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Abstract Aerosol optical thickness is considered to be the
most important unknown parameter of every atmospheric
correction approach for removing atmospheric effects from
satellite remotely sensed images. This study presents a
description of the basics of the proposed atmospheric
correction procedure, which combines the darkest object
subtraction principle and the radiative transfer equations.
The method considers the true reflectance values of the
selected dark targets acquired in situ and the atmospheric
parameters such as the aerosol single scattering phase
function, single scattering albedo and water vapour absorp-
tion, which are also found from ground measurements. The
proposed procedure is applicable to short wavelengths such
as Landsat TM band 1, 2 and ASTER band 1 in which
water vapour absorption is negligible. The proposed image
processing method has been tested successfully to deter-
mine the aerosol optical thickness on Landsat-5/TM images
of the Lower Thames Valley area located to West London
(UK) in the vicinity of Heathrow Airport and to Landsat
TM/ETM+ and ASTER images of an area located in the
vicinity of Paphos International Airport (Cyprus). The
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determined aerosol optical thicknesses for the Heathrow
Airport area were 0.60, 013 and 0.75 for the Landsat TM
images (0.45-0.52 pm) acquired on 17th of May 1985, 2nd
of June 1985 and 4th of July 1985. The determined aerosol
optical thicknesses for the ASTER (0.52-0.60 um) images
acquired on the 4th of February 2008, 26th of February
2008, 17th of December and 24th of December 2007 were
0.18, 0.39, 0.49 and 0.90, respectively. The accuracy
assessment applied using the in situ spectroradiometric
and sun-photometer data during the satellite overpass
acquired on July—August 2008 for the Paphos area in
Cyprus shows satisfactory results both for removing the
atmospheric effects and for determining the aerosol optical
thickness. Indeed, the high correlation between the deter-
mined aerosol optical thickness and those extracted from
the visibility values increases the potential of the proposed
method.

Keywords Acrosol optical thickness - Landsat TM -
ASTER - Atmospheric correction

Introduction

The objective of any atmospheric correction method is to
determine the atmospheric effects. A promising use of the
determined atmospheric effects is to examine how the
atmospheric pollution can be assessed through the derived
acrosol optical parameters. Several methods for removing
atmospheric effects have been developed from various
researchers either simple or sophisticated (Hadjimitsis 1997;
Hadjimitsis et al. 1999a,b; Hadjimitsis et al. 2004). One of
the simplest atmospheric correction methods is the darkest

@ Springer


http://www.cut.ac.cy/ce/

32

Appl Geomat (2009) 1:31-40

object subtraction (DOS) approach or darkest pixel method
(DP) (Campbell 1993). The DOS approach assumes that the
pixel with the lowest digital number (DN) in each band
should, in reality, be zero, and therefore, its radiometric DN
value represents the atmospheric additive effect (Crane 1971;
Crippen 1987; Campbell 1996; Hadjimitsis et al. 2003). The
DP may correspond to a large water body or other dark object
or feature within the scene. The principle of the DP approach
is that most of the signal reaching a satellite sensor from a
dark object is contributed by the atmosphere at visible
wavelengths. Therefore, the pixels from dark targets are
indicators of the amount of upwelling path radiance in that
band. The atmospheric path radiance adds to the surface
radiance of the dark target, giving the target radiance at the
sensor. The surface radiance of the dark target is approximat-
ed as having zero surface radiance or reflectance. A recent
adaptation of the DP method is to assume a known non-zero
surface reflectance of the dark target (Hadjimitsis et al. 2003).

