielding RMS values which would have been too
low and would not have provided a properly accurate assess-
ment of the model’s accuracy.

Instead, we used a new technique. A special set of data was
kept in reserve for purposes of validating the topography mod-
el of bedrock elevation. These data were derived from the
2201 boreholes in the study region that do not reach the bed-
rock (shown in Figs. 4 and 11). At these locations, the top of
the bedrock is deeper than the end of the borehole; in other
words, the top bedrock elevation is known to be located below
the borehole end elevation. This data set is considered to con-
tain objectively certain information; as such, it will be used to
assess by comparison the accuracy of the final model of bed-
rock topography of the SLSJ region. Figure 12 shows a con-
ceptual cross-section that helps to understand the validation
process of the topography model of the study area. A-type
boreholes are the boreholes that are known to reach the bed-
rock (5426 in total) and that were used to generate the model.
B and C types of boreholes are the “reserve pool of data” not
used to generate the model, but only used to validate the mod-
el after it was generated. These B and C boreholes (quantity of
2201 in total) are known to not reach the bedrock; therefore,
when the model showed a bedrock elevation higher than one

of these boreholes, then the model is known to be inaccurate at
the specific location of that borehole. In this figure, borehole C
appears deeper than the bedrock elevation as determined by
the model; thus, the model is inaccurate at that location.

B-type boreholes validate the model since they are located
not only above the observed bedrock but also above the
modeled bedrock. In ArcGIS, the ratio of B to C borehole
types will provide a qualitative assessment of the consistency
of the model in representing the real topography of the bed-
rock in the study region. The higher the number of B-type
boreholes relative to C-type boreholes (out of a total of 2201
boreholes not reaching the bedrock), the higher the degree of
consistency of the model.

Results

Selecting the best interpolation method by means of an
algorithm

Figures 13 and 14 present the bedrock topography modeling
results in the test area (Kenogami uplands) using the 3 inter-
polation methods that were tested IDW (b), OK (c), and TIN
(d)), and according to the number and density of data points of
the different datasets: 50, 100, 500, 1254, and 3376 data
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Fig. 12 Conceptual cross-section
showing how the “reserved” data
points (B and C) are used after

modeling to evaluate the model’s I
accuracy. Borehole B (in green) is
known to not reach bedrock; it
shows that the model is accurate at
that location because the borehole
ends above the model (dotted line).
Borehole C is known to not reach
bedrock but shows that the model
is inaccurate at that location
because the borehole extends
below the model

QOutcrop

points. Figure 13 presents the results for the random-
distribution cases whereas Fig. 14 presents the results for the
clustered-distribution cases. All these interpolation results can
be visually compared against the DEM of the test area, which
is also shown in Figs. 13(a) and 14(a).

Figure 15 shows the calculated RMS values for the five
different datasets (composed of 50, 100, 500, 1254, and

IDW

(b)

# of data points 50

(c) OK

# of data points 50

(d)

TIN

# of data points 50

—— Real top of bedrock
- = - Top of bedrock according to the model

A : Borehole known to reach bedrock
in dataset used to create the model

Ground surface

Actual bedrock

Random spatial distribution

B : Borehole known to NOT reach bedrock
in dataset used to validate the model;
confirms accuracy of model at that location

C:Borehole known to NOT reach bedrock
I in dataset used to validate the model;
confirms inaccuracy of model at that location

P il

Surficial deposits

X

3376 data points) for the three different interpolation methods
(IDW, OK, and TIN) and for both types of distributions, ran-
dom (Fig. 15a) and clustered (Fig. 15b). In general for both
random and clustered distribution, we observed the expected
increase in accuracy when the number of data points increased
(producing lower RMS values). However, it is interesting that
for both random and clustered distribution, the relationship

Top bedrock
elevation (m)

Il (14-100]
B 1700-150]
[ 1150-200]
[ 7200-250]
| 1250-310]

1,254 3,376

1,254

3,376

0 5 10Km
S —

Fig. 13 (a) Reality as represented by the DEM (used as a reference for comparison) and interpolation results obtained from the random datasets: (b)
using inverse distance weighting (/DW), (¢) using ordinary kriging (OK), and (d) using triangulated irregular network (7IN)
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(a) DEM
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# of data points 50 100
OK

