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Abstract
The significance of adjustment and computation studies has grown in recent years, influencing allied fields like arithmetic 
and satellite geodesy. This empirical study explores the effectiveness of various soft and traditional regression methods in 
correcting survey field data. Specifically, it investigates soft computing techniques such as back-propagation artificial neural 
network (BPANN), radial basis function artificial neural network (RBFANN), generalized regression artificial neural network 
(GRANN), and traditional regression methods like polynomial regression model (PRM) and least square regression (LSR) 
techniques. The study aims to fill the knowledge gap regarding soft computing strategies for modifying real-time kinematics 
(RTK) GPS field data and the ongoing debate between artificial intelligence techniques (ANN) and traditional methods on 
which technique offers the best results in modifying survey field data. Performance criteria, including horizontal displace-
ment (HE), arithmetic mean error (AME), arithmetic mean square error (AMSE), minimum and maximum error values, and 
arithmetic standard deviation (ASD), were used to assess each model technique. Statistical analysis revealed that RBFANN, 
BPANN, and GRANN achieved superior accuracy compared to conventional techniques (PRM and LSR) in adjusting real-
time kinematics GPS data. RBFANN outperformed BPANN and GRANN in terms of AME, AMSE, and ASD of their 
horizontal displacement. These findings suggest that soft computing techniques enhance real-time kinematics GPS field data 
adjustment, addressing critical issues in accurate positioning, particularly in Ghana. This study contributes to the knowledge 
base for developing an accurate geodetic datum in Ghana for national and local objectives. This will lay a foundation for the 
global determination of exact positions in Ghana. RBFANN emerges as a promising option for real-time kinematics GPS 
field data adjustment in topographic surveys. However, care should be taken to check issues of data overfitting.

Keywords  Back-propagation neural network · Generalized regression neural network · Real-time kinematics Global 
Positioning System (RTK GPS) · Horizontal displacement · Radial basis functions

Introduction

In recent years, the fields of satellite and mathematical 
geodesy have greatly benefited from advancements in the 
adjustment and computation of survey field data. These 
techniques have been instrumental in evaluating error mag-
nitudes and establishing tolerance thresholds (Yakubu et al. 

2018). Furthermore, as the collection of survey field data 
often involves redundant observations, it becomes impera-
tive to modify these data to ensure consistency (Ghilani and 
Wolf 2006). The pursuit of accurate survey data adjustment 
remains a focal point for geodesists, geophysicists, survey-
ors, topographers, and other scholars (Asenso-Gyambibi 
et al. 2022). GPS observations, as a vital component of sur-
veying, are not excluded from errors. Factors such as sat-
ellite orbital errors, signal transmission timing issues due 
to atmospheric conditions, receiver errors, multipath errors 
due to reflection from nearby buildings or other surfaces, 
miscentering errors of the reception antenna over the ground 
station, and receiver height-measuring errors contribute to 
inaccuracies (Ghilani and Wolf 2006). These signal errors 
affect the accuracy of point positions. To mitigate these 
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errors and enhance point location precision, duplicate obser-
vations are made, necessitating the adjustment of field data 
using both survey methodologies (Ghilani and Wolf 2006).

The field of geodesy demands rigorous adjustment and 
computation methods. Over the years, various techniques 
have been employed, including the Kalman filter (KF) 
(Bashirov et al. 2008; Wang 2014), least squares collocation 
(LSC) (Ruffhead 2012), total least squares (TLS) (Schaffrin 
2006), and kriging methods (Erol and Celik 2005; Kleijnen 
2009). The ordinary least square (OLS) method has conven-
tionally served as the go-to technique for adjusting surveying 
networks (Okwuashi and Eyoh 2012). OLS treats observa-
tion equations as stochastic to minimize the square of the 
sum of residuals, addressing errors solely in the observation 
matrix. Many geoscientific researchers have successfully 
applied OLS to tackle various scientific challenges (Annan 
et al. 2016). To improve OLS efficiency, the total least 
squares (TLS) method was developed (Annan et al. 2016). 
However, it is worth noting that the SVD (singular value 
decomposition) used in TLS does not preserve the structure 
of the extended data matrix in typical scenarios, potentially 
affecting its statistical idealness (Golub and Van Loan 1989; 
Peprah and Mensah 2017). Additionally, least squares collo-
cation (LSC) requires changes in the cross-variance function 
to maintain its modeling effectiveness (Ophaug and Gerlach 
2017). However, these classical methods cannot meet the 
current precision requirements and require more advanced 
techniques (Lee et al. 2020).

