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Abstract

Google Earth Engine (GEE) serves as a versatile platform for processing and visualising geospatial datasets, with its primary
aim being to provide an open platform for planetary-scale geospatial analysis. Over time, GEE has proven itself as a valu-
able and robust tool, offering access to a wide array of imagery within a single consolidated system. Its cloud computing
environment and computational power eradicate the need to store, process and analyse vast amount of satellite imagery on
local computers. GEE has the potential to address some of the challenges associated with earth observation and geospatial
applications, particularly in developing countries. Its development has lessened the reliance on high-speed processors and
extensive storage capacities. Moreover, GEE presents users with a unique opportunity to conduct analyses with minimal
financial investment and equipment requirements. The platform has showcased its capability to perform spatial and temporal
analyses on global-scale data at significantly accelerated computational speed, rendering it an attractive tool for the scientific
community, offering both versatility and accessibility. Its application spread across various sectors including crop inven-
tory, vegetation mapping and monitoring, land cover mapping, disaster management, hydrological studies, urban planning
and management, wetland conservation and management, climate change analysis and forestry analysis. For researchers in
developing countries, who often grapple with challenges related to data accessibility, funding for computer hardware and
software and resource limitations, GEE opens up new avenues. However, despite its potential, the utilization of GEE in
developing countries has fallen short of expectations. Therefore, it is crucial for developing countries to fully leverage this
platform to accelerate their sustainable development.

Keywords Crop inventory - Disaster management - Hydrology - Climate change - Forestry application - Urban planning
and management

Introduction

The Google Earth Engine (GEE) is a cloud computing plat-
form designed to store and process massive datasets, often
reaching petabyte scale, for analysis and decision-making
purposes (Kumar and Mutanga 2018). It houses a large col-
lection of global time-series satellite imagery, including his-
5 Shanmugam Vijayakumar torical earth imagery dating back over 40 years, all stored in

vijitnau @ gmail.com a public data repository (Gorelick et al. 2017). These images
become readily available for global-scale data mining fol-
lowing ingestion on a daily basis. The main advantage of
GEE lies in its elimination of the need to download and
process raw imagery locally; instead, all processing occurs
seamlessly in the cloud (Yang et al. 2022). This feature is
particularly valuable as it obviates the users to possess the
latest machines or software. Consequently, scientists lack-
ing access to resources in less developed and developing
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countries are afforded equal opportunity to conduct investi-
gations compared to their counterparts in developed coun-
tries (Mutanga and Kumar 2019). Although satellite images
need not be downloaded, thereby proving advantageous in
areas with slow internet connectivity, GEE still necessitates
an online connection (Kumar and Mutanga 2018). Simi-
larly, while researchers may not solely rely on specialised
remote sensing software such as Environment for Visual-
izing Images (ENVI) and Earth Resources Data Analysis
System (ERDAS) Imagine, they may find them necessary
for certain capabilities not available on GEE, such as object-
based image analysis. Thus, the GEE web platform broad-
ens the horizons for large-scale earth observation studies in
resource-poor developing countries (Gorelick et al. 2017;
Kumar and Mutanga 2018).

