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Abstract We present a method for combined classification
aiming to map alterations in a set of ASTER (Advanced
Spaceborne Thermal Emission and reflection) data in the
Erongo Complex, Namibia. Ten alterations detected by the
matched filtering unmixingmethod on the Hyperion dataset of
the area are therefore used as training classes. The separability
of the classes was computed to evaluate the ability of ASTER
data to spectrally discriminate between these classes. The
outcome of this computation is satisfactory for the high-
probability training dataset. In order to improve the accuracy
of upcoming processes, classes with high similarity (low
separability) were combined. The classification of ASTER
scene is then performed with the use of both individual and
combined classification classifiers. A new combined classifi-
cation method (named selective combined classification
(SCC)) was developed in this research to achieve the highest
possible accuracy in the resultant classification map. An ac-
curacy analysis has proven the advantages and capability of
SCC among all classifiers tested in this study (both individual
and combined).
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Introduction

Supervised classification approaches have frequently been
used for mapping alterations and rock types in the geolog-
ical studies, for instance, by Kruse et al. (2002), Kruse

(2002), Rowan and Mars (2003), Paskaleva et al. (2004),
Favretto and Geletti (2004), Hewson et al. (2005), Galvao et
al. (2005), Vaughan et al. (2005), Hubbard and Crowley
(2005), as well as Wang and Zhang (2006). The reasons
for selecting a particular classification method, however, are
rarely discussed. In this study, therefore, we performed an
accuracy analysis to make a comparison between different
approaches. The confusion matrix is then formed, and the
accuracy of the results of the classifiers is computed based
on the location of training classes.

In addition to individual classifiers, combined classifica-
tion systems are sometimes used for improving the overall
classification process. The theoretical and experimental results
reported in the predicable studies, however, have clearly em-
phasized that combined classifiers are effective only if the
individual classifiers are accurate and diverse, that is, if they
exhibit low error rates and make different errors. Previous
studies have indicated that the creation of accurate and diverse
classifiers is a very difficult task (Sharkey et al. 2000; Giacinto
and Roli 2001). In this paper, a new approach is developed by
taking accuracy differences of base classifiers into account.
This is designated as the selective combined classification
(SCC), since this method makes use of selective application
of rule images from base classifiers.

Study area

The area under investigation is located in the northwest of
Namibia and includes the Erongo Complex with a diameter
of approximately 35 km, which is one of the largest Cretaceous
anorogenic complexes in that country. The centre of the com-
plex is located approximately at 21°40′S and 15°38′E. Figure 1
illustrates band 3 of the Advanced Spaceborne Thermal Emis-
sion and Reflection (ASTER) image of the complex.

This complex represents the eroded core of a caldera struc-
ture with peripheral and central granitic intrusions. Surround-
ing the outer granitic intrusions of the Erongo Complex is a
ring dyke of olivine dolerite, which locally attains some 200m
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in thickness and has a radius of 32 km. The ring dyke weathers
easily and is therefore, highly eroded. The central part of the
Erongo Complex consists of a layered sequence of volcanic
rocks, which form prominent cliffs rising several hundred
metres above the surrounding basement. The interior of the
complex is deeply eroded and thus gives access to the roots of

the structure. The basement rocks consist of mica schists and
meta-greywackes of the Kuiseb Formation and various intru-
sions of granites. In the southeast, the rocks of the Erongo
Complex overlie the Triassic Lions Head Formation, which
consists of conglomerates, gritstone, arkose with interbedded
siltstone and mudstone, as well as quartz arenite (Schneider
2004).

Data description

ASTER datasets of Erongo consist of two northern and south-
ern scenes. ASTER data generally includes 14 channels in
three VNIR, SWIR, and TIR wavelength ranges. Ground
resolutions of those three groups are different (VNIR, 15 m;
SWIR, 30 m; TIR, 90 m), therefore, two datasets were pro-
duced by resampling and stacking all channels. The resultant
datasets are two images, including 14 channels in respected to
ASTER wavelengths and 15-m ground resolution. Two north-
ern and southern scenes mosaiced to take place a solid dataset
(Fig. 1). The data was then atmospherically corrected (for
VNIR and SWIR bands) using FLAASH algorithm and is
corrected for crosstalk error as well. The normalized differ-
ence vegetation index (NDVI) of the dataset was determined
using by channels 2 and 3. This is important to mask pixels
with high NDVI to improve the classification outcomes.
Therefore, the pixels with more than 0.18 NDVI were masked
before classification.