In parallel to these developments, the field of artificial 
intelligence (AI) has made significant strides. The ability 
to simulate human functions, traits, and features has been 
a hallmark of AI success over other traditional methods 
(Maidaniuk et al. 2022). Akcin and Celik (2013) conducted 
a comparative test, pitting local geoid heights derived from 
trained artificial neural network (ANN) models against 
heights predicted using Kriging methods in the Bursa Met-
ropolitan Area, Turkey. The results favored the trained ANN 
models, highlighting their potential in geodesy and survey 
data adjustment. ANN, particularly back-propagation artifi-
cial neural network (BPANN), generalized regression arti-
ficial neural network (GRANN), and radial basis functions 
artificial neural network (RBFANN), has gained traction 
in various mathematical and satellite geodesy applications 
(Ziggah et al. 2017). These applications encompass adjust-
ing differential Global Positioning System (DGPS) data, 
coordinate transformation, modeling DGPS data uncertain-
ties, tidal height predictions, road damage detection after 
earthquakes, orthometric height predictions in mining, air 
overpressure predictions, soil nutrient forecasts, rainfall pre-
dictions, and more. The study aims to fill the knowledge gap 
in showcasing the most accurate techniques between artifi-
cial intelligence techniques (ANN) and classical methods in 
adjusting real-time kinematics (RTK) GPS field data.

Despite the advancements, it is evident from the exist-
ing literature that ANN approaches have seen limited use in 
Ghana, and their suitability for modifying RTK GPS data 
remains underexplored due to the lack of technical know 
how and poor broad band connectivity. A comprehensive 
comparison of classical regression techniques and AI model 
training methods for rectifying RTK GPS data in Ghana is 
yet to be undertaken. This study presents ANN approach 
as an effective technique for enhancing RTK GPS survey 
field data. The study aims to investigate the application of 
BPANN, GRANN, and RBFANN as alternative technolo-
gies to existing classical approaches. It evaluates the effec-
tiveness of these strategies in modifying survey field data, 
employing various performance criteria indices, includ-
ing horizontal displacement (HD), arithmetic mean error 
(AME), arithmetic mean square error (AMSE), minimum 
and maximum residual values, and arithmetic standard devi-
ation (ASD). These indices are used to assess the strength of 
each model in adjustment by measuring how the predictions 
are close to the actual values. Thus, the study offers Ghana-
ian researchers and practitioners a valuable opportunity to 
assess the potential of soft computing techniques in address-
ing some of the country’s geodetic challenges and advanced 
models for survey data adjustment. Beyond its impact on 
Ghanaian geodesists, this study contributes substantively to 
the scholarly discourse surrounding the application of soft 
computing techniques in addressing challenges within the 
surveying and related fields. By advancing the understanding 
of these techniques and their efficacy, it paves the way for 
more precise and efficient surveying practices in a rapidly 
evolving technological landscape.

Study area

The Greater Kumasi Metropolitan Area (GKMA), which 
includes the inner Kumasi and other nearby municipalities 
and districts such as Asokore Mampong, Ejisu, Juaben, 
Kwabre East, Afigya Kwabre, Atwima Kwanwoma, and 
Atwima Nwabiagya Districts, is located in the Ashanti 
Region of Ghana. Its latitudes are 6° 35′N and 6° 40′S and 
its longitudes are 1° 30′W and 1° 35′E. It has an elevation 
of between 250 and 350 m above sea level (Ghana Statisti-
cal Service 2014). A significant river (Owabi) and streams 
including Subin, Wiwi, Sisai, Aboabo, and Nsuben cross 
the undulating ground (Ghana Statistical Service 2014; 
Caleb et al. 2018). Hence, the intervisibility of various 
observation points will be affected in geodetic surveys due 
to the undulating nature of the terrain and the network of 
streams. With a total population of 3,190,473, it has a land 
area of 2603 km2 (Oduro et al. 2014). The area experi-
ences a rapid population growth with its associated rise 
in built up areas, resulting in increasing multipath errors 
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over the years. The War Office 1926 ellipsoid serves as 
the research area’s horizontal geodetic datum, and mean 
sea level (MSL), which approximates the geoid, serves as 
the study area’s vertical datum (Peprah and Kumi 2017). 
Ghana projected grid, derived from the Transverse Merca-
tor with 1° W Central Meridian and the World Geodetic 
System 1984 (WGS84) (UTM Zone 30N), is the type of 
coordinate system utilized in the research region (Yakubu 
et al. 2018). The city of Metropolis is classified as wet sub-
equatorial. The average maximum temperature is around 
30.7 °C, while the average lowest temperature is about 
21.5 °C. At sunrise and sunset, the average humidity is 
about 84.16% and 60%, respectively (Caleb et al. 2018) A 
clear or an unobstructed view of the sky should be con-
sidered for best results in RTK GPS surveys. There is a 
double maximum rainfall regime in the research area, with 
roughly 214.3 mm in June and 165.2 mm in September 
(Ghana Statistical Service 2014). The area experiences 
a considerable amount of rain which tends to scatter or 
absorb GPS signals, reducing the positioning accuracy due 
to bending of signals by water droplets. The Metropolis 

is located in the moist semi-deciduous south-East Eco-
logical Zone, which is a transitional forest zone (Ghana 
Statistical Service 2014). The forest canopy can introduce 
errors such as receiver and multipath errors in GPS sur-
vey; hence, duplicate observations are made, necessitating 
the quest to find the most accurate technique for adjust-
ment of GPS field data. Middle Precambrian rock pre-
dominates in the study area, which also contains two major 
lithostratigraphic and lithotectonic complexes, namely the 
Paleoproterozoic supracrustal and intrusive rocks and the 
Neoproterozoic to early Cambrian lithologically diverse 
platform sediments. The study area’s distinctive geological 
structure has contributed to the growth of the construction 
industry in the Metropolis, with few small-scale mining 
operations and the proliferation of stone quarrying and 
mining (Osei-Nuamah and Appiah-Adjei 2017). Geodetic 
data is employed by the construction and mining industries 
in their activities such as building and road set outs, ore 
markouts, topo pickups, and demarcation of mine conces-
sion. A diagram of the placement of control sites within 
the research region is shown in Fig. 1.