Several authors have shown how the DP approach can
be used to determine the aerosol optical thickness (Griccs
1975; Kaufman and Sendra 1988; Kaufman et al. 1990; Hill
and Sturm 1991; Gilabert et al. 1994). Hadjimitsis et al.
(2003) found that two versions of the DP method have been
widely used in any atmospheric correction procedure: the
simplest one involves the assumption that dark areas have
0% target reflectance and the recorded reflectance corre-
sponds to the effect of the atmosphere; the second states
that the reflectance of a dark object (e.g. lake, ocean etc.) is
low but not zero and an assumed value of surface
reflectance (either obtained from ground measurements or
from the literature) for that target can be used (Teillet and
Fedosejevs 1995; Hadjimitsis 2008). The first version of
the DP method is simple, and by ignoring atmospheric
transmittance and diffuse sky irradiance, the atmospheric
path radiance can be calculated. However with the second
method, by using RT calculations, the aerosol optical depth
can be determined (Teillet and Fedosejevs 1995). This
paper describes briefly the derivation of a simple atmo-
spheric correction procedure, which combines both the
DOS principle and the basic radiative transfer calculations.
Indeed, based on this new approach, by considering the
‘standard reflectance values’ at ground level of the selected
dark targets, the aerosol optical thickness is determined.
This approach is easy to implement and can be easily
applied through the ERDAS IMAGINE 9.3 Modeller.

The proposed method differs from the traditional DOS
method in the following ways:

* The method incorporates the true reflectance value, which
is acquired from in situ spectro-radiometric measurements
of selected pseudo-invariant dark targets. Such targets can
be asphalt areas, water treatment reservoirs or dams,
which are common in any geographical area.
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* The method combines both the basic principles of DOS
and radiative transfer equations by incorporating in the
calculations the aerosol single scattering phase function,
single scattering albedo and water vapour absorption (i.e.
relative humidity) values as acquired from several in situ
measurements for similar areas in the vicinity of airports.

Only the simplest method, the DOS (also known as the
DP) correction method has been found to provide a
reasonable and effective correction in the visible Landsat
bands (1, 2 and 3) from the critical assessment made by
Hadjimitsis et al. (2004) using ground spectro-radiometric
measurements. The separate application of radiative transfer
models, such as MODTRAN, 6S did not provide accurate
results during this assessment study (Hadjimitsis et al.
2004). The need to develop a combined procedure in which
empirical calculations will address the computation of
several other atmospheric parameters through a certain
procedure is apparent in this study.

Determination of the aerosol optical thickness

The extraction of aerosol optical thickness (AOT) from large-
scale air pollution areas provides a mean to further assess the
air pollution in these areas (Kaufman et al. 1990; Paronis and
Sifakis 2003; Tulloch and Li 2004). The main sources of
formation of aerosols (particulates) come from emissions of
gasses mainly due to man-made and natural sources
(Department of the Environment 1996). Several attempts
have been made to assess atmospheric pollution by
correlating the derived AOT with a number of inter-related
air pollutants (for example, Sifakis and Deschamps 1992;
Retalis 1998; Tulloch and Li 2004; Hadjimitsis 2008);
however, the problem of how to relate AOT with suspended
particulate matter near the ground and then to relate it with
hazardous aerosol pollutants is still an open question (Gupta
et al. 2006). Several researchers show how the columnar
satellite-derived AOT values relate with surface PM2.5 mass
measurements (van Donkelaar et al. 2006; Engel-Cox et al.
2006). Indeed, this AOT-PM2.5 relationship can be used to
convert the satellite measurements to air quality indices.
While satellites can provide reliable, repeated and synoptic
measurements from space, monitoring surface level air
pollution continues to be a challenge since most satellite
measurements are column-integrated quantities.

The proposed procedure has been developed to be
applicable to short wavelengths like Landsat TM bands 1
and 2 (0.45-0.52 pum, 0.52-0.60 pum) in which water vapour
absorption is negligible (Forster 1984; Kaufman 1989) and
the water leaving radiance is not very low, so that it can be
compared with other bands (like Landsat TM band 4)
avoiding any errors of quantifying very dark targets. Griccs



Appl Geomat (2009) 1:31-40

33

(1975) found that MSS band 4 (0.8-1.1 um) is not useful
for aerosol determination due to the fact that water leaving
radiances for this band are very small. However, the authors
extend the proposed method to be applicable to other
sensors such as the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) and to wave-
length ranges from 0.45 to 0.60 um based on the following
factors:

—  From previous research study in which an assessment
of the available atmospheric correction algorithms, it
has been found that the DOS works more efficiently for
the wavelength region of 0.45-0.70 um (Hadjimitsis et
al. 2004).