(c)

# of data points 50 100
TIN

(d)

# of data points 50 100

Clustered spatial distribution

Top bedrock
elevation (m)
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500 1,254 3,376
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Fig. 14 (a) Reality as represented by the DEM (used as a reference for comparison) and interpolation results obtained from the clustered datasets: (b)
using inverse distance weighting (/DW), (¢) using ordinary kriging (OK), and (d) using triangulated irregular network (7IN)

between number of data points and accuracy is not linear. We
observed a marked improvement of RMS values from 50 to
100 data points, but when the number of data points was
higher than 100, the accuracy increased less markedly than
when going from 50 to 100 data points. This observation is
of interest when recommending a minimum density of infor-
mation required to produce a model of acceptable representa-
tivity (of acceptable RMS value). As mentioned previously,
100 data points over the surface of our test area equates to a
density of 0.17 data points per square km; this appears to be
the minimal density required (considering that according to
Fig. 15, the RMS values decrease more slowly above 100
data points) to obtain an acceptable degree of accuracy.
From this minimal threshold, increasing the number of data
points does not necessarily, significantly, or proportionally
improve a model’s RMS value.

When comparing random versus clustered distribution of
data points, we observed better (lower) values of RMS using
random distribution (ranging from 10 to 21 m, Fig. 15a) com-
pared to clustered distribution (ranging from 13 to 26 m). This
observation appears logical and was expected, considering
that a more regular distribution of the data points (random)

ensures a better coverage of the area to be interpolated. When
comparing the RMS values obtained from the three different
interpolation methods, the TIN method yielded the best results
for both clustered and random distribution and independently
of data density. Based on the results obtained for our test area,
the TIN method thus proved to be the most appropriate inter-
polation method for the SLSJ study area. The greater accuracy
of results obtained using the TIN method is even more pro-
nounced in cases of clustered data distribution. Indeed,
Fig. 15b with clustered distribution showed greater differ-
ences between TIN and the other two methods (IDW and
OK) than in the case of the random distribution in Fig. 15a.
For the test area, the gain in terms of RMS when using the TIN
method instead of IDW or OK varied between 0 and 3 m for
random distribution and from 3 to 5 m for clustered
distribution.

Based on all these observations, and because results
obtained in our test area favored the TIN interpolation
method, we concluded that when data distribution is clus-
tered such as in the SLSJ region, it is justified to prefer-
entially apply a TIN interpolation instead of IDW or OK
for more accurate results.
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Fig. 15 RMS results for each interpolation method, for a random-
distribution datasets and b clustered-distribution datasets

Generating and validating the bedrock topography model

After the TIN interpolation method was selected using the test
area, TIN was applied to interpolate the entire, wider study
area (the SLSJ region), using the complete set of all available
observation points: 5426 real boreholes reaching the bedrock;
40,473 outcrops; 217,508 elevation points of the bedrock cov-
ered by a thin layer of till (DEM minus 1 m); and 7304 addi-
tional “virtual” boreholes. A total of 270,711 observation
points were used for a surface area of 13,200 km?, which
equates to 20 observation points per square kilometer. This
density is high compared to 0.17 data points per square kilo-
meter that was used for the test area (previously established as
the minimal density required to obtain an acceptable degree of
accuracy). With 20 observation points per square kilometer
instead of 0.17, we may expect to obtain a much more accu-
rate model of bedrock topography, in particular because the
virtual boreholes provide data points that are regularly distrib-
uted instead of clustered. The resulting bedrock topography
model is presented in Fig. 16 (in 3D). The gain in accuracy is
quantified in “Quantifying the impact of virtual boreholes.”. It
should be recalled that the resulting model still contains the
uncertainties inherent to the data that were used to construct
the DEM.