Fig. 1   Map of the study area
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Resources and methods used

Resources used

Topographic data from a survey conducted by the authors for 
the Ghana urban water supply project in the Greater Kumasi 
Metropolitan Area (GKMA) served as the study’s primary 
source of data. A total of 1000 control points were acquired 
from September 5, 2022 to October 15, 2022 using real-time 
kinematics (RTK). GPS equipment make up the sample data. 
This was to provide enough data to better assess the model 
performance, identify patterns, trends, and any anomalies. 
For the chosen controls of the study area, the data consists of 
three-dimensional coordinates, namely eastings, northings, 
and ellipsoidal heights designated as (E, N, h), which were 
recorded using the RTK GPS device. These data forms the 
actual observation points; hence, the best model for adjust-
ment should be able to predict these values accurately. 
Table 1 shows sample of the dataset collected from the field.

Methods used

Radial basis function artificial neural network (RBFANN)

An unsupervised learning algorithm built using functional 
approximation is the RBFANN model. It is made up of 
an input layer, a hidden layer, and an output layer, each of 
which serves a different purpose. Sensory elements in the 
input layer link the network to its surroundings. A non-
linear transition from the input space to the hidden space 

was applied in the second layer by the network’s sole hid-
den layer. The network’s response to the activation pattern 
given to the output layer is provided by the linear output 
layer. In this study, the input and output variables were the 
2D horizontal coordinates denoted as 

(
Ni,j,Ei,j

)
 , 
(
Ei,j

)
 , and (

Ni,j

)
 respectively. These variables were chosen in the model 

formulation because they were directly obtained from the 
field. The dataset used to create the model was split between 
training and testing data, with training data making up 70% 
of the overall dataset. A linear function is utilized in the 
input neurons because RBFANN is an accurate interpola-
tor (Erdogan 2009), and the connections between the input 
and hidden layers are not weighted (Kaloop et al. 2017). 
This study applies the Gaussian function, which provides an 
optimal approximation and the weighted hidden output layer 
from Eq. (1) is added to the output neuron.

where n is the number of hidden neurons, x ∈ RM is the 
input, Kj is the output layer weights of the radial basis func-
tion network, and �j(x) is Gaussian radial basis function 
given by Eq. (2) (Idri et al. 2010; Srichandan 2012):

where cj ∈ RM and � are the center and width of jth hidden 
neurons, respectively, and ‖‖ denotes the Euclidean distance.

Back‑propagation artificial neural network (BPANN)

BPANN is an efficient and popular multilayer perceptron 
(MLP) model due to its straightforward implementation 
(Yilmaz et al. 2017; Ziggah et al. 2016). An input layer 
with M inputs, a hidden layer with q units, and an output 
layer with n outputs make up a BPANN. In this investigation, 
the two-dimensional (2D) horizontal coordinates served as 
the M inputs 

(
Ni,j,Ei,j

)
 , while the q units were achieved by 

a trial-and-error training by varying the number of hidden 
neurons, and the n outputs were the estimated (outputs) 
achieved 

(
Ni,j

)
 and 

(
Ei,j

)
 by the BPANN model, respectively. 

The output of the model (yi) with a single output neuron is 
represented by Eq. (3) (Mihalache 2012):

where Wj is the weight between the hidden layer and the 
output layer, wjI is the weight between the input layer and 
the hidden layer, and xi is the input parameter. In this study, 
the selected input and output variables were normalized into 

(1)y(x) =

n∑

j=1

KjXj(x)

(2)�j(x) = e

(
− ∥ xi − cj ∥

2

�j
2

)

(3)y(i) = f

(
q∑

j=1

Wjf

(
M∑

i=1

wj,ixi

))

Table 1   Sample of data used for the study (unit in meters)

ID Easting Northing Elevations (h)