Training classes

The resultant map of alteration zones produced by matched
filtering unmixing method on Hyperion dataset is used as
training pixels for the classification task in this study. Table 1
illustrates detected minerals for each distinguished end-

Fig. 1 ASTER colour composite (3, 2, 1) scene of Erongo complex
and overlapping area of Hyperion image on it

Table 1 Detected minerals for
each end-member using spectral
feature fitting and their alteration
type

End-
members

Minerals Alteration

1 Calcite2,1,3–siderite–prochlorite2,1–corrensite–chlorite Carbonate

2 Alunite2,6,4,5–rivadavite–ammonio illite–ulexite1,2 Argillic (illite–alunite)

3 Antigorite,brucite Magnesium skarn

4 Ammonio illite Argillic (illite)

5 Mascagnite2,1–sphalerite4,5–acmite–alunite2,6,4–pectolite1–
buddingtonite2,1–ammonio chlorite–fluorapatite–ulexite2–augite1

Calcic skarn

6 Alunite2,4,6,5–rivadavite Argillic (alunite)

7 Mascagnite2–buddingtonite2,1–ammonio jarosite Sodic

8 Ulexite1,2–alunite2,6,4,5,1–rivadavite–ammonio illite Argillic

9 Kainite–natrolite1,2–syngenite–goethit1 Zeolitic

10 Alunite4,2,6–rivadavite–orthoclase3–ulexite1,2–ammonio illite Adularia
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member as well as their alteration type according to Thompson
and Thompson (1996). Ten alterations were detected by
unmixing of the Hyperion data (Oskouei and Busch 2007).
Two alteration maps were then produced with the use of the
abundance of each class. In the first map, a pixel is assigned to
a class if the respective end-member has maximum abundance
in that pixel, and in the second map, the pixel is assigned to an
end-member if themaximum abundance is higher than 30%. In
this study, these twomaps are designated as the maximummap
and over-30-% map, respectively. The distribution of each
class is selected as the region of interest (ROI) for the subse-
quent process.

ROIs obtained with the maximummap contain more pixels
with a lower probability, of course, and the reverse is true for
ROIs obtained with over 30% map. Because of differences
between the ASTER and Hyperion ground resolution, the
ROIs of classes were also resampled by Reconcile ROI algo-
rithm on ENVI programme to match the pixel size of the
ASTER dataset during the registration of the Hyperion dataset
on the ASTER scene. To evaluate the ability of ASTER to
spectrally discriminate between different classes, their separa-
bility was calculated. This option on ENVI computes the
spectral separability between selected ROI pairs for a given
input file with the use of Jeffries-Mautusita and Transformed
Divergence methods (Richards and Jia 2006). The resultant
values range from 0.0 to 2.0 and indicate howwell the selected
ROI pairs are spectrally separated. Values greater than 1.9

indicate that the ROI pairs have good separability. The ROI
pairs with lower separability values (less than 1) should be
combined into a single ROI (Richards and Jia 2006). First, the
separability of ROIs from the maximum map is computed.
Table 2 includes the resultant scores for respective pairs of
classes. Only three pairs show scores more than 1, and this is
not satisfactory. So far, the classification using these classes
does not yield accurate results. Fortunately, however, the use
of over 30% ROIs as training data resulted in acceptable
separability scores, as demonstrated in Table 3. In this case,
only classes 1, 3, 6 and 5, and 10 should be combined, as their
separability scores are less than 1. This means that we can now
classify the ASTER dataset for seven training classes (1–3–6,
2, 4, 5–10, 7, 8, 9). In view of the mineral constituents in the
combined classes according to Table 1, 1–3–6 and 5–10 may
represent a kind of skarn alteration and calcic skarn,
respectively.