— Landsat TM-5 is a very old sensor, its radiometric
accuracy is compromised and, very likely, it will end its
life shortly. Landsat ETM+ has severe acquisition
problems; several lines of each swath are systematically
replaced by simulated values. Moreover, there are no
plans to replace these sensors in the forthcoming
period. Indeed, there is a great need to use other
sensors such as ASTER.

The use of Earth observation to detect atmospheric
pollution in different geographical areas and especially in
cities has received considerable attention (for example,
Kaufman and Frasrer 1983; Kaufman et al. 1990; Sifakis
and Deschamps 1992; Retalis 1998; Retalis et al. 1998;
Sifakis et al. 1998; Retalis et al. 1999; Wald and Balleynaud
1999; Wald et al. 1999; Hadjimitsis et al. 2002; Paronis and
Sifakis 2003, Tulloch and Li 2004; Hadjimitsis and Clayton
2006; Hadjimitsis et al. 2007). All the studies have involved
the determination of AOT and have used air pollution and
meteorological data to support their findings. Kaufman et al.
(1990) developed an algorithm for determining the AOT
(using land and water dark targets) from the difference in the
upward radiance recorded by the satellite between a clear
and a hazy day. His method assumes that the surface
reflectance between the clear day and the hazy day images
does not change. Kaufman et al. (1990) recommended
choosing images a short time apart and that solar zenith
angles and observation angles should be as close as possible
to avoid any effects of non-Lambertian surfaces, which
might result in different reflectance values. Sifakis and
Deschamps (1992) used SPOT images to estimate the
distribution of air pollution in the city of Toulouse in France.
They developed an equation to calculate the aerosol optical
depth difference between one reference image (acquired
under clear atmospheric conditions) and a polluted image.
Their method was based on the fact that, after correction of
solar and observation angle variations, the remaining
deviation of apparent radiances is due to pollutants. Retalis
(1998) and Retalis et al. (1999) showed that an assessment of
the air pollution in Athens could be achieved using the

Landsat TM band 1 by correlating the AOT with the
acquired air pollutants. They developed a new algorithm
based on the optical thickness (optical density) relationship
found by Sifakis and Deschamps (1992) and on the fact that
reflectances of images acquired within a limited time interval
are not drastically changed. Wald and Baleynaud (1999)
found that Landsat TM band 6 (thermal band) is highly
correlated with the amount of black particulate.

Methodology

For estimating the effects of the atmosphere, it is necessary
to model all the atmospheric mechanisms in relation with
the at-satellite received radiance or reflectance. Most
atmospheric correction methods are based on this approach
and use radiative transfer calculations to solve this problem.
It is essential to formulate a RT equation in which all the
interaction processes that occur can be adequately described
(Chandrasekhar 1960; Cracknell and Hayes 1993). By
combining the RT calculations with the DP atmospheric
correction method, the following steps have been used to
derive the AOT. The procedure shown below has been
presented for Landsat TM short wavelengths (TM band 1
and 2) and can be applied to ASTER band 1 images.

For TM band 1, the retrieved target reflectance is
approximated by (Hill and Sturm 1991; Turner and Spencer
1972; Turner 1973, Turner 1975):

o ﬂ'.(Lts — LP)
Pie = t(u) 1 .Eg

where

(1)

Prg is the target reflectance at ground level

Ly is the at-satellite radiance (integrated band
radiance measured in W/m?/sr)

L, is the atmospheric path radiance (integrated band
radiance measured in W/m?/sr)

Eg is the global irradiance reaching the ground

t(r) T 1is the direct (upward) target-sensor atmospheric
transmittance

For a dark object such as a large water reservoir, the
target reflectance at ground level (pig = pge) is very low but
is not zero. From this large reservoir, the DP will be seen
at-satellite to have radiance L = Lg4s. Therefore, Eq. 1 can
be re-written as:

ﬂ.(LdS — LP)

1) 1 Ea @)

pdg =

where

pae 18 the dark target reflectance at ground level
Lys s the dark target radiance at the sensor in W/m?/sr
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By ignoring any absorption from ozone or water vapour
and by using the equation given by Hill and Sturm (1991),
the global irradiance reaching the target Eg is

Eg = Eo.exp[—(1/27: + 1/6 7a) / (1)] (3)
where

Ey 1is the solar irradiance at the top of the atmosphere in
W/m?

