
ORIGINAL PAPER

ZOO-Project: the open WPS platform

Gérald Fenoy & Nicolas Bozon & Venkatesh Raghavan

Received: 3 January 2011 /Accepted: 30 November 2011 /Published online: 11 January 2012
Società Italiana di Fotogrammetria e Topografia (SIFET) 2012

Abstract This paper aims to present the ZOO-Project,
which is a new open source implementation of the Open
Geospatial Consortium’s (OGC) Web Processing Service
(WPS), released under the term of the MIT/X-11 license.
Based on a server-side C language Kernel (named ZOO-
Kernel), ZOO-Project proposes a new approach to develop,
handle and chain standardized GIS-based Web services. A
brief review of WPS and existing implementations will be
given in order to detail the ZOO-Project development back-
ground and goals. Then, the ZOO itself will be presented,
focusing on its advantages and limitations, foremost to
highlight the new opportunities provided by such a plat-
form. The ZOO-Kernel and its architecture will be first
examined, before further explanations on the proposed
method for Web services creation are given. Then the
ZOO JavaScript API that provides a new way to orchestrate
and chainWeb services through the server-side JavaScript will
be presented next. Both Kernel and API are illustrated and
documented through different Web service code snippets that
are available online. Some visual examples of client-side
interactions are presented.

Keywords Web processing service . Open geospatial
consortium . ZOO-Project . Open source geospatial
foundation

Introduction

Research context

Progress of geographic information systems (GIS) and the
more systematic use of the Open Geospatial Consortium
Webservices (OWS) has led to a variety of available technol-
ogies and methods to store and spread GIS data over the
Internet. Standardization of spatial data and metadata have
become crucial in the context of collaborative Web GIS de-
velopment, but also due to specific directives or policies
regarding data use and sharing, such as the INSPIRE (CEU
2007) directive for the European context. The quiet recent but
very fast development of newWebGIS techniques (partly due
to new opportunities offered by Web 2.0 and Cloud Comput-
ing technologies), is leading to a growing public and govern-
mental awareness on the necessity of using standards forWeb-
based Spatial Data Infrastructures (SDI).

Numerous applications are available today to store and
spread spatial data over the Internet, using Web Map Services
(WMS), Web Feature Services (WFS) and Web Coverage
Services (WCS). Many open source or proprietary GIS sol-
utions now supports standards to access or modify the data
(Bocher 2009), but only a few are available for processing
such data through Web Processing Service (WPS).

Some WPS fundamentals and a review of the existing
implementations are introduced in the first section, in order
to explain the ZOO-Project development context, its goals,
advantages and limitations. Sections 2 and 3 then present the
ZOO-Kernel and ZOO-API architecture, and aim to detail

G. Fenoy (*)
GeoLabs SARL,
Futur Building I 1280, Avenue des Platanes,
34970 Lattes, France
e-mail: gerald.fenoy@geolabs.fr

N. Bozon :V. Raghavan
Graduate School for Creative Cities, Osaka City University,
3-3-138 Sugimoto, Sumiyoshi-ku,
Osaka 558-5858, Japan

N. Bozon
e-mail: nicolas.bozon@gmail.com

V. Raghavan
e-mail: raghavan@media.osaka-cu.ac.jp

Appl Geomat (2013) 5:19–24
DOI 10.1007/s12518-011-0070-0

the method for setting up Web Services through simple
examples.

Web processing service

WPS is one of the most recent interoperability standards
published by Open Geospatial Consortium (OGC). It was
first proposed under version 0.4 in 2005 (OGC 2005), and
some improvements were added in version 1.0.0, which was
released in 2007 (OGC 2007a, b).

WPS is designed to standardize the way that GIS algorithms
are made available through the Internet. It specifies a mean for
a client to request the execution of a spatial calculation from a
service. It intends to automate geoprocessing by employing
geospatial semantics in a Service Oriented Architecture
(SOA). WPS supports simultaneous processes via the HTTP
GET and POST method, as well as the Simple Object Access
Protocol (SOAP) and Web Services Description Language
(WSDL).

There are three mandatory requests that can be submitted
to a WPS server: GetCapabilities, DescribeProcess and
Execute. GetCapabilities first provides an Capabilities doc-
ument containing important metadata information about the
WPS Server instance (as other OGC Web Services listed
before) and a list of the services available on the server-side
presented as a unique identifier, a title and a short descrip-
tion. Next, DescribeProcess provides more detailed infor-
mation on one or more services, containing the necessary
input data, the targeted output data format, as well as a title
and a short abstract for each of these entries.