Data are sourced from several government-supported
archives such as the Land Process Distributed Active
Archive Center (LPDAAC), the USGS and the ESA Coper-
nicus Open Access Hub, with the repository updated regu-
larly (Kussul et al. 2015; Ma et al. 2015a, b). The fusion
of data from various sensors can yield more accurate
information, overcoming the limitation of individual sen-
sors, which proves convenient for users. The existing data-
set encompasses the entire Landsat series, the Moderate
Resolution Imaging Spectrometer (MODIS); the National
Oceanographic and Atmospheric Administration Advanced
Very High-Resolution Radiometer (NOAA AVHRR); Sen-
tinel 1, 2 and 3 and the Advanced Land Observing Satellite
(ALOS) (Kumar and Mutanga 2018). Users can delve into
this extensive data repository for change detection, trend
mapping and resource quantification on the Earth’s surface
like never before (Mutanga and Kumar 2019). The Land-
sat dataset stands out as the most popular, constituting a
significant portion of the GEE dataset, with data ranging
from the past to the most recent Landsat series available for
download and use. Most images have been pre-processed,
with cloud removal and mosaicking carried out by previ-
ous users to streamline analysis; however, raw imagery is
also available, adding value beyond cloud-removed mosaics
(Kumar and Mutanga 2018). Similarly, several datasets have
been pre-processed to transform raw digital numbers into
top-of-atmosphere reflectance and even surface reflectance,
eliminating the need for specialised software to correct for
solar and atmospheric effects. Additionally, atmospheric and
meteorological data are available within the GEE. Ready-to-
use computed products such as Enhanced Vegetation Index
(EVI) and Normalized Difference Vegetation Index (NDVI)
are also available in GEE (Kumar and Mutanga 2018).

Processing long-term global remote sensing data on a
continuous basis necessitates substantial storage capacity
and efficient processing capabilities. GEE is a unique tool
that can efficiently process enormous amounts of geospa-
tial data, for example, hundreds of satellite photos, each
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containing tens of terabytes of data, and generate large-scale
maps (Kussul et al. 2015; Ma et al. 2015a, b; Gorelick et al.
2017; Ghaffarian et al. 2020; Amani et al. 2020a; Brown
et al. 2022). GEE leverages Google’s computational infra-
structure to align data analysis, greatly improving processing
efficiency and enabling large-scale, multi-temporal studies
on a global scale (Kraaijenbrink et al. 2017; Robinson et al.
2017; Yu et al. 2017; He et al. 2018). Users have the flex-
ibility to upload additional datasets and choose whether to
share their uploaded data and generated scripts with others.
Moreover, GEE offers Application Programming Interfaces
(APIs) that allow two apps to communicate with each other
and other tools to assist with large-scale data analysis. The
user-friendly front-end makes it an ideal platform for inter-
active data exploration and algorithm creation (Gorelick
et al. 2017). GEE analysis output can be exported in vari-
ous forms, such as map tiles, tables, videos and images in
GeoTTFF or TFRecord format, or a new Earth Engine asset
to a user’s Google Drive account or Google Cloud Storage
(GCS). GCS is a paid service that requires the creation of
a project, billing for the project and the setup of a storage
bucket (Kumar and Mutanga 2018).

Users have the capability to build and run custom algo-
rithms through the programming interface, with the anal-
ysis being parallelized across multiple processors, thus
significantly speeds up the processing time. This permits
for the execution of continental-scale studies with relative
ease, a feat unattainable through traditional desktop com-
puting (Gorelick et al. 2017). For example, a study analys-
ing global forest cover variations between the 2000 and
2012 was completed in 100 h on GEE, processing 654,178
Landsat 7 scenes with a spatial resolution of 30 m, total-
ling 707 terabytes of data. In contrast, the same analysis
would have taken over 1,000,000 h on a desktop computer
(Kumar and Mutanga 2018). Regardless of geographical
location, the availability of a diverse time-series dataset
and cutting-edge data processing algorithms accessible viz
GEE, either directly or through shared resources from fellow
users, increases our capacity to manage and analyse Earth
observation data for informed decision-making. GEE fosters
collaborative knowledge sharing by enabling users to upload
their raster and vector datasets and freely share scripts with
others (Kumar and Mutanga 2018). Additionally, the plat-
form offers data request forums and troubleshooting plat-
forms, enhancing data accessibility and providing processing
assistance at user fingertips.

GEE offers several options for temporal analysis, each
tailored to different needs and methodologies. These include
continuous change detection and classification (CCDC),
exponentially weighted moving average change detec-
tion (EWMACD) and Landsat-based trend identification
(LandTrendr) (Kennedy et al. 2010; Zhu and Woodcock
2014; Brooks et al. 2014). LandTrendr is a sophisticated
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program designed to detect spectral changes at pixel level
using Landsat data (Shelestov et al. 2017). CCDC utilizes
harmonic functions to detect significant fluctuations in tem-
poral data, while EWMACD constructs a model based on
training data and then compares the model to real data points
using Shewhart X-bar charts and an exponentially weighed
moving average. These methods offer diverse approaches to
temporal analysis, enabling users to choose the most suit-
able technique for their specific research objectives within
the GEE platform.