Classification

It is obvious that the extension of detected features from
Hyperion to ASTER data, whose coverage is much higher
than that of Hyperion, will be cost-effective. The identified
pixels and their resulted mineralogy from the processing of
the Hyperion data of the study area were therefore used as
training pixels for classification tasks and then for accuracy

Table 2 Separability computa-
tions for maximum map classes Classes 2 3 4 5 6 7 8 9 10

1 1.2375 0.1972 0.7352 0.4834 0.6670 0.5390 0.9477 0.5216 0.5100

2 1.2015 0.7728 0.8330 0.8908 0.9426 0.4662 1.0604 0.6312

3 0.6240 0.4362 0.6107 0.5668 0.9639 0.5337 0.4962

4 0.2670 0.2474 0.4812 0.6496 0.5108 0.2718

5 0.4292 0.2906 0.6542 0.5039 0.1395

6 0.4385 0.6253 0.5479 0.3563

7 0.5162 0.5790 0.3327

8 0.6938 0.5118

9 0.4516

Table 3 Separability computa-
tions for over 30% classes Classes 2 3 4 5 6 7 8 9 10

1 1.9892 0.7857 1.8547 1.4982 0.6965 1.6506 1.8096 1.9864 1.7359

2 1.9836 1.7563 1.7332 1.8658 1.9088 1.5574 1.9991 1.4074

3 1.7604 1.3929 1.7643 1.6458 1.7707 1.9846 1.66863

4 1.1587 1.8225 1.5169 1.5422 1.9889 1.0642

5 1.3380 1.2574 1.3835 1.9748 0.7480

6 1.4163 1.5123 1.9967 1.3343

7 1.0295 1.9967 1.4392

8 1.9975 1.3679

9 1.9893

Appl Geomat (2012) 4:47–54 49



analysis by confusion matrix (Oskouei and Busch 2007).
The most effective classifier for this purpose could be dis-
tinguished with the use of the confusion matrix after
classification.

Four classification systems (Spectral Angle Mapper
(SAM), maximum likelihood (ML), Mahalanobis distance
(Mah-Dist), and minimum distance (Min-Dist)) were then
applied to perform the task. The producer accuracy (PA) and
overall accuracy (OA) obtained from the confusion matrix
were used to evaluate the performance of classification
algorithms. The parameters PA and OA are defined as
follows:

PAw ¼ nw
Nw

ð1Þ

OA ¼
Pm

i¼1
nwi

Pm

i¼1
Nwi

ð2Þ

Where:

& nω is the number of pixels classified correctly for class ω
by the classifier;

& Nω is the total number of pixels for class ω in the training
dataset;

& m is the number of classes.

In Table 4, the PAs of the classifiers are indicated for
seven classes; the last column in the table is the OA of each
classifier. These are resulted by multiple examinations of the

starting parameters of each classifier to achieve highest
possible overall accuracies. In accordance with the result
obtained with the confusion matrix, the Mah-Dist classifier
yields the best performance for the classification of the
ASTER dataset.

On the other hand, the performance of classifiers is not
the same for all classes. For instance, the classification of
classes 2, 4, and 9 is more accurate by ML than by other
methods; and Mah-Dist shows a better functionality for
classes 1–3–6, 5–10, 7, and 8. The use of combined classi-
fiers can therefore yield better results. Kittler et al. (1998)
developed a common theoretical framework for classifier
combination and compared different combination schemes
such as the product rule, sum rule, min rule, max rule,
median rule, and majority voting. They empirically showed
that the sum-rule method yields the best performance. By a
sensitivity analysis, they found out that the method is most
resilient toward estimation errors; this may provide a plau-
sible explanation for its superior performance.