7  is the Rayleigh optical thickness

7, 1s the AOT

po  Ho=cos(6o)

The atmospheric path radiance can be separated into two
terms, the Rayleigh and aerosol path radiances (Gordon and
Clark 1981) i.e.:For each TM band 1,

LP - Lpr + Lpa (4)
where

L, is the atmospheric path radiance due to Rayleigh
scattering in W/m?/sr

is the atmospheric path radiance due to Mie (aerosol)
scattering in W/m?/sr

L

pa

For the evaluation of path radiance due to Rayleigh
scattering, the equation given by Saunders (1990) and
Gilabert et al. (1994) can be used

B (Eo.cos(6y).P;)
Ly = {471'(008(90) + cos(@v))}‘

{1 —exp[—7:(1/cos 8y + 1/cos 6,)]}.tu,0 T - to, T

(5)
where
Ly is the atmospheric path radiance due to Rayleigh

scattering

Ey is the solar irradiance at the top of the atmosphere
P, is Rayleigh scattering phase function
0o is the solar zenith angle
0, is the sensor viewing angle
T is the Rayleigh optical thickness
tm,o | is the transmittance factor due to water vapour
fo, T 1is the transmittance factor due to ozone

The effect of ozone and water vapour absorption in the
Landsat TM band 1 is considered negligible (Forster 1984).
Therefore fi,0 T=1 and to, 1= 1. The Rayleigh optical
thickness, 7, and the Rayleigh scattering phase function P,
are well established (Hill 1993; Sturm 1981). These can be
calculated using Eqgs. 7 and 8. The single scattering phase
function P(1) is used to describe the angular distribution
of the radiation scattered by aerosol particles (Mie
scattering) and gas molecules (Rayleigh scattering). The
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definition of Rayleigh phase function P.(uo) is well
established and is given by equation (Aranuvachapun
1986; Sturm 1981, 1983; Yil-Yi 1982; Forster 1984; De
Haan et al. 1991; Hill 1993)

Pulaiy) = > (1 + cos? y) (©)

A w

where
v is the scattering angle

For nadir viewing satellite systems, 6,=0° and yw=
180°—6, (Gilabert et al. 1994), therefore

P(py) = % (14 cos® 6) (7)

Sturm (1981) reports that for most applications in remote
sensing the approximate expression given below is suffi-
ciently accurate.

(1) = 0.00879.4, 4% (8)
where
Ac s the central wavelength

The AOT was calculated using the formula given by Yil-
Yi (1982):

- (Eo.cos(69).Pa)
Lp'd _wa{4ﬂ(c:s(cﬁ(:)s)+zos(ev)) } '

{1 — exp[—ra(l/coseo + 1/COS9V)}}.I‘HZO T.t0, T 9)

exp[—7,(1/cos 6y + 1/cos 6,)]
where

Ly, s the atmospheric path radiance due to Mie (aerosol)
scattering in W/m?/sr

®, s the aerosol single scattering albedo

P, s the aerosol scattering phase function

T,  1is the AOT

The direct (upward) target-sensor atmospheric transmit-
tance found in Eq. 2 can be determined using the following
equation:

t(6,) 1= exp(—7/cos 6,) (10)

The aerosol single scattering albedo (@,) denotes the
ratio between the aerosol scattering coefficient and the total
extinction coefficient (scattering + absorption) (Kaufman
1989). From measurements of the single scattering albedo
at ground level, Waggoner et al. (1981) found for urban and
residential areas w, ranges from 0.73 to 0.87 and for remote
areas w, ranges from 0.89 to 0.95. The areas under
investigation are considered as urban and suburban with
residential regions, so a value of @,=0.80 is used here as
approximation. If the aerosol single scattering albedo is



Appl Geomat (2009) 1:31-40

35

equal to 1, this corresponds to a perfectly scattering aerosol
(Chandrasekhar 1960).