Despite its numerous advantages, the utilization of GEE
remains low in developing countries, while developed coun-
tries have efficiently harnessed its capabilities across diverse
sectors. This is largely attributed to factors such as limited
awareness of the GEE platform and its capabilities, lack of
basic technical skills and support, absence of partnerships
and collaboration and challenges related to infrastructure
and internet connectivity in developing countries. As a
result, the potential of GEE for rapid large-scale geospatial
analysis has yet to be fully realized in these regions. This
review highlights the wide-ranging applications of GEE in
sectors such as vegetation mapping, land cover and land use
mapping, forestry analysis, urban planning, climate change
analysis, wetland conservation, crop yield estimation, dis-
aster management and hydrological studies. In addition, we
have proposed several interventions to enhance the utiliza-
tion of GEE in developing countries. These interventions
include capacity building initiatives to enhance technical
skills, technical assistance programs to provide support and
guidance, awareness campaigns to promote GEE’s benefits,
partnerships with other institutions to foster collaboration
and tailored support for specific sectors or regions to address
unique challenges and are crucial for overcoming barriers to
adoption and maximizing the benefits of this powerful plat-
form for sustainable development. Overall, implementing
these interventions developing countries can harness the full
potential of GEE to address pressing challenges and drive
sustainable development.

Present status of GEE utilization

Kumar and Mutanga (2018) investigated the country-wise
usage pattern of GEE since its inception. They discovered
that the usage of GEE was more skewed in technologically
advanced countries like the USA, compared to countries in
Asia, Africa and the Middle East. Institutions in less devel-
oped countries often do not effectively utilize this resource
due to various reasons, including limited global cooperation,
insufficient training and technical support, lack of technical
skills for data processing, linguistic barriers (most impor-
tant root cause), limited funding, inadequate infrastruc-
ture facilities, slow internet connections, limited access to

laboratory equipment, political legitimacy issues, restricted
or no accessibility to data and limited research opportunities.
Many researchers may not be aware that adopting GEE elim-
inates the need to download datasets. While GEE’s methods
are simpler and more understandable, its application may
remain elusive until a proper graphical user interface (GUI)
is developed, like those found in ERDAS Imagine or ENVL
Consequently, the potential of the GEE platform is not fully
appreciated in developing countries.

On the contrary, GEE scripts have the potential to be
transformed into web apps with graphical user interface,
thereby enhancing usability and portability. In less devel-
oped countries, there is a lack of awareness and weak data
exchange networks (Velastegui-Montoya et al. 2023). Fur-
thermore, most scientists working in the application field
lack a programming background. Despite the availability
of big data processing engines, the cost of data collec-
tion remains a significant challenge, particularly when the
required data is not within the GEE dataset (Dube et al.
2016). Regarding the sector-wise usage of GEE, studies in
the natural resources mapping and management domain,
particularly in the forest and vegetation category, accounted
a significant portion, followed by agriculture, hydrology,
land use and land cover (LULC), urban studies, natural dis-
aster, atmosphere and climate research, image processing
and pedosphere (Kumar and Mutanga 2018).

A comparison of GEE usage in developed
and undeveloped countries

GEE is a powerful geospatial analysis platform, fundamen-
tally transforming the way we study and understand our
planet. Its accessibility and versatility render it an invalu-
able tool for researchers, scientists, policymakers and envi-
ronmentalists across the globe. However, the utilization and
impact of GEE can significantly diverge between devel-
oped and undeveloped countries, owing to differences in
resources, infrastructure and priorities. Globally, GEE is
employed by 125 countries. A continent-wise examination
of the number of published publications unveils that Asia,
closely followed by the American continent, has the highest
volume of articles (Fig. 1). On both a global scale and within
the Asian region, China emerges as the frontrunner in terms
of publication numbers. Conversely, within the American
continent, the USA holds the top position in publication
output, closely trailed by Brazil (Velastegui-Montoya et al.
2023).