The next step was to validate the resulting model against
the “reserved” pool of data comprised of 2201 boreholes that
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are known to not reach the top of bedrock (see the locations of
these boreholes in Fig. 4). Figure 17 shows the validation of
the topography model of the SLSJ region using these 2201
boreholes. In a first instance, Fig. 17a shows that the 1568
boreholes that were correctly shown by the model to be locat-
ed above the bedrock validated the model and, conversely, the
633 boreholes that were incorrectly shown by the model to be
below the bedrock did not validate the model. This means that
71% of these boreholes agreed with the model, confirming the
accuracy of the model at the locations of these boreholes. The
remaining 29% of boreholes did not agree with the model,
indicating the inaccuracy of the model at the locations of these
boreholes.

An analysis of the 633 (29%) of boreholes not agreeing
with the model revealed that almost half of these (quantity
284) were located 10 m or less below the modeled bedrock
elevation (Fig. 18). Ten meters is also the accepted degree of
error (the accuracy of the DEM is £10 m) in the overall data
points used to construct the complete model of the entire study
area in ArcGIS. A further step was therefore conducted in
ArcGIS in order to improve the accuracy of the model. A
buffer of =10 m was applied to the simulation. The result
was that the 344 boreholes that were previously not accurately
represented by the model were now accurately represented by
the model. Figure 17b shows the result after applying the
buffer. The 1852 boreholes that are now located above the
bedrock topography model validate the model and conversely,
the 349 boreholes that are still located below the bedrock
topography model do not validate the model. This means that
16% of boreholes still do not agree with the model, indicating
the inaccuracy of the model at the locations of these boreholes,
while the remaining 84% of these boreholes now agree with
the model, confirming the accuracy of the model at the loca-
tions of these boreholes. Considering the difficulty in model-
ing bedrock elevations in regions where data is both scarce
and clustered, this result may represent an optimized result
compared to previous methods.

Quantifying the impact of virtual boreholes

In order to quantify the gain of accuracy that was achieved by
adding cross-sections and virtual boreholes, a comparison was
made between the results obtained when modeling with and
without the virtual boreholes. Table 1 presents and compares
the modeling results with and without the virtual borehole data
and for both types of validations (without a buffer and with a
10-m buffer).

Table 1 shows that the model gains in accuracy when the
virtual boreholes are included in the TIN interpolation that
generates the bedrock topography model: the validation not
using a buffer shows a difference of 15% whereas the valida-
tion using a +£10-m buffer shows a difference of 12%. It is
interesting to note that the virtual boreholes represent only
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Fig. 16 3D view of the regional
bedrock topography model of the
SLSJ region (view from the
South-West) using the optimized
methodology proposed in this
study

2.8% of all observation points (i.e., 7304 observation points
over a total of 263,407). Despite this small number, they pro-
vide a significant improvement in the accuracy of the model.
The gain in accuracy is due to a better distribution (regular
rather than clustered).

Discussion and conclusion

The knowledge of the topography of the bedrock is a prereq-
uisite when evaluating, for example, the quantity of available
granular material that can be exploited (for example, for
backfilling) or the geomechanical properties of the subsurface
(for example, when installing building foundations).
Determining the topography of the bedrock is also relevant
when estimating the volume and potential productivity of
groundwater reservoirs (aquifers). These aquifers are usually
composed of sand and gravel at a regional scale, and they also
delineate the top surface of the fractured-rock aquifers located
underneath. In both granular and fractured-rock aquifers, the
groundwater is contained in the porosity of the medium, re-
spectively, either in the voids of the porous medium or in the
fracture network of the fractured medium. Knowing the to-
pography and thus the depth of the bedrock is critical when
planning drilling operations with the intent of installing water
wells or exploring for minerals.

In most cases, bedrock topography is complex and the data
available on its location is of very low density and also un-
evenly distributed (Fig. 1). Data is habitually provided by
boreholes drilled for municipal or individual water supply;
these are usually located along roads, clustered at the outskirts
of municipal centers. This reality, linked to patterns of social
development, in fact controls the distribution of the data. It is
difficult to create accurate bedrock topography models by

Top bedrock elevation (m)
1800 1015]
1 600;800]

I ] 400;600]
[ ] 300;400]
1200;300]
I 7 100;200]
150;100]
) 125;50]

% Lake and river

interpolating these observation points, considering that the
topography of bedrock is considered unpredictable (unlike
the topography of a ground water table, for example,
(Chesnaux 2013) whose location can be analytically deter-
mined based on equations that govern the groundwater flow).