Pt1 658,143.7 741,095.1 311.380
Pt2 658,340.9 741,791.2 308.365
Pt3 658,340.8 741,792.4 308.387
Pt4 658,339.8 741,792.3 308.382
Pt5 658,339.9 741,791.2 308.386
Pt6 658,342.0 741,790.2 308.516
Pt7 658,342.8 741,789.6 308.505
Pt8 658,343.1 741,787.1 308.585
Pt9 658,340.8 741,789.3 308.474
Pt10 658,339.1 741,788.8 308.32
Pt11 658,338.4 741,788.6 308.302
Pt12 658,338.7 741,788.4 307.710
Pt13 658,338.2 741,788.4 308.341
Pt14 658,345.1 741,772.4 309.595
Pt15 658,346.5 741,761.9 310.349
Pt16 658,344.6 741,761.7 309.961
Pt17 658,342.3 741,761.3 309.439
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the interval [− 1, 1] using Eq. (4) (Mueller and Hemond 
2013) given as

where Z(i) represents the normalized data, xi is the measured 
coordinate values, while xmin and xmax represent the mini-
mum and maximum values of the measured coordinates with 
ymax and ymin values set at 1 and − 1, respectively. Based on 
the lowest arithmetic mean error (AME), arithmetic mean 
square error (AMSE), minimum residual error(rmin) , maxi-
mum residual error(rmax) , and arithmetic standard deviation 
(ASD), the best model was found. Their mathematical for-
mulation is described in the section on model performance 
assessment. In keeping with the approach in the litera-
ture, the current investigation used one hidden layer in the 
BPANN (Hornik et al. 1989). Moreover, the hyperbolic tan-
gent activation function was chosen for the hidden units to 
incorporate non-linearity into the network, whereas a linear 
function was used for the output units. Equation (5) gives 
the definition of the hyperbolic tangent function (Yonaba 
et al. 2010):

(4)Z(i) =
ymin + (ymax − ymin) × (xi − xmin)

(xmax − xmin)

(5)Z(x) = tanh(x) =
2

1 + e−2x
− 1

where x is the total weighted inputs. The systematic method-
ology used in this work, which included ANN and traditional 
regression techniques, is depicted in a flowchart in Fig. 2. 
The dataset was trained independently using the Leven-
berg–Marquardt algorithm (trainlm) and the Bayesian regu-
larization training technique (trainbr). Sequential trial-and-
error approach was adopted to achieve the optimal results by 
varying the number of hidden neurons from 1 to 50.

Generalized regression artificial neural network (GRANN)

GRANN consisting of a single-pass neural network based 
on a general regression theorem GRANN which was first 
introduced by Specht (1991) is a different kind of radial basis 
function neural network (RBFANN), which is built on kernel 
regression network (Hannan et al. 2010) with one pass learn-
ing algorithm and highly parallel structure (Dudek 2011). Four 
layers make up the GRNN: the input layer, the pattern layer 
(also known as the radial basis layer), the summation layer, 
and the output layer. The northings and eastings, designated 
as(Ni,j,Ei,j) , were the input variables (independent datasets) in 
this investigation and the output variables (dependent datasets) 
were the northings and eastings denoted a s

(
Ni,j

)
and (Ei,j) , 

respectively. The total number of observational parameters 
affects how many input units there are in the first layer. A 
training pattern and its output are delivered to each neuron 
in the pattern layer, which is coupled to the first layer. The 

Fig. 2   Flow chart of methodol-
ogy
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summation layer and the pattern layer are interconnected. The 
single division unit and summation unit are the two types of 
summation that make up the summation layer (Hannan et al. 
2010). The output datasets are normalized by the summation 
and output layer together. Radial basis and linear activation 
functions are utilized in the hidden and output layers of the 
network during training. Two neurons in the summation layer 
are coupled to each unit in the pattern layer. The unweighted 
outputs of pattern neurons are computed by one neuron unit, 
while the weighted response of the pattern is computed by 
the other neuron unit. The estimated output variables are pro-
duced by dividing the output of each neuron unit by the other 
in the output layer. Similar with other network architectures, 
the input layer receives the inputs from the datasets, the pattern 
layer computes the Euclidean distance, and the summation 
layer comprises the numerator and denominator parts. The 
output is estimated using the weighted average of the train-
ing dataset outputs in which the weight is computed using the 
Euclidean distance between the training and test data, respec-
tively. In GRANN model formulation, the spread constant con-
stitutes the adjustable parameter that needs to be varied until 
the optimal results are achieved. The weighted hidden output 
layer from Eq. (6) is added to the output neuron in the current 
study, which applies the Gaussian function (Erdogan 2009) as

where n is the number of hidden neurons, x�RM is the input, 
Kj are the output layer weights of the radial basis function 
network, and �j(x) is Gaussian radial basis function given by 
Eq. (7) as (Idri et al. 2010; Srichandan 2012).

where cj�RM and � are the center and width of jth hidden 
neurons, respectively, || denotes the Euclidean distance.

Least square regression model (LSR)

The least square approach is a statistical method that can iden-
tify the line of best fit for a model and looks for the residuals 
with the lowest sum of squares. Regression analysis and esti-
mation frequently employ this technique (Miller 2006; Pep-
rah and Mensah 2017). Given a set of equations whose least 
squares solution is indicated by Eq. (8),

where D ∈ Rm×n,X ∈ Rn×d, L ∈ Rm×d,m ≥ n(Annan et  al. 
2016; Schaffrin 2006). D is the design matrix, Z is the matrix 
of the unknown parameters, and L is the observation matrix.