In developed countries, access to high-quality geospatial
data is plentiful. These countries often boast well-established
satellite programs, advanced remote sensing capabilities and
extensive data-sharing agreements. Researchers in devel-
oped countries leverage GEE to analyse vast datasets with
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Fig. 1 Continent wise GEE publication

ease, to monitor land use changes, study climate patterns,
manage natural resources and make data-driven decisions.
Conversely, less developed countries may lack the resources
and infrastructure necessary to collect and maintain exten-
sive Earth observation datasets. Access to high-resolution
satellite imagery is limited, and data are not updated regu-
larly (Perera and Tateishi 1995). This limitation restricts
the range and precision of analyses that can be conducted
using GEE in these regions. Moreover, limited internet con-
nectivity and computer hardware further hinders access and
utilization. While developed countries have greater access
to data and infrastructure, they harness GEE to monitor
environmental quality, sustainable agriculture and disaster
management. Undeveloped countries face hurdles related to
data access, infrastructure and financial resources (Kumar
and Mutanga 2018), but they can still derive benefit from
GEE by leveraging international partnerships and initiatives.
Bridging the technology gap and promoting knowledge shar-
ing are essential steps in ensuring that GEE’s transformative
potential benefits all countries, regardless of their develop-
ment status.

Assets and liabilities of GEE

The major advantage of GEE is the availability of corrected
data, such as ortho-rectified, atmospherically corrected and
calibrated top of atmosphere Landsat data in addition to raw
data (Colak et al. 2019). GEE simplifies the complex pre-
processing of SAR (Synthetic Aperture Radar) data by pro-
viding pre-processed, analysis-ready SAR datasets, a feature
particularly beneficial for new users (Di Tullio et al. 2018).
Moreover, GEE has the capacity to handle petabytes of
remote sensing data across extensive geographic scales and

@ Springer

longer time periods (Ravanelli et al. 2018). The functionali-
ties of GEE cater to the requirements of typical scientific
project, with the complexities of parallel computing seam-
lessly concealed through processes automation (Ravanelli
et al. 2018). With its formidable processing capabilities, the
cloud-based platform enables the computation of multiple
ensemble rules to improve classification accuracy. However,
GEE does have certain limitations hindering its widespread
utilization. These limitations include a restricted number of
spatial functions, including Gaussian and Laplacian filters,
edge detection methods (e.g. Sobel, Roberts and Canny),
line detection using the Hough Transform and morphologi-
cal operators (e.g. dilation and erosion) due to parallel pro-
cessing. Additionally, GEE lacks support for certain features
such as frequency-domain techniques (e.g. FFT and Wave-
let), hierarchical algorithms (e.g. hierarchical clustering),
graph-based methods (e.g. graphcut), geometric descrip-
tors (e.g. Haar, SIFT, SURF) and physical-based models
(e.g. radiative transfer models). Furthermore, the storage of
complex SAR phase data is incompatible with GEE tiling
principle, thereby limiting the application of Polarimetric
SAR and Interferometric SAR, which heavily rely on phase
information (Amani et al. 2020a).

Other deficiency of GEE includes challenges in creating
new tools, as it demands an understanding of all GEE algo-
rithms and their functionality (Amani et al. 2020a). Addi-
tionally, there is a limited choice of classification and regres-
sion techniques available within GEE, and currently, there is
no efficient and accurate segmentation algorithm available
within the platform (Amani et al. 2019a). Increasing the
number of training samples or input features is a common
method to enhance the classification accuracy. However,
under GEE’s classification methods, users are constrained to
using only a limited number of samples or features (Amani
et al. 2019b). Due to computational constraints, GEE cannot
effectively conduct complex machine/deep learning algo-
rithms requiring large training datasets or longer training
times (DeLancey et al. 2019). Users frequently confront
time-consuming process when trying to download processed
data midway through their workflow for additional analysis
in a third-party software environment. This is often due to
large map sizes and internet speed limitations (Amani et al.
2020b). The various assets and liabilities of GEE are pre-
sented in Table 1.