Once all the necessary parameters are gathered from the
DescribeProcess request, the processing task can be submitted
to the server using the Execute request. The latter can answer
directly to the client by returning the created output or storing it
as a Web accessible resource. The result provided could be an
ExecuteResponse document or the data itself depending on the
presence in the request of the RawDataOutput or Response-
Document parameter. As the service could require time to
produce an answer, WPS servers should be able to return
directly an ExecuteResponse document without processing
data. In such a case, the processing task will be executed as a
background task and the Server will provide an ExecuteRes-
ponse document containing the URL location of future status
document update, and notifies if the processing task was
accepted or rejected (e.g., if the maximum number of running
services was reached). Thus, the client can request the next
ExecuteResponse document until the process completion was
indicated by the “ProcessSucceeded” or “ProcessFailed” node.
While the Execute request is active, the progress of a process
can be followed continuously using the “percentCompleted”
attribute of the “ProcessAccepted” node or the potential “Proc-
essSucceeded” and “ProcessFailed” statements. In case of
“ProcessSucceeded”, the ExecuteResponse includes either

the generated outputs or the URL indicating the physical
location where from the output data could be accessed.

This short presentation of WPS shows the three key
requests along with their respective responses, which cover
the essential part of the OGC’s specification.

Existing WPS implementations

As already noted, the WPS specification is rather new and
implemented only by a few GIS applications, and subse-
quently is supported by very few GIS clients. One can note
that most of the available WPS implementations are using
the Java language:

– Deegree framework is a Java-based environment which
implements most of OGC standards and has imple-
mented WPS quite early (Fitzke 2004).

– WPSint is a Java plug-in for Spring GIS software
and implements WPS 0.4.0 in a Java/JEE application
framework (Schut 2005).

– 52° North WPS is also written in Java, as a plug-in for
Java Tomcat Servlet container, and interacts with other
OWS standards. It also includes an UDig software
client to interact with 52° North WPS (Foerster 2007).

– GeoTools and GeoServer also from the Java world are
actually working to implement WPS 1.0.0 (Holmes
2009).

– PyWPS is the only Python-based WPS implementation
and provides an environment to create WPS in Python. It
also proposes a native support for GRASS-GIS python
scripting. This project was initiated in 2006 and is now in
the Open Source Geospatial Foundation’s (OSGeo) incu-
bation process (Cepicky 2009).

Other proprietary implementations may have been car-
ried out, but details are not published; hence, the versions of
WPS, the protocols and the languages they are using are still
unknown. However, one can notice that the Environmental
Systems Research Institute (ESRI) is actually adding WPS
support to Arc GIS Server (Sankaran 2011).

This review of existing WPS compliant products shows
that a small number of open source projects are actively
building the WPS definition and implementation in close
collaboration with the OGC, and that it is a relatively new
research field regarding the geospatial Web. WPS 2.0.0 has
now been announced. We can also notice that every WPS
solutions is language-dependent, meaning that Web Services
on the server have to be coded in the same language as the
Server core code, so in Java or in Python. This is a limitation
to the use of WPS.

As an open source project too, ZOO-Project aims to
provide an alternative implementation by proposing new
opportunities that promotes WPS and make it simpler to
implement. Despite being a nascent project, it supports

20 Appl Geomat (2013) 5:19–24

several programming languages and provides an original
approach to setup reliable and powerful WPS servers. The
ZOO-Project’s architecture and functioning are described in
the next sections.

ZOO-Kernel

Background

ZOO-Kernel is the core of the ZOO-Project. It is a server-side
C Kernel which makes possible to create, manage and chain
WPS 1.0.0 compliant Web Services, by loading and handling
them on demand. Thus, the ZOO-Kernel can use services
connected to geospatial libraries and scientific models, but
can also use services of cartographic engines and spatial
databases.

ZOO-Kernel is written in C language, but Web Services
can be programmed in C, FORTRAN, Python, Java, Perl,
PHP and JavaScript. This multi-language support is conve-
nient for developers and, above all, allows the use of exist-
ing code to create and deploy new Web Services. Open
source GIS libraries or specific code (spatial based or not)
can thus be used server-side with very little modifications.
Some examples are given later.