(6)y(x) =

n∑

j=1

Kj�j(x)

(7)�j(x) = e

(
− ∥ xi − cj ∥

2

�j
2

)

(8)DZ ≈ L

Equation  (9) indicates that the unknown parameters 
matrix Z can be solved using the ordinary least squares 
method:

Equation (10) can be used to obtain the relevant error 
vector:

Kumi-Boateng and Ziggah (2020) improve the estimation 
performance of classical least squares using artificial neural 
network techniques in coordinate transformation in Ghana. 
The findings from their study revealed that the integration of 
the least square and neural network improved the transfor-
mation precision than the independent approach. Moreover, 
Yakubu et al. (2018) explore the efficiency and performance 
of ANN to classical least squares in adjusting DGPS survey 
field data. The results from their investigations showed that 
both ANN and least squares satisfactory adjusted the data to 
a good precision and ANN provides an alternative approach 
in adjusting survey field data.

Polynomial regression model (PRM)

In this study, the northings and eastings were modeled and 
predicted using a polynomial mathematical model. The inde-
pendent variables were the horizontal coordinates (N, E). 
Equation (11), which is abbreviated as, provides the general 
expression of an m-degree polynomial interpolation (Yilmaz 
et al. 2017):.

where Z(N,E) is the ellipsoidal height information of the 
point with known horizontal coordinates (N,E) and ai,j 
is the unknown polynomial coefficients to be estimated 
(i, j = 0,… ,m) . The effectiveness and performance of the 
simple planar (SP) polynomial model in calculating local 
heights was suggested by Dawod et al. (2022) and Peprah 
and Kumi (2017). The general SP polynomial model is 
denoted by Eq. (12) given as

where Zij is the estimated ellipsoidal heights, (N,E) are the 
horizontal coordinates of the stationary positions, and ai,j are 
the unknown parameters that can be determined using least 
square approach. PRM model has proven its superiority in 
solving majority of problems in geodesy studies compar-
ing with other models. Notable among them are estimating 
orthometric heights in a mine (Peprah and Kumi 2017) and 
geoid modeling (Dawod et al. 2022).

(9)Z =
[
DTD

]−1[
DTL

]

(10)V = DZ − L

(11)Z(N,E) =
∑m

i=0

∑m−1

j=0
aijN

iEj

(12)Zij = ao + a1N + a2E
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Model performance assessment

Statistical error analysis was done to evaluate the accuracy 
of the models that were being used. Additionally, to pro-
duce a more comprehensive model performance analysis 
consistent with the training and testing results, dimen-
sioned error statistics indicators such as the horizontal 
displacement (HE), arithmetic mean error (AME), arith-
metic mean square error (AMSE), maximum and minimum 
residuals (rmin and rmax), and arithmetic standard devia-
tion (ASD) were the statistical markers used. Their math-
ematical expressions are provided by Eqs. (13) through 
(18), respectively.

where n is the total number of the observations, �i and �i 
are the measured and adjusted 2D horizontal coordinated 
from the various techniques, � denote the residual between 
the measured and adjusted field data, � is the mean of the 
residual, and i is an integer varying from 1 to n.

Results and discussions

Results

In defining the best RBFANN training model, more 
than one hyperparameter tuning was required in order to 
achieve the best optimal results. The RBFANN optimal 
solution leading to a smooth function was reached after 
sequential training trials with a spread parameter value of 
0.8 and a maximum number of hidden neurons set of 20. 
As shown in Table 2, there is a close to perfect relationship 
between the observed and predicted output datasets. This 
is further indicated by the lowest statistical measurement 
recorded for the training and testing datasets. Moreover, 

(13)HE =

√(
E2 − E1

)2
+
(
N2 − N1

)2

(14)AME =
1

n

∑n

i=1

(
�i − �i

)

(15)AMSE =
1

n

∑m

i=1

(
�i − �i

)2

(16)rmax = �i − �i

(17)rmin = �i − �i

(18)ASD =

√
1

n − 1

∑n

i=1

(
� − �

)2

the error figures recorded in the training and testing results 
are relatively small, as revealed by the statistical indicators 
adopted. Hence, values predicted by the RBFANN model 
are very close to the observed values.

The authors conducted a comprehensive comparison 
between soft computing techniques (BPANN, RBFANN, 
and GRNN) and traditional methods (PRM and LSR) using 
the entire dataset, as summarized in Table 3. The statistical 
analysis presented in Table 3 demonstrates that the proposed 
ANN techniques achieved commendable results comparable 
to classical techniques. This conclusion is supported by the 
statistical assessments provided. Figures 3, 4, and 5 depict 
graphical representations of the AME, AMSE, and horizon-
tal displacement model comparisons for all utilized techniq
ues.