The aerosol phase function P,(u) is difficult to be
estimated accurately because of the great variability of
aerosol particles. Several authors refer to the use of
approximate relations for estimating the P,(11o) (Turner et al.
1971; Sturm 1981; Hill 1993). Turner et al. (1971) provide
some graphs of these functions in terms of wavelength by
considering a continental type aerosol. Forster (1984) used
the graphical method of Turner et al. graphical method and
suggested using P,(uo) at A=0.7 um for all wavelengths,
since the P,(ug) does not change significantly with
wavelength. Another way to determine P,(uo) is to use
the Henyey—Greenstein phase function (Gordon 1976;
Gilabert et al. 1994; Kneizys et al. 1983, 1988; De Haan
et al. 1991). However, many aerosols are characterised by a
large amount of back scattering besides the strong forward
scattering. This case is modelled by the Two-term Henyey—
Greenstein phase function (TTHG) (Gordon et al. 1983;
Gilabert et al. 1984; De Haan et al. 1991), which has been
shown to agree with the Mie scattering theoretical calcu-
lations. In this proposed procedure, the TTHG equations
were used.

The remaining unknowns in Eq 2 are the AOT and the
reflectance value of the dark target. The dark reflectance
should be come from the range of ground measurements for
some suitable dark calibration targets with non-variant
reflectance values through the time. The spectral character-
istics of such dark targets can be easily found in the
literature or from other ground campaigns.

By combining Eqgs. 2, 3, 4, 5, 6, 7, 8 and 9 and solving
for 7, the optical thickness due to particulate matter
(aerosols) can be calculated. The key parameters in the
above suggested procedure are the at-satellite radiance from
a dark object at ground level and the aerosol scattering
phase function. In this case, the approximation parameters
and the TTHG equation were used to model hazy
atmosphere with continental aerosols (Gilabert et al. 1994;
Hill and Sturm 1991). By selecting TM band 1, in which
the absorption is assumed to be minimum, and by using
images acquired over a short interval time (Kaufman et al.
1990) with a nearly constant range of relative humidity,
scattering due to molecules and particulate matter were
assumed to represent solely the atmospheric path radiance
term. Furthermore, it was assumed that the water optical
properties during the short period of times did not change
dramatically.

The suggested method is an empirical one based on
theoretical calculations of atmospheric modelling. In order
to make the computations manageable, certain approxima-
tions about atmospheric parameters such as aerosol single
scattering phase function and single scattering albedo have
been made. Based on the fact that, with atmospheric

modelling, it is difficult to determine the real atmospheric
conditions (Griccs 1975), some errors are expected.

The key assumptions that correspond to the proposed
algorithm are the following:

¢ The surface dark target reflectance does not vary
between the images

¢ The effects of multiple-scattering are neglected,

¢ Relative humidity does not have a significant effect
on aerosols (absorption)

In the proposed method, secondary contributions to the
atmospheric path radiance from the surrounded land are
neglected.

Results

The method described in “Determination of the aerosol
optical thickness”, was tested on two different geographical
areas, the Lower Thames Valley area in the vicinity of
Heathrow Airport (UK) and Paphos District (Cyprus) for
determining the AOT for specific area of interest.

Heathrow Airport area (UK)

Firstly, this method was applied to Landsat-5 TM Band 1
sub-scenes of Heathrow Airport area in the West London
(see Fig. 1) acquired on 17 May 1985, 2 June 1985 and 4
July 1985 with similar solar zenith angles. This area
consists of several inland water bodies, especially water
storage reservoirs. Such reservoirs can be served as suitable
dark targets for determining the AOT. The reservoir’s
ground reflectance values were obtained from the ground
measurement campaign performed by Hadjimitsis (1999)
using a GER1500 field spectro-radiometer. The minimum
reflectance value in TM band 1 from the range of ground
reflectance values was selected. These reflectance values
were compared with other spectral values found in the
literature such as Arenz et al. (1996) for Colorado Front
Range Reservoirs. Using the DP values (in radiance) found
from the masked images of reservoirs, the Rayleigh optical
thickness, Rayleigh and aerosol (TTHG) phase function,
the AOT was determined for each image as shown Table 1.