Architecture

The ZOO-Kernel's basic architecture is detailed in this sec-
tion. Internal mechanisms based on the concept of Service
Provider and the adopted syntax for configuration files are
first explained. The supported programming languages and
their respective dependencies are also listed.

ZOO-Services Provider

A ZOO-Services Provider is a couple of Services Shared
Objects (SSO) and onemetadata ZOO configuration file (.zcfg)
per provided service. The ZOO Configuration file contains all
the metadata information and obtains the name corresponding
to the service's identifier. The SSO is the file containing the
function corresponding to the related process.

The Services Provider was conceptualized this way in
order to simplify the treatment for the GetCapabilities and
DescribeProcess Requests. Indeed, ZOO-Kernel only has to
parse the ZCFG file to answer to those two requests. The
parser implemented currently use Flex and Bison technolo-
gies. Flex is a tool for generating scanners: programs which
recognized lexical patterns in text (http://flex.sourceforge.
net/). Bison is a general-purpose parser generator that con-
verts a grammar description for a context-free grammar into
a C program to parse that grammar (http://www.gnu.org/
software/bison/). A specific syntax was then defined for

the configuration file which will make the ZOO-Kernel able
to check if all required inputs were provided in the request. If
an error occurs due to a wrong configuration file or a missing
parameter in the request, an Exception XML Document as
defined by the OGC’s WPS standard will be produced. Flex
and Bison are widely used by the open source geospatial
community but suffer from the need to define a new grammar
for reading such a file. A more robust near-future alternative
currently being considered is to use the YAML format (http://
www.yaml.org/) to more easily define the service metadata.

Regarding the SSO file, its format depends on the language
used to implement the service. For compiled languages such
as C and FORTRAN the file will be a shared library, for
interpreted such as Perl, Python, PHP and JavaScript the file
will be the script to run using the specific interpreter, for Java
Language it is a Class file to run in the Java Virtual Machine
(Lindholm and Yellin 1999). This SSO file will be dynami-
cally loaded on demand by the ZOO-Kernel. If all the required
inputs were specified in the request, the internal function
corresponding to the service will then be executed. When
running a service from an SSO, ZOO-Kernel will pass by
reference inputs, outputs and an internal environment as argu-
ments to the corresponding function, using an internal repre-
sentation specific to each supported language. Passing values
by reference to the Service function ensures that each mod-
ifications of this values made in the function's body can be
then accessed from the ZOO-Kernel after the call. The service
function should then return an integer value representing the
processing success or failure statement. On success, ZOO-
Kernel will get the resulting value from the outputs argument
passed earlier to the function to return the result in the desired
format.

Multi-languages

ZOO-Services can be written natively in C and Python lan-
guage. The Python interpreter was embedded into ZOO-Kernel
that allows use of existing Python modules as ZOO-Services.

PHP (embedded version), Java, FORTRAN and Java-
Script are optional languages and compilation options must
be defined, after specific dependencies have been installed
(PHP embedded, Java SDK, F77 and SpiderMonkey).

This variety of supported languages allows the WPS Web
Service end-developer to choose his/her preferred language
and above all to use existing code and turn it into WPS. Web
Services coded in different languages can also be chained in
a standardized way.

Using OSGeo libraries from WPS Services
with the ZOO-Kernel

The ZOO-Project initial idea was to build a platform able to
connect the numerous OSGeo libraries together and to use

Appl Geomat (2013) 5:19–24 21

http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://www.yaml.org/
http://www.yaml.org/

them as Web Services. The Web Services creation was first
tested with the GDAL/OGR library (Warmerdam 1999), in
order to perform basic vector and raster WPS from a stable
C library.

GDAL/OGR

As GDAL/OGR is coded in C, the corresponding Web
Services were written in the same language. Indeed, as
ZOO-Kernel is able to load dynamic libraries, only a few
modifications were needed in the original code. This is
illustrated by looking at the well known ogr2ogr code and
the corresponding .zcfg file on the ZOO-Project Trac (Fenoy
2010a). Using the OGR code base again, we have also setup
a WPS Service for single and multiple geometries spatial
operations (Fenoy 2010b). Similar work was applied to the
GDAL code base in order to implement the gdalgrid and
gdaltranslate capabilities as WPS. Those Web Services allow
users to convert, reproject and process both vector and raster
data online in a standardized way.