Discussions

Developing of artificial neural network models

The Bayesian regularization learning approach was 
employed to develop a single-layer BPANN model. The 
hyperbolic tangent activation was used in the hidden layer, 
while the linear activation functions were used in the out-
put layer since the dataset observed satisfies a regression 
problem. During the training of the BPANN model using 
trainbr, both the hidden and output layers featured Tansig 
and Purelin functions. The ideal model structure, heavily 
reliant on the number of hidden neurons, was determined 
through a sequential trial-and-error method based on the 
lowest statistical indicators of AME, AMSE, rmax, rmin, 
and ASD. The model was trained with hidden neurons vary-
ing in number from 1 to 20 across iterative training ses-
sions, each comprising 5000 epochs, a learning rate of 0.03, 
a minimum performance gradient of 0.0000001, a target of 
zero, a maximum number of validation failures of six, and a 
momentum coefficient of 0.9. The GRANN predictive model 
consisted of three inputs, a 0.9 width parameter, and two out-
puts. Validation concluded during neural network training 
upon reaching the minimum gradient and maximum epoch. 
The output of both the trained GRANN and RBFANN mod-
els was notably influenced by the spread constant’s value. A 
sequential trial-and-error approach was utilized to determine 
the ideal width parameter values for GRANN and RBFANN 
in each iterative training session. Gradient descent rule was 
employed to train the GRANN and RBFANN models.

The ANN models (BPANN, GRANN, and RBFANN) 
were implemented and programmed using MATLAB 
(R2018a). After multiple training sessions adjusting the 2D 
horizontal coordinates (northings and eastings), the BPANN 
model eventually converged to the optimal model structure, 
which was denoted as [3 10 2]. Statistical analysis revealed 
that the RBFANN structure provided the lowest minimum 
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Table 2   Model results for soft 
computing techniques (units in 
meters)

PCI AME AMSE rmin rmax ASD

BPANN (northings)
Training 0.005327207 0.019865396  − 0.035306996 0.012808901 5.89995E − 16
Testing 0.00167678 0.000843477  − 0.003768905 0.007652645 0.063332897
BPANN (eastings)
Training  − 0.001294345 0.001172731  − 0.447174539 0.004457873 9.05791E − 17
Testing 0.00043671 5.72147E − 05  − 0.00164063 0.007652645 0.030032856
GRANN (northings)
Training  − 0.000662951 0.000307653  − 0.671967934 0.671926541 5.31205E − 16
Testing 0.006130126 0.011273534  − 0.428210783 0.57443724 0.117856134
GRANN (eastings)
Training 0.000617074 0.000266546  − 0.614193357 0.625187136 2.2256E − 16
Testing  − 0.0002536 1.9292E − 05  − 0.5128985 0.71132381 0.01510547
RBFANN (northings)
Training 8.04929E − 11 4.53537E − 18  − 1.3039E − 08 1.40863E − 08 2.60453E − 23
Testing  − 1.59877E − 10 7.6682E − 18  − 6.0536E − 09 0 4.17029E − 09
RBFANN (eastings)
Training  − 9.48E − 12 6.2903E − 20  − 1.199E − 08 1.1059E − 08 1.1963E − 23
Testing  − 1.65698E − 10 8.23673E − 18  − 5.93718E − 09 0 2.87477E − 09
LSR (northings)
Training  − 27.6033942 533,363.162  − 499.517304 313.566744 8.2776E − 13
Testing  − 288.734 25,010,191  − 625.414 170.976 11.48556
LSR (eastings)
Training 206.0399485 29,716,722.26  − 110.823544 648.032361 5.82869E − 12
Testing 372.7272 41,677,663 112.2059 602.0103 7.229777
PRM (northings)
Training 104.1188491 7,588,514.312  − 367.8885678 445.3114858 1.92641E − 12
Testing  − 156.323588 7,331,119.26  − 493.666256 302.750807 2.2354E − 12
PRM (eastings)
Training  − 90.68795433 5,757,013.542  − 407.5571264 351.1524406 6.06949E − 12
Testing 75.708192 1,719,519.1  − 184.31745 305.430442 5.6542E − 13

Table 3   Statistical analysis of 
all the models (units in meters)

PCI rmax rmin AME AMSE ASD

BPANN 0.005732 0.446649 0.00404 0.019055 0.070093
GRANN 0.130091 0.263966 0.006849 0.010969 0.11882
RBFANN 1.79091E − 08 9.24311E − 09 2.86674E − 10 8.75363E − 18 5.06513E − 09
LSR 149.8338 256.1096 309.7964 2.7242966E7 13.57158
PRM 149.7132 256.2342 309.0598 2.7242966E7 13.57158

Fig. 3   AME model graph of the 
models
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values in terms of AME, AMSE, rminimum, maximum x, 
and ASD. The ideal RBFANN prediction model for correct-
ing 2D horizontal data was achieved with a spread param-
eter of 0.1. This optimization was achieved by varying the 
spread parameter from 0 to 1 during each training iteration, 
resulting in the best model denoted as [3 20 0.1 2], com-
prising a spread constant of 0.1, a maximum of 20 hidden 
neurons, 3 input variables (independent variables), and 2 
output variables (dependent variables). For modifying the 
eastings, the most effective RBFANN model was identified 
as [2 20 0.7 1], featuring a hidden layer with a maximum 
of 20 hidden neurons, two inputs (independent datasets), 
two outputs (dependent datasets), and a width parameter of 
0.7. The summarized outcomes of training and testing using 
all soft computing methodologies are presented in Table 2. 
The statistical findings in Table 2 indicate that soft com-
puting approaches have proven to be effective in modify-
ing survey field data for the study area with significantly 

enhanced precision. Encouragingly, the residuals reached 
values of − 1.199E − 08 at the minimum and − 5.93718E − 09 
at the maximum. Furthermore, the arithmetic mean error 
(AME), arithmetic mean square error (AMSE), and arith-
metic standard deviation (ASD) for both training and testing 
demonstrated high levels of respectability and encourage-
ment. Consequently, ANN emerged as a highly effective and 
practical alternative technique for accurately modifying RTK 
GPS data for the research area.