Visibility is closely related to the AOT, as shown by
Forster (1984), Hadjimitsis and Clayton (2006) and
Hadjimitsis et al. (2007). Therefore, the available visibility
data found during the satellite overpass can be used as a
tool for testing our determined AOT values. From Table 1,
it is apparent that, in the image acquired on 4 July 1985, the
AOT was significantly increased. High correlation was
found by relating the visibility and determined AOT as
shown by Hadjimitsis (1999). This means that aerosol
concentrations might be increased on 4 July 85 due to high
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Fig. 1 Landsat TM-5 area of
interest near the London Heath-
row Airport Area-UK

emissions from primary sources, such as road transport and
industrial activities, which are the main sources of aerosol
temporal variability (Department of the Environment 1996),
but this needs further testing and investigation in the case
where measurements of air pollutants are available. The
chart provided by Forster (1984) for relating the AOT with
the visibility values was used to assess the determined AOT
using the proposed method. The visibility data found at the
satellite overpasses in relation with the determined AOT
and those found using Forster chart was in a general
agreement.

Paphos Airport area (Cyprus)
The method has been tested on two Landsat TM band 1

images (0.45-0.52 pum) and four ASTER (0.52-0.60 pm)
images.

Two Landsat-5 TM band | images of an area of interests
District near Paphos International Airport in Cyprus (see
Fig. 2) acquired on 3rd of June 1985 and 11th of May 2000
were used. Despite the 15 years difference in acquisition,
both images have very similar solar zenith angles. The area
of interest is concentrated at Paphos District near Paphos
International Airport in which air pollution due to aircraft
movements and ground support equipment provides a
number of different air pollution emission sources. Asprok-
remmos dam (surface area, 2.1 km?) characterised as
eutrophic inland water (Hadjimitsis et al. 2000) was used
as a dark target of determining the AOT. Reflectance values
at ground level for Asprokremmos dam was taken from a
series of ground measurements using a GER1500 field
spectroradiometer during June 1999 campaign (Hadjimitsis
1999). The determined AOT found using the proposed
techniques was in a general agreement with one found

Table 1 Derived aerosol optical thickness using the proposed method for images acquired on 17 May 1985, 2 June 1985 and 4 July 1985

Image date  Solar zenith angle ~ Atmospheric pressure (hPa)  RH (relative humidity) (%)  Visibility (km)  Aerosol optical thickness
17-May-85 37.02 1,023.3 54.00 13 0.60
02-June-85 34.60 1,024.9 55.00 26 0.13
04-July-85 34.92 1,016.00 60.40 7.5 0.75

Meteorological data obtained from Heathrow Airport for the satellite overpass are presented. Meteorological data are obtained every 1 h so an

interpolation was made to match the Landsat TM overpass
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Fig. 2 Landsat TM-5 area of
interest near the Paphos Airport
and Asprokremmos Dam

using the chart-technique presented by Forster (1984) for
the Paphos area (Hadjimitsis 1999).

The proposed method has also been applied to ASTER
images (0.52-0.60 um) of the Paphos airport area for four
images acquired on the 4th of February and 26th of February
2008, 17th of December and 24th of December 2007 (sce
Fig. 3). The selected dark targets were Asprokremmos Dam
and an asphalt surface at Paphos Airport. Surface reflectance
values of these targets were acquired from spectro-
radiometric measurements obtained from a series of in situ
recent and past campaigns (Hadjimitsis 1999; Hadjimitsis et
al. 2009). Such targets have been found to be non-variant
targets in that their reflectances do not change with time. For
asphalt targets, the surface ground reflectance of 10.10%
(asphalt) and 3.2% (dam) has been used, respectively. The
determined AOT is shown in Table 2. The determined AOT
found using the proposed technique was in general agree-
ment with the one found using the chart-technique presented

Fig. 3 ASTER image of interest
near the Paphos Airport and
Asprokremmos Dam

by Forster (1984) in which visibility values are plotted
against the AOT from 0.45 to 1.1 pm.