GRASS GIS

Some other experiments have been carried out to interact
with GRASS GIS, which provides advanced GIS processing
algorithms (Neteler 2008). GRASS 7 now provides a WPS
process description exporter, which returns XML docu-
ments describing the GRASS functions (Gebbert 2009).
This is very useful as a bridge to GRASS, and ZOO-
Kernel can take advantage of this GRASS outputs. Thus, a
GRASS XML to ZOO configuration file (.zcfg) converter
was developed (Gebbert 2010a), allowing ZOO-Kernel to
understand the numerous GRASS function through WPS.

Then, a GRASS module starter was also developed in Py-
thon to call the desired function and the corresponding .zcfg in
a generic way (Gebbert 2010b). These Python scripts are
actually callable as ZOO Web Services and several successful
tests have been carried using the r.add, r.div, r.mult and r.sub
functions (Gebbert 2010c).

The use of GDAL/OGR and the support for GRASS GIS
shown that ZOO-Kernel can use existing libraries as stan-
dardized Web Services, with only small modifications of the
original codes. Future work and development plans are
based on integrating other open source GIS libraries, but
also on working with non-GIS libraries (but useful when
communicating with GIS), mainly for statistic analysis and
document management.

Client-side interaction examples

Let us now explain how such WPS Web Services can be
called and exploited from a client-side Webmapping appli-
cation based on the OpenLayers library (Schmidt 2006).
Figure 1 shows a WMS layer (used as input data) on which
the user can select a polygon by clicking and then apply a
buffer process on it, by calling the OGR-based Web Service
cited above (Fenoy 2010b). Other single-geometry vector
operation can be performed such as centroïd, convex hull,
boundary or simplify. The geometries are quiet simples and
light, hence, the results can be rendered using GeoJSON.

Once the buffer is shown on the map, the user can then
select another polygon and perform a multi-geometry oper-
ation. Figure 2 shows the result of an intersection process
between the previously calculated buffer and the second
selected polygon.

Fig. 1 Example buffer output,
using OpenLayers Metacarta
WMS and TOPP United
States WMS/WFS

22 Appl Geomat (2013) 5:19–24

The last client-side interaction example is based on the
GDAL ExtractProfile function, which allows us to obtain
the z value of any raster layer. Using an OpenLayers client
once again, we could set up a specific control using the
GDAL Web Service with a GTOPO30 DEM layer and a
GeoJSON LineString to generate JavaScript elevation pro-
files on the fly (Fig. 3).

These client-side examples are available on the ZOO-
Project website and prove that ZOO Web Services can be
requested from a traditional Web GIS client. However, these
are proof-of-concept implementations and ZOO does not
provide any WPS client-side library capable to discover
and interact with WPS Services yet.

ZOO API

The ZOO API is a concise server-side JavaScript library
designed to simplify the WPS processes creation and chain-
ing. It is based on the ZOO-Kernel JavaScript support and the
Mozilla foundation JavaScript engine, SpiderMonkey
(Mozilla 2010). The API allows orchestration of WPS serv-
ices using specific methods and offers the ability to add logic
and controls in the WPS chaining. It also uses a Proj4js (Adair
2007) adaptation for server-side coordinate re-projection.
ZOO-API is based on OpenLayers allowing to easily convert
processes outputs into common vector formats (GML, KML,
GeoJSON, etc.) when needed.

Server-side Javascript for WPS

Some recent projects provide server-side JavaScript using the
Mozilla SpiderMonkey or Rhino JavaScript engines. It was
relevant to do the same in the case of ZOO-Kernel for two
main reasons. First, because JavaScript programming lan-
guage is very popular and second, it allows users to chain
services together to build more complexe services. This is
possible by adding the ZOO-API which is a set of ready-to-
use JavaScript functions for handling WPS HTTP requests,
querying available WPS Web Services, defining input/output
flows in WPS chaining and converting WPS outputs into
several vector formats.

Classes

ZOO API is first composed of several general classes ded-
icated to WPS requests construction such as ZOO.String,
ZOO.Request and ZOO.Bounds (D’Hont 2010). A ZOO.
Projection class is also available and linked to the Proj4js

Fig. 2 Example intersection
output

Fig. 3 Example elevation profile using GTOPO30 data set from U.S.
Geological Survey

Appl Geomat (2013) 5:19–24 23

source code for handling any projection defined by the
cartographic projections library. ZOO.Feature and ZOO.Ge-
ometry classes, along with their respective subclasses, allow
handling the different types of vector data. Finally, a ZOO.
Process class was developed to setup input/output, call and
chain available WPS processes.