For these reasons, it is a significant challenge to model the
top of bedrock elevations with any degree of accuracy. The
methodology that we have developed and presented in this
study shows how better results may be obtained and how the
accuracy of the models may be improved, by using techniques
that optimize the density and distribution of data points. By
drawing cross-sections between known boreholes and defin-
ing “virtual” boreholes that not only provide additional data,
but more importantly a better distribution of data, better results
can be derived when modeling bedrock topography. Figure 19
illustrates how the quality of bedrock topography modeling
may be improved using our proposed approach. This ap-
proach can be used in other regions worldwide.

Our study, using a test area within the main study area, has
also established TIN as the most appropriate interpolation
method for the type of geological context under study: a com-
plex bedrock surface of crystalline shield for which the avail-
able objective observation points are clustered and irregularly
spaced over the territory being studied. This may not necessar-
ily be the case for other regions. Even when a test area is not
available, however, the TIN interpolation method may be rec-
ommended for modeling bedrock topography in similar geo-
logical contexts. The TIN method is commonly used to model
surface topography, and our evidence also seems to support its
use in modeling bedrock topography. This conclusion makes
sense, considering the unpredictable nature of bedrock topog-
raphy for which it is more logical to favor a linear type of
interpolation between observation points (TIN) rather than
adopting a probabilistic interpolation method such as OK.

@ Springer



76

Appl Geomat (2017) 9:61-78

Fig. 17 The two steps for
validating the topography model
of the SLSJ region. The top map
(a) shows results before applying
the 10-m buffer and the bottom
map (b) shows the result after
applying the 10-m buffer

Fig. 18 Distribution of the 633
boreholes not reaching bedrock
(validation dataset) that were
inaccurately represented by the
model as being deeper than the
top of bedrock, according to the
differences in elevation between
the boreholes and the model itself
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Table 1  Comparison of the validation results without virtual boreholes and with virtual boreholes
Reserve set of boreholes not Resulting model excluding Resulting model including Difference %
reaching bedrock virtual boreholes virtual boreholes
Validation not using Boreholes correctly 1235 (56%) 1568 (71%) 15
a buffer represented by model
Boreholes incorrectly 966 (44%) 633 (29%) -15

represented by model
Total

2201 (100%)

2201 (100%)

Validation using Boreholes correctly 1579 (72%) 1852 (84%) 12
a £10-m buffer represented by model
Boreholes incorrectly 622 (28%) 349 (16%) -12

represented by model
Total

2201 (100%)

2201 (100%)

It should be noted that knowledge of bedrock topography
makes it possible to model the thickness of overlaying de-
posits, by simple subtraction of surface elevations from bed-
rock elevations. Such applications are of particular interest in
several fields of applied geological and geotechnical engineer-
ing and in general, in the earth sciences. Also, it should be
mentioned that any model of bedrock topography may be
improved by further considering the rock’s structural features

Fig.19 Increased accuracy of the
model. (@) Model quality A High accuracy
obtained from original datasets. (low RMS value)
(h) Model quality obtained using
additional “virtual” top bedrock
elevations extracted from the
cross-sections between real

boreholes / \

Low accuracy

L (high RMS value)

Regular
[

Smooth surface

(lineaments, faults, fracture networks. ..) that introduce chang-
es in the topography. Such changes can be characterized, and
this information included in the datasets used to generate bed-
rock topography models. Considering such additional struc-
tural information (that can be contained in old survey reports
for example) was beyond the scope of this study, but we spec-
ulate that such a refinement may possibly further improve the
accuracy of bedrock topography modeling.
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And finally, the approach that consists in using virtual bore-
holes could be extended to building geological layered models
where stratigraphic information is required for interpolating
between the interfaces of the different geological layers com-
posing the model. Virtual boreholes could be generated to
increase the number of stratigraphic observation points as well
as to improve the distribution of these observation points in
the same way as what has been presented in this study.
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