Other researchers (e.g. Duin 2002 and Lepistö et al. 2004)
later showed that the success of combined classifiers depends
on different factors, and that there are very few practical
instances of their successful performance. In the case of small
training sets or overtraining of some base classifiers, the
combined classification will result in an unreliable outcome
which is dominated by special base classifiers. Two different
factors which prevent more accurate results from combined
classifications are discussed in the following:

(a) One reason for this failure is a difference between the
statistical distributions of posterior probabilities calculated

Table 4 Producer accuracy of classifiers (in percent) for each class using the over 30% map

Classes

Methods 1–3–6 2 4 5–10 7 8 9 Max Min OA

SAM 12.32 71.34 55.27 25.25 62.23 27.88 79.46 79.46 12.32 35.64

ML 32.36 87.01 80.37 29.33 53.78 53.96 95.97 95.97 29.33 47.68

Min-Dist 30.65 80.50 17.70 4.65 35.49 13.48 76.89 80.50 4.65 31.68

Mah-Dist 43.70 75.86 69.50 48.02 66.59 65.02 80.93 80.93 43.70 56.69

Table 5 Mean of posterior
probabilities computed by dif-
ferent classifiers for seven
classes

Classifiers

Classes Min-Dist SAM ML Mah-Dist

1–3–6 0.442 0.016 0.994 0.020

2 0.511 0.018 0.992 0.022

4 0.429 0.017 0.994 0.020

5–10 0.440 0.017 0.996 0.020

7 0.436 0.016 0.996 0.020

8 0.427 0.019 0.996 0.020

9 0.429 0.016 0.996 0.021
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by base classifiers. Outputs from classifiers are not opti-
mally scaled with respect to one another, because of
differences among their models, algorithms, and primary
parameters. Scaling of posterior probabilities in the same
range will not even be of much help. Note the mean value
of posterior probabilities of the four classifiers for the
seven classes in Table 5. The means are calculated after
scaling of all rule images in the range from 0.0 to 1.0. The
mean values of the posterior probabilities for the ML
method are very high and close to the maximum (1.0);
therefore, this classifier will dominate the outcome of
combined classification.

(b) Another reason is the neglect of differences between
computed accuracies for the classes by different clas-
sifiers. For example, the most accurate classification
for classes 2, 4, and 9 is accomplished by ML; how-
ever, for classes 1–3–6, 5–10, 7, and 8, this is done by
the Mah-Dist method.

The SCC method presented here is designed to rectify the
two above-mentioned detrimental factors.

SCC method

This is a stepwise method that starts by forming a combined
rule image (CRI) whose bands are selected from the rule
images of the base classifiers with respect to their accuracy.
As indicated in Table 5, the rule channels for classes 2, 4,
and 9 are the respective channels in the ML rule image; in a

similar manner, the rule channels for classes 1–3–6, 5–10, 7,
and 8 are the respective channels from the Mah-Dist rule
image. The use of only the most accurate rule channels will
therefore enhance the effectiveness of combined classifica-
tion from the standpoint of factor b.

Since this method uses only the rules with the high-
est accuracy, it is necessary to mask unclassified pixels
in each rule channel. In this way, the decision will be
reached only on common pixels in the final classifica-
tion. If A and B are presumably statistical distribution
of two classes classified by two different classifiers, in
the final classification then, the regions A–B and B–A
will be assigned to classes A and B, respectively.
Therefore, the complementary tasks of the SCC classi-
fier will be decision-making on pixels in the region of
A∩B and their assignment to A or B with regard to
their posterior probabilities from two classifiers. As
discussed earlier, finding a unique criterion for doing
this has always been a challenging issue in combined
classification.

The SCC algorithm therefore applies an iterative method
to achieve the best possible assignment, which will be
examined on the basis of the overall accuracy. The algo-
rithm first scales CRI channels in the range from 0.0 to 1.0;
it then classifies scaled CRI and computes OA. This is done
based on the following criterion:

x 2 wj if PðwjjxÞ ¼ max
n

k¼1
Pðwk jxÞ ð3Þ

Where x is the scaled rule value, ω is the class, and n is
the number of classes.

If the statistical distributions of posterior probabilities
of selected classifiers are similar with a closed mean (e.g.

Fig. 2 Posterior probability distribution of two classifiers with a
similar and b different distribution patterns

Table 7 Accuracy computations for SCC after step 4 and final
accuracies

PA, % OA, %

Classes 1–3–6 2 4 5–10 7 8 9

After step 4 31.13 86.31 80.37 26.19 58.71 51.15 95.97 47.32

Final results 46.91 77.09 63.79 48.02 66.59 65.02 83.86 57.81

Table 6 Overall accuracies (percent) of three combined classifiers

Classifiers OA

Scaled 0.0–1.0 Equal mean

Sum rule 0.40 2.66

Maximum rule 13.11 0.56

Median rule 0.40 2.66
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Fig. 2a), the calculated OA in this step will be an
optimum. However, in the case of different distributions
like that in Fig. 2b, artefact shifting of one toward
another will increase the OA. In this case, the algorithm
accomplishes this gradually until the possible maximum
OA has been achieved.