Conclusion

As presented in this article, the ZOO-Project offers an
alternative WPS implementation that supports multiple
programming languages and simplifies the development of
new services as independent modules. Nevertheless, ZOO-
Kernel still lack the WSDL and SOAP support which is
required for WPS Servers. A solution will be soon integrat-
ed in the upcoming enhancement effort to add this specific
support. These enhancement efforts will also address neces-
sary developments for compliance with the future WPS
2.0.0 standard specifications. The ZOO-API provides to
services developers a way to build complex services using
already existing ones by chaining them and adding logic in
the chain. Future research will deal with ZOO-Kernel inter-
nal enhancements such as YAML support to replace our
own grammar for the ZOO Configuration File. Another goal
is to provide more services using other popular Open Source
libraries such as libLAS (http://www.liblas.org) and Orfeo
Toolbox (http://www.orfeo-toolbox.org).

Some promising experiments were already made for inte-
grating the ZOO-Kernel as an XPCOM component. The
XPCOM technology is coming from the Mozilla Foundation
and is used to produce desktop applications that provide the
capability to communicate from a user interface with services
implemented in various supported programing languages
through the JavaScript Engine. For instance, Mozilla FireFox
is an application based on this technology. Thus, once ZOO-
Kernel will be used as an XPCOM component, Services will
be able to run locally or remotely and developers will have to
develop a service only once. Here, the goal is obviously not to
redefine the way of interaction with local services. Instead, the
key idea is to preserve the definitions of WPS requests and to
utilize them by avoiding the use of the HTTP protocol when
services are used locally.

Acknowledgments The authors thank Fank Warmerdam for devel-
oping and maintaining GDAL/OGR. Thanks also to Soeren Gebbert

and Markus Neteler for their active support in the GRASS GIS inte-
gration into the ZOO-Project.

References

Adair (2007) Proj4js official website http://proj4js.org
Bocher E (2009) Geospatial free and open source software in the 21st

century. In Proceedings of the First Open Source Geospatial Re-
search Symposium, 2009, LNGC. Springer, Heidelberg, in press.

Cepicky J (2009) PyWPS officalWebsite http://pywps.wald.intevation.org
CEU (2007) Directive 2007/2/EC of the European Parliament and of the

Council of 14 March 2007 establishing an Infrastructure for Spatial
Information in the European Community (INSPIRE) http://eur-lex.
europa.eu/LexUriServ/LexUriServ.do?uri0OJ:L:2007:108:0001:0014:
EN:PDF

D’Hont R (2010) ZOO API on ZOO-Project Trac system. http://www.
zoo-project.org/trac/browser/trunk/zoo-api/js/ZOO-api.js

Fenoy G (2010a) ZOO-Project website http://zoo-project.org/trac/
browser/trunk/zoo-services/ogr/ogr2ogr/cgi-env/Ogr2Ogr.zcg

Fenoy G (2010b) ZOO-Project website http://zoo-project.org/trac/
browser/trunk/zoo-services/ogr/ogr2ogr/service.c

Fitzke J (2004) Building SDIs with free software — the Deegree
Project. In: Proceedings of GSDI-7, Bangalore, India

Foerster T (2007) http://52north.org/maven/project-sites/wps/52n-wps-
webapp/index.html

Gebbert S (2009) GRASS GIS wiki WPS section http://grass.osgeo.
org/wiki/WPS

Gebbert S (2010a) GRASS XML to ZOO .zcfg http://code.google.
com/p/vtk-grass-bridge/source/browse/trunk/WPS/ZOO_Project/
GrassXMLtoZCFG.py

Gebbert S (2010b) ZOO GRASS GIS support http://code.google.com/
p/vtk-grass-bridge/source/browse/trunk/WPS/ZOO_Project/ZOO
GrassModuleStarter.py

Gebbert S (2010c) ZOO GRASS support tests http://code.google.com/
p/vtk-grass-bridge/source/browse/#svn/trunk/WPS/Testing/
Python/GrassAddons

Holmes C (2009) OpenGeo Blog http://opengeo.org/products/core
development/geoserver/wps

Lindholm T, Yellin F (1999) Java virtual machine specification, 2nd
ed. Addison-Wesley Longman Co.