Application of GEE in different sectors
with special reference to agriculture

GEE has evolved as a formidable tool with diverse applica-
tions spanning various domains (Fig. 2). Within the agri-
culture domain, GEE’s applications are manifold. It facili-
tates plantation mapping and monitoring, phenology-based
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Fig.2 Application of GEE in various sectors

classification, farmland and crop area mapping (Jin et al.
2019), crop condition monitoring, crop yield estimation, irri-
gation mapping, as well as flood and drought mapping, and
their impact assessment (Pandey et al. 2022). It versatility
extends beyond agriculture (He et al. 2018), to encompass
forestry, vegetation monitoring (Tsai et al. 2018), grassland
surveillance (Parente and Ferreira 2018), mangrove mapping
(Diniz et al. 2019), land use and land cover analysis, risk
and disaster management (Liu et al. 2018), urban planning,
surface temperature assessment (Ermida et al. 2020), climate
change, forest fire tracking (Parks et al. 2018), hydrology,
surface water mapping (Souza et al. 2019), assessment of
built-up areas and mining, among others.

Crop inventory

Differentiating between various crops typically necessi-
tates images captured at different stages during the growth
cycle of the crops. Vegetation indices (VIs) derived from
satellite data have extensive applications in ecological
research, ecosystem modelling and land surface monitor-
ing. Nevertheless, satellite remote sensing datasets inher-
ently contain noise due to factors such as cloud cover, air
pollution, data processing issues and device malfunction.
Most readily available NDVI products that address these
complications are of coarse resolution. Accessing high-
resolution NDVT datasets and producing them pose several
technological and methodological challenges. Additionally,
the existing cropland maps face challenges due to imprecise
geo-location of individual farms caused by their coarse-
resolution (>250 m), leading to uncertainties in calculated
cropland areas from such products. Furthermore, large-scale,
high-resolution crop mapping encounters complexities in

processing a large amount of heterogeneous high-resolution
satellite imagery, acquired by various sensors, commonly
known as the “Big Data” problem (Shelestov et al. 2017).
The use of GEE solves these challenges in handling and
processing big data and has proven to be more efficient in
terms of cost, time, computation and automation (Amani
et al. 2020b). Wang et al (2019) successfully created crop-
type maps with over 80% accuracy without relying on in-
season field data. They achieved this using Fourier transform
coefficients of Landsat time series within the GEE platform.