The SCC algorithm could be expressed in a stepwise
manner as follows:

1. Make CRI
2. Mask unclassified pixels
3. Scale CRI channels (0.0–1.0)
4. Classify CRI

5. Compute overall accuracy (OA1)
6. Add rule channels of low mean classifier(s) by (max-

mean-channel mean)/4.0
Maxmean is the maximum of the means of CRI

chanels
7. Compute overall accuracy (OA2)
8. If OA2≤OA1 END
9. Go to 6

Results

To achieve the most reliable map of predefined classes in the
ASTER scene and also to compare SCC with other com-
bined classifiers, the classifier sum rule, maximum rule, and
median rule are tested, in addition to four base classifiers.
The functionality of base classifiers has already been dis-
cussed in previous sections; their producer and overall ac-
curacies are indicated in Table 5.

Three combined classifiers (sum, maximum, and median
(Kittler et al. 1998)) are run with the use of scaled rule images
in the range from 0.0 to 1.0. The resulting OAs from these
classifiers establishes a very weak functionality, as shown in

Table 8 Overall accuracy which resulted with the use of the classifiers

Classifiers

SAM ML Min-
Dist

Mah-
Dist

Sum
rule

Maximum
rule

Median
rule

SCC

OA,
%

35.64 47.68 31.68 56.69 2.66 13.11 2.66 57.81

Fig. 3 The resultant classification maps of detected alterations by Mah-Dist (a) and SCC method (b)
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Table 6. Two different methods for the modification of
rule images (scaling in the range 0.0–1.0 and equaliza-
tion of means) are examined, and the respective accu-
racies are illustrated in the table. As mentioned before,
their performance is highly variable from case to case
and is strongly dependent on base classifiers and the
existence of weak classifiers. Overtraining classification
of some base classifiers will also render the combined
classification unreliable.

In contrast to the above-mentioned combined classifiers,
the outcome of the SCC method is prominent. The results of
SCC are illustrated in Table 7. The second row of this table
comprises the PAs calculated for seven classes and the OA
in the step after scaling of the CRI in the range from 0.0 to
1.0. The third row is the result of the final accuracy compu-
tations for SCC.

A comparison of the accuracies which resulted from SCC
and three other combined classifiers implies that the func-
tionality of the algorithm presented here is effective and
reliable. Furthermore, among all classifiers tested in this
study (both base and combined), SCC has yielded the most
accurate classification (Table 8). Finally, the alteration the-
matic maps with the use of Mah-Dist and SCC are illustrated
in Fig. 3.

Conclusion

The result from Hyperion dataset unmixing processes is
extended to the ASTER scene with the aim of achieving
an alterations map in a much broader area. Therefore, the
mapped alterations in the Hyperion dataset are used as
training datasets for classification of the ASTER scene. At
first, the classification of the ASTER data is performed
with the use of four classifiers (SAM, ML, Min-Dist, and
Mah-Dist). The accuracy evaluation showed that among
these the Mah-Dist method yields the highest overall
accuracy.

Meanwhile, the capability of combined classification
is also investigated, and a new method (SCC) is pre-
sented with the aim of achieving the highest possible
OA. Other combined classification methods always suf-
fer from two problems. These emanate from the lack of
certain criteria for selecting base classifiers, and for
modification of posterior probabilities resulted from dif-
ferent base classifiers. The reliability of combined clas-
sification functionality, therefore, differs from case to
case. The SCC algorithm, however, provides distinct
solutions for the two problems and thus always yields
a more accurate classification than do base classifiers.
The approach presented in this study provided effective
performance in comparison with both base and com-
bined classifiers and resulted in the best OA, as

indicated in Table 8. The overall accuracy which results
from SCC is always higher than the maximum overall
accuracy of base classifiers.
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