Developing the classical regression models

The Minitab 19 program was used to statistically describe 
the data and determine the correlation between the inde-
pendent variables (input datasets) and the dependent dataset 
before the PRM model was created (output datasets). Equa-
tion (19) is the ideal PRM equation produced by the Minitab 
software for calculating the 2D coordinates (E (i), N (i))):

Fig. 4   AMSE model graph of 
the models
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where E (i), N (i) are the dependent datasets, Z (i) is the 
independent variables (ellipsoidal heights), {308,987, 
0.4794, 19.26}, {217,458, 0.7838, 26.18} are the generated 
unknown parameters by the Minitab software. The software 
was more direct in its use and suits the author preference as 
compared to other statistical software. The final estimated E 
(i) and N (i) values with the given equation and parameters 
were coded and implemented in MATLAB environment. 
The LSR model’s unknown parameters were estimated using 
the least squares method, which was developed and put into 
practice in MATLAB. The statistical performance results of 
the models are shown in Table 2.

Comparing the predictive performance of the ANN models 
with the classical models

The ranking effectiveness of the models applied BPANN, 
RBFANN, GRANN, LSR, and PRM are compared using 
the statistical indicators of rmin, rmax, AME, AMSE, and 
ASD. Tables 2 and 3 provide the best option for evaluat-
ing the model predicted 2D point data of RTK GPS sur-
vey field data. Tables 2 and 3 show that the model with 
the lowest AMSE recorded statistical indicators of the best 
absolute fit to the data. It can be revealed in Table 3 that the 
RBFANN model yielded the best AMSE value after com-
puting the horizontal displacement with a value of 8.75363 
E − 18 m, followed by BPANN and GRANN which achieved 
0.019055 m and 0.010969 m, respectively. These results can 
be confirmed in Fig. 4.

The rmin and rmax statistical indicators show the accu-
racy of the predictive models by revealing the minimum and 
maximum of their differences between the actual dataset 
and the predicted values as an error. Tables 2 and 3 indi-
cate performance rmin and rmax results for all the models 
adopted, respectively. In effect, RBFANN achieved a better 
rmin and rmax values of 1.79091 E − 08 m and 9.24311 
E − 09 m, respectively. In comparison, the BPANN and 
GRANN models achieved relatively results of 0.005732 m, 
0.446649 m, 0.130091 m, and 0.263966 m, respectively. The 
worst performing testing models in rmin and rmax were the 
LSR and PRM models recording 149.8338 m, 256.1096 m, 
149.7132 m, and 256.2342 m, respectively.

The AMSE is commonly used in model formulation 
assessment to represent the error loss function and indicates 
how closely the regression line best fit the set of point. The 
lower the AMSE values, the better the model and output 
dataset. Table 3 shows minimal AMSE value of 8.75363 
E − 18 m for indicating better predictive model. Conversely, 

(19)E(i) = 308987 + (0.4794N(i)) − 19.26Z(i)

(20)(i) = 217458 + (0.7838E(i)) + 26.18Z(i)

from Table 3 results, the RBFANN model proved its superi-
ority in enhancing the survey field data over the other mod-
els in terms of the AMSE evaluation with LSR and PRM 
performing poorly in that regard.

The ASD is the degree of deviation of the variables 
from their true mean. It is observed from Table 3 that the 
RBFANN recorded 5.06513 E − 09 m which implies that the 
predicted values of the dataset did not deviate much from 
their true mean and therefore there is a good relationship 
between the observed and the predicted values. However, the 
best predicted model was observed for the RBFANN model 
as it recorded the best ASD value. Hence, the RBFANN 
predictions exhibit higher replication on the historical 
datasets.

A deeper examination of Table 3 reveals that the pre-
dictions generated by the proposed ANN models closely 
matched observed 2D coordinates (eastings and northings), 
exhibiting superior prediction accuracy over PRM and 
LSR models, which demonstrated lower accuracy. Specifi-
cally, the maximum residual values for conventional tech-
niques and soft computing techniques were 149.7132 m and 
0.130091 m, respectively. Results from the indices used for 
the accuracy assessment attest to the fact that ANN models 
achieve optimum results when used for survey adjustment 
in comparison to traditional methods. The ANN models dis-
played a superior performance due to its ability to learn and 
model nonlinear relationships.

It is noteworthy that the PRM model displayed an ASD of 
13.57158 m and a minimum residual value of 256.2342 m, 
aligning with findings from prior studies (Chen and Hill 
2005; Poku-Gyamfi 2009). This suggests that the PRM 
model’s limitations were associated with increased order and 
distortions in estimated values arising from the least squares 
approach, reaffirming the recommendation for maintaining 
a lower order.