GEE-based near real-time rice area mapping has emerged
as a robust method across Southeast Asia, achieving an
impressive accuracy of 96.5% and a kappa coefficient of
0.92 when compared to field survey data. This approach pre-
sents a valuable alternative to time-consuming and costly
field surveys. In Tanzania and Kenya, practical applications
of GEE yielded correct classification of cropland/non-crop-
land with an accuracy of 85%. Similarly, the maize/non-
maize classifier achieved an accuracy of 79% and 63% in
Tanzania and Kenya, respectively (Jin et al. 2019). Among
different classification models, support vector machine
(SVM) and artificial neural networks (ANN) demonstrated
superior performance compared to random forest (RF) and
C5.0 models (Minasny et al. 2019). Amani et al (2020b)
utilized the GEE cloud computing platform along with an
ANN algorithm and Sentinel-1 and Sentinel-2 images to
produce object-based Annual Space-Based Crop Inventory
(ACI) maps for Canada for 2018. The developed ACI map
exhibited an overall accuracy and a Kappa coefficient of 77%
and 0.74, respectively. Additionally, the average Producer
Accuracy (PA) and User Accuracy (UA) for the 17 crop-
land classes were 79% and 77%, respectively. Gumma et al.
(2020) developed a high spatial resolution (30 m or better)
cropland map of South Asia for the year 2015 using Landsat
satellite images and machine learning algorithms (MLA)
on the GEE cloud computing platform. The developed map
achieved producer’s, user’s and overall accuracy of 89.9%,
95.3% and 88.7% respectively. Shelestov et al. (2017) tested
the efficiency of the GEE platform by executing complex
workflows involving multi-temporal satellite images (e.g.
Landsat-8 and Sentinel-2) to produce a high-resolution
(30 m) crop classification map for country-level analysis.
Results from the study demonstrated the efficiency of GEE
through cloud-based parallel processing and the accessibil-
ity of pre-processed data. Notably, the study revealed that
a neural network—based approach exhibited superior clas-
sification accuracy compared to other classifiers available
in GEE, including SVM, decision tree and RF algorithms.
Bagci et al. (2023) employed an innovative DL methodology,
specifically a Deep Transformer Encoder, to autonomously
identify corn and cotton crops in Diyarbakir, Turkey, using
satellite image indices from Sentinel-1 and Landsat-8. The
findings revealed impressive accuracy rates of 85%, 95% and
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87.5% for the Sentinel-1 dataset, Landsat-8 dataset and the
combined Sentinel-1 and Landsat-8 datasets, respectively.

Vegetation mapping and monitoring

Biophysical measures such as the Leaf Area Index (LAI),
Fraction Vegetation Cover (FVC) and Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR) play a crucial
role in vegetation monitoring (Huete et al. 2002; Fensholt
2004). These measures provide valuable insight into vegeta-
tion health and coverage. LAI quantifies the amount of green
vegetation that absorbs or scatters solar radiation, aiding in
the assessment of plant canopy density. Conversely, FVC
partitions the contributions of soil and vegetation, assist-
ing in the distinguishing between bare ground and vege-
tated areas. FAPAR, a key vegetation indicator, is linked
to ecosystem production and provides insights on the effi-
ciency of plants in utilizing solar energy for photosynthe-
sis (Putzenlechner et al. 2022). Remote sensing data can
be utilized to estimate these critical variables, which have
applications across various fields including ecology, mete-
orology and agriculture. GEE offers a range of vegetation
indices, simplifying the process of conducting vegetation-
related research efficiently and quickly (Tsai et al. 2018).
Consequently, GEE has been extensively employed in tasks
such as vegetation mapping and monitoring, forest mapping,
tracking deforestation and forest expansion, assessing forest
health, monitoring pasture and evaluating rangeland condi-
tions (Parks et al. 2018). Its capabilities have significantly
advanced research and management in these ecological and
agricultural domains.

GEE leverages cloud computing and remote sensing
data to implement a near real-time approach for vegetation
assessment (Poortinga et al. 2018). One of the key tools in
this endeavour is the Moderate Resolution Imaging Spec-
troradiometer (MODIS) Enhanced Vegetation Index (EVI)
product, which effectively reduces canopy background var-
iations while maintaining sensitivity in densely vegetated
areas (Huete et al. 2002). To address the impact of smoke
and sub-pixel thin clouds in the atmosphere, the blue band of
remote sensing data is utilised atmospheric correction. Eco-
Dash is a web-based tool that harnesses the EVI data from
MODIS products obtained from both Terra and Aqua sen-
sors to map vegetation on a planetary scale. This approach
facilitates the global monitoring of vegetation, enabling the
detection of both improvement and degradation using satel-
lite imagery and cloud computing. It offers a cost-effective
and efficient solution for land managers and environmental
practitioners involved in land management and monitoring
(Poortinga et al. 2018). In contrast, traditional approaches
to such monitoring can be prohibitively expensive in terms
of both time and resources.