Accuracy assessment of the method

The proposed method has been applied to remove the
atmospheric effects and determine the AOT from Landsat
TM/ETM+ image data of the Paphos District area in
Cyprus, acquired on the 20th of July, 5th of August 2008
and 13th of August 2008. Reflectance measurements for
each of the calibration/validation targets were made during
the satellite overpass using a GER 1500 spectroradiometer
(300-1,100 nm; nominal dispersion, 1.5 nm; spectral
resolution, 3 nm). A single sensor head was used fitted
with a 4° lens. References to incident irradiance over a
calibrated Spectralon™ panel were obtained for every three
to ten target measurements, the frequency depending on the
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Table 2 Determined aerosol optical thickness (AOT) using ASTER
band 1 images of the Paphos Airport area in Cyprus

Date of image acquisition Determined AOT

04 February 2008 0.18
26 February 2008 0.39
17 December 2007 0.49
24 December 2007 0.90

degree and change of cloud cover at the time of the
measurement. The GER 1500 experimental data were
filtered through the relative spectral response functions
and averaged within the limits of the first four TM bands to
yield the in-band reflectance values. The Microtops II
(Solar Light Company, USA) hand-held sun photometer
that provides AOT (AOD) and columnar water vapour from
instantanecous measurements, at five channels (440, 500,
670, 936, and 1,020 nm) was used in this study to
determine the AOT.

Other individual targets that are considered to be non-
variant targets over time, such as large asphalt and whitish
soil places, have been used to assess the accuracy of the
proposed method. The reflectance values for each target for
each image were calculated from the ground spectral
measurements, and image reflectances were derived for
corresponding pixels from the calibrated after-atmospheric
correction image using the determined AOT from the
proposed method (1-3 pure pixels). Overall, estimated
reflectances were within +2-3 reflectance units of actual
reflectances.

Indeed, by comparing the AOT obtained using the
proposed method and those found using the sun-
photometer, it is apparent that there is a very closed
agreement between the two (see Table 3).

Conclusions

This study provides a detailed description of the derivation
of an atmospheric correction method that combines radia-
tive transfer equations and the DP principle. It has been
shown by Hadjimitsis et al. (2003) that the DP is the most
suitable technique for removing the atmospheric effects
from cloud-free images. Therefore, the use of the DP
concept in the proposed methodology for determining the
AOT increases the potential of the method.

The extracted AOT from the reservoir system in the Lower
Thames Valley area in the vicinity of Heathrow Airport can be
used as an input parameter for models for monitoring air
pollution after considering other parameters such as PM2.5,
PM10 and TSP measured by standard ground air quality
stations. This is a part of future research study.
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Table 3 Derived aerosol optical thickness from the sun-photometer
and the proposed method for the Paphos District area—Asprokrem-
mos—Mandria area (Cyprus)

Image date Aerosol optical
thickness obtained

from sun-photometer

Aerosol optical
thickness obtained
using the proposed

method
20-July-2008 0.124 0.140
05-August-2008 0.346 0.350
13-May-2008 0.426 0.430

The proposed algorithm is useful when dark objects
such as large eutrophic reservoirs or other inland waters
or asphalt surfaces are present. The algorithm is fast,
practical and can be used by researchers to quantify step-
by-step all the parameters involved in the sensor—
atmosphere—target interaction. The high correlation found
between the visibility value at Heathrow Airport and the
derived AOT increases the potential of the proposed
method. Visibility has been found to be strongly
correlated with AOT as shown in the literature (Forster
1984; Hadjimitsis 2008).

This work shows a new method of determining the AOT
using large eutrophic inland waters and asphalt places as
suitable dark targets. The proposed methodology allows the
determination of the AOT using Landsat TM and ASTER
satellite remotely sensed images with acquired in short
interval time. The proposed method has a number of
advantages such as: ease of computation, such dark targets
are common in many geographical areas; the method is
image-based technique since the assumed dark target
reflectance value can be found from the literature or other
in-situ campaigns; and the methodology is a useful
procedure for determining the AOT as a part of any
atmospheric correction algorithm. The application of the
proposed methodology in two different geographical areas
increases the potential of this technique.

Generally, results of proposed technique demonstrate
the potential of earth observation to support the deter-
mination of aerosol variations in different geographical
areas in which dark inland water bodies are located, such
as areas in the vicinity of London Heathrow Airport area
and Paphos International Airport area. Taken into
account that the Heathrow Airport area is an attractive
area for investigating air pollution due to the local busy
aircraft and road transport levels, the use of satellite
remote sensing imagery, which contains large water
bodies such as reservoirs, is found to be an important
tool for investigating air pollution. The retrieval of AOT
can be useful in other studies such as atmospheric
modelling of atmospheric effects and photochemical air
pollution studies.
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