In the context of adjusting observed 2D coordinates, soft 
computing techniques outperformed traditional method-
ologies. The comparatively less effective performance of 
conventional procedures may be attributed to unidentified 
parameters used in model estimation. The statistical analy-
sis of both computing types consistently demonstrates the 
superiority of soft computing techniques in determining 2D 
coordinates for the research region.

Conclusions and recommendations

Enhancing survey field data has been a common practice 
over the years in geodesy in order to determine the 
magnitude of errors and the acceptable tolerance level 
for topographic, astronomic, geodetic, cartographic, 
navigation, and datum-related studies. This procedure is 
carried out using the traditional least squares regression 
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approach. However, existing literature has shown that 
little or no alternative technique has been tested to serve 
as a substitute for the traditional least square. The main 
contribution of this study is to explore the superiority of 
ANN as a realistic alternative technology for enhancing 
GPS survey field data. In this study BPANN, RBFANN 
based on the supervised learning technique as well as 
GRANN, LSR, and PRM have been presented. The findings 
from the study reveal that the RBFANN offered satisfactory 
prediction of the 2D RTK survey data. However, RBFANN 
compared to BPANN, GRANN, LSR, and PRM showed 
superior stability and more accurate prediction results. It 
can therefore be proposed based on the results achieved 
in this study that the RBFANN should be used instead of 
BPANN, GRANN, LSR, and PRM within the study area 
for enhancing survey field data.

On the basis of the results and analysis achieved, it has 
been revealed that northings and eastings feed into the 
RBFANN model could successfully produce accurate esti-
mates of the enhanced 2D datasets. Therefore, this study 
does not have a localized significance but will also open up 
more scientific discourse into the applications of ANN in 
enhancing GPS survey field data within the geoscientific 
community.

In the era of digital revolution marked by innovative dis-
coveries in science and technology, the conventional (tradi-
tional) methods for identifying stationary and non-station-
ary ground truth locations continue to face challenges. In 
developing countries in the global south such as Ghana, the 
Global Positioning System (GPS), as an integral compo-
nent of the Global Navigation Satellite System (GLONASS), 
plays a pivotal role in applications spanning cadastral sur-
veying, topographical surveys, and advanced engineering 
projects. However, the assumption that raw RTK GPS field 
data is inherently exact and accurate, fit for all engineering 
endeavors, warrants a closer examination.

The critical domains of adjustment and computation 
in mathematics and satellite geodesy have garnered 
significant attention over the years as they serve to 
ascertain the alignment of data with acceptable tolerance 
levels. While past research has predominantly emphasized 
traditional methodologies for survey data adjustment, recent 
investigations have explored the integration of artificial 
intelligence (AI) to enhance field data modification in RTK 
GPS data collection.

This study represents an endeavor to bridge these meth-
odologies, employing artificial neural networks (ANN) 
alongside conventional techniques to adapt field data from 
an RTK GPS survey using AI. Through rigorous analy-
sis, the study demonstrates that ANN approaches surpass 
traditional regression procedures in terms of statistical 
performance. Specifically, the radial basis function artifi-
cial neural network (RBFANN) stands out for its superior 

accuracy and precision when compared to back-propaga-
tion artificial neural network (BPANN) and generalized 
regression artificial neural network (GRANN), as evident 
in their respective statistical analyses, and as asserted by 
Konakoglu and Cakir (2018).

As a result, the application of soft computing methods 
for RTK GPS data modification in the study area emerges 
as a more pragmatic approach than reliance on tradi-
tional least squares methods. This endeavor contributes 
significantly to the understanding of Ghanaian geospatial 
experts, offering valuable insights into the effectiveness of 
applying soft computing methods to precisely determine 
stationary points for geodetic purposes.

While this study provides valuable insights, further 
research in Ghana is warranted to harness various deep 
learning soft computing methods. These encompass 
deep learning convolutional neural networks (CNN), 
least squares support vector machines, extreme learning 
machine, and various learning algorithms, including 
Broyden-Fletcher-Goldfarb-Shanno quasi-Newton, 
resilient back-propagation, Fletcher-Reeves conjugate 
gradient, scaled conjugate gradient, Polak-Ribiere 
conjugate gradient, conjugate gradient with Powell/
Beale restarts, one-step secant back-propagation, 
gradient descent, gradient descent with adaptive learning 
rate, gradient descent with momentum, and gradient 
descent with momentum and adaptive learning rate. 
Such investigations will evaluate their performance 
in addressing more intricate engineering tasks, thus 
expanding the realm of computational possibilities.

Beyond its impact on Ghanaian geodesists, this study 
contributes substantively to the scholarly discourse 
surrounding the application of soft computing techniques 
in addressing challenges within the surveying and related 
fields. By advancing the understanding of these techniques 
and their efficacy, it paves the way for more precise 
and efficient surveying practices in a rapidly evolving 
technological landscape.
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