@ Springer

Goldblatt et al. (2017) demonstrated the effectiveness of
GEE classification using low-spectral but high-spatial reso-
lution input data from WorldView, surpassing the classifi-
cation results obtained from Landsat 30-m resolution data
with complete spectral information. This approach high-
lights the advantage of high spatial resolution input data
in detecting sparse vegetation, as well as distinguishing the
space between trees, seasonal shrubs and grasses. Achieving
accuracy in vegetation and land use mapping using remote
sensing images can be challenging, particularly in regions
with persistent cloud cover and rugged topography. GEE,
as an open-source image analysis pipeline, offers a reliable
method for monitoring forest cover and land use pattern in
hilly, forested areas prone to cloud cover (Tsai et al. 2018).
The utilization of spectral vegetation index (SVI) products
and shade/illumination normalisation procedures contributes
to significantly higher mapping accuracies compared to non-
normalized spectral bands. He et al. (2018) used cloud com-
puting platform to compute spectral vegetation indices from
multi-seasonal Landsat data. Furthermore, the increasing
use of drones is gradually replacing many labour-intensive
and complex agricultural practices and is expected to play an
increasingly significant role in the future (Vijayakumar et al.
2021a). GEE has the potential to facilitate the implemen-
tation of precision agriculture in developing countries by
enabling the fusion of images with diverse temporal and spa-
tial resolutions, including both drone and satellite imagery,
along with varying degrees of spectral quality (Molt6 2022).
The GEE’s rapid processing capabilities further enhance its
suitability for such applications.

Land cover mapping

In the modern era, a plethora of satellites regularly provide
free high spatial resolution data, opening up new opportuni-
ties for the regular creation of high-resolution land use and
land cover maps (LULC) over vast territory (Roy et al. 2014).
A prime example of this is the development of a LULC map
for Chinese protected areas, which leverages time series data
from GEE along with novel algorithms designed to address
challenges like cloud cover and terrain effects. The GEE
platform has played a pivotal role in facilitating the develop-
ment of algorithms such as SimpleCloudScore, F-Mask and
ACCA (Automated Cloud-Cover Assessment), which are
instrumental in cloud removal from satellite images. Tu et al.
(2020) successfully created a 10-m resolution land cover
map for Guangdong Province, China, by integrating multi-
source remote sensing data from Sentinel-1, Sentinel-2
and Luojia-1 within the GEE platform. The resulting map
boasted an overall accuracy and Kappa coefficient of 86.1%
and 0.84 respectively. Notably, their research found that RF
models outperformed SVM, minimum distance (MD) and
classification and regression tree (CART) models in terms
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of performance. Lin et al. (2020) monitored LULC changes
spanning from 1990 to 2019 on Haitan Island, China, using
GEE. Their investigation unveiled notable transformations.
The cultivated area and water area experienced a decline
of 13.63% and 0.95%, respectively, while forest coverage
and built-up land surged by 30.94% and 16.20% within the
study area over the same period. The predominant processes
driving these changes included reforestation, reduction in
cultivated land and expansion of built-up areas on Haitan
Island. Across the entire continent of Africa, cropland and
non-cropland areas were surveyed using a combination
of 10-day Sentinel data and 16-day Landsat TM data. For
cropland, the overall accuracy reached 94%, with producer’s
accuracy at 85.9% and user’s accuracy at 68.5% (Xiong et al.
2017). In the context of smallholder farmland mapping in
southern Mali, ensemble classifiers and high spatial resolu-
tion data from Worldview 2 were employed. The ensemble
approach, combining various spatial and spectral variables
from multispectral Worldview-2 images, field data and five
machine learning classifiers, enhanced the overall accuracy
(75.9%) by 4.65% compared to the best individual classifier.
Interestingly, the study found that adding more classifiers did
not lead to continuous improvements in classification results
(Aguilar et al. 2018).