Mozilla (2010) SpiderMonkey JavaScript engine, http://www.mozilla.
org/js/spidermonkey/

Neteler M (2008) Springer, Open Source GIS: A GRASS GIS Approach
OGC (2005) Web Processing Service. OGC Discussion Paper,

Document Reference Number 05- 007r4, Version 0.4.0
OGC (2007a) Web Processing Service. OpenGIS Standard, Document

Reference Number 05-007r7, Version 1.0.0
OGC (2007b) OWS-4 Workflow IPR. Hrsg. OGC. RefNum OGC 06–

187; Version 1.0.0; 2008-03-11 Status: internal OGC Discussion
Paper

Sankaran S (2011) http://proceedings.esri.com/library/userconf/
devsummit11/tech/tech_53.html

Schmidt C (2006) http://www.openlayers.org
Schut P (2005) http://wpsint.tigris.org/
Warmerdam F (1999) http://www.gdal.org

24 Appl Geomat (2013) 5:19–24

http://www.liblas.org
http://www.orfeo-toolbox.org
http://proj4js.org
http://pywps.wald.intevation.org
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:108:0001:0014:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:108:0001:0014:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:108:0001:0014:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:108:0001:0014:EN:PDF
http://www.zoo-project.org/trac/browser/trunk/zoo-api/js/ZOO-api.js
http://www.zoo-project.org/trac/browser/trunk/zoo-api/js/ZOO-api.js
http://zoo-project.org/trac/browser/trunk/zoo-services/ogr/ogr2ogr/cgi-env/Ogr2Ogr.zcg
http://zoo-project.org/trac/browser/trunk/zoo-services/ogr/ogr2ogr/cgi-env/Ogr2Ogr.zcg
http://zoo-project.org/trac/browser/trunk/zoo-services/ogr/ogr2ogr/service.c
http://zoo-project.org/trac/browser/trunk/zoo-services/ogr/ogr2ogr/service.c
http://52north.org/maven/project-sites/wps/52n-wps-webapp/index.html
http://52north.org/maven/project-sites/wps/52n-wps-webapp/index.html
http://grass.osgeo.org/wiki/WPS
http://grass.osgeo.org/wiki/WPS
http://code.google.com/p/vtk-grass-bridge/source/browse/trunk/WPS/ZOO_Project/GrassXMLtoZCFG.py
http://code.google.com/p/vtk-grass-bridge/source/browse/trunk/WPS/ZOO_Project/GrassXMLtoZCFG.py
http://code.google.com/p/vtk-grass-bridge/source/browse/trunk/WPS/ZOO_Project/GrassXMLtoZCFG.py
http://code.google.com/p/vtk-grass-bridge/source/browse/trunk/WPS/ZOO_Project/ZOOGrassModuleStarter.py
http://code.google.com/p/vtk-grass-bridge/source/browse/trunk/WPS/ZOO_Project/ZOOGrassModuleStarter.py
http://code.google.com/p/vtk-grass-bridge/source/browse/trunk/WPS/ZOO_Project/ZOOGrassModuleStarter.py
http://code.google.com/p/vtk-grass-bridge/source/browse/#svn/trunk/WPS/Testing/Python/GrassAddons
http://code.google.com/p/vtk-grass-bridge/source/browse/#svn/trunk/WPS/Testing/Python/GrassAddons
http://code.google.com/p/vtk-grass-bridge/source/browse/#svn/trunk/WPS/Testing/Python/GrassAddons
http://opengeo.org/products/coredevelopment/geoserver/wps
http://opengeo.org/products/coredevelopment/geoserver/wps
http://www.mozilla.org/js/spidermonkey/
http://www.mozilla.org/js/spidermonkey/
http://proceedings.esri.com/library/userconf/devsummit11/tech/tech_53.html
http://proceedings.esri.com/library/userconf/devsummit11/tech/tech_53.html
http://www.openlayers.org
http://wpsint.tigris.org/
http://www.gdal.org

	ZOO-Project: the open WPS platform
	Abstract
	Introduction
	Research context
	Web processing service
	Existing WPS implementations

	ZOO-Kernel
	Background
	Architecture
	ZOO-Services Provider
	Multi-languages

	Using OSGeo libraries from WPS Services with the ZOO-Kernel
	GDAL/OGR
	GRASS GIS
	Client-side interaction examples

	ZOO API
	Server-side Javascript for WPS
	Classes

	Conclusion
	References