Abdollahi et al. (2023) harnessed the power of GEE
to generate high-fidelity land cover maps of metropolitan
Melbourne for the year 2020, leveraging a combination of
Landsat-8 multitemporal data, spectral indices and topo-
graphic components. Their investigation unearthed com-
pelling insights: employing the SVM approach yielded an
impressive overall accuracy (OA) and kappa accuracy of
88.47% and 85.34%, respectively. Notably, the application of
a postprocessing technique resulted in substantial enhance-
ments in both OA and kappa coefficient, with values increas-
ing to 92.90% and 90.99%, respectively. Wahap and Shafri
(2020) conducted land cover monitoring over Klang Valley,
Malaysia, utilizing multiple machine learning algorithms
(MLA) and Landsat composites form three different years
(1988-2003-2018) available on the GEE cloud platform.
Among the classification algorithms, CART showed the
best accuracy, achieving 94.7%, 97.7% and 96.5% in 1988,
2003 and 2018 respectively, outperforming RF and SVM.
A study on the land cover changes in Singapore used Land-
sat, Moderate Resolution Imaging Spectro-radiometer and
GlobCover imagery available in GEE. The findings indicated
that land reclamation and forest cover changes in Singapore
were primarily driven by monsoon cycles affecting South-
east Asia, rather than anthropogenic factors (Sidhu et al.
2018). In the Tigris-Euphrates basin, LULC was mapped
at a 30-m resolution using 1184 Landsat-8 scenes available
on the GEE platform. Temporal changes were accounted for
by creating six 2-month interval composite layers for the
target year 2019, using the spectral and thermal bands of

Landsat-8. Image segmentation was performed using sim-
ple non-iterative clustering (SNIC) techniques and the RF
algorithm. The resulting LULC map displayed a reasonable
overall accuracy of 91.7%, with the highest user’s accuracy
observed in water and wetland classes and the lowest in rain
fed crop and rangeland. Producer’s accuracy was highest in
water and barren areas and the lowest in garden and range-
land (Shafizadeh-Moghadam et al. 2021). A land-cover map
of San Salvador basin in Uruguay was generated using GEE.
The map displayed good agreement with past agriculture
census data and revealed the transformation of grassland
to cropland in the period 1990-2018 (Hastings et al. 2020).
This demonstrates the utility of GEE in tracking and analys-
ing land cover changes over time.

Disaster management and earth sciences

Measuring the progress of post-disaster recovery and com-
prehending its various elements and influencing factors is a
complex process. Governments and disaster planners rely
on accurate information to formulate effective solutions for
rebuilding affected areas and restoring normalcy. Natural
catastrophe mapping often requires rapid processing, and
while GEE may have some delay in making photos available,
it remains a valuable platform for such application (Ghaffar-
ian et al. 2020). Users can upload their own photographs to
the platform and employ GEE processing capacity to obtain
timely deliverables. Droughts can have devastating impacts
on surface water availability. GEE’s access to vegetation
indices and climate data allows for the early detection and
monitoring of drought conditions (Sazib et al. 2018; Ejaz
et al. 2023). Globally, the GEE platform is being used to
monitor drought occurrences by utilizing soil moisture con-
tent as an indicator. The model has been successfully tested
in Ethiopia and South Africa (Kibret et al. 2020). The cloud-
based engine enables the integration of global soil moisture
datasets and web-based processing tools, facilitating the
estimation of drought duration and intensity (Sazib et al.
2018). Ghaffarian et al. (2020) used GEE to evaluate the
3-year recovery process in the aftermath of Typhoon Haiyan
in Leyte, Philippines, in 2013. The land cover maps gener-
ated using GEE showed accuracies exceeding 88%, and the
analysis of selected land cover changes revealed that most
municipalities had returned to their pre-disaster conditions
after 3 years. GEE enables real-time flood monitoring using
satellite imagery and rainfall data (Pandey et al. 2022). This
information is valuable for flood preparedness and response.
Nghia et al. (2022) used Sentinel-1 SAR data within GEE
for flood mapping and monitoring in the downstream prov-
inces of the Mekong River. The results revealed a gradual
shift in flooding patterns in the downstream provinces of
the Mekong Delta. Pandey et al. (2022) used Sentinel-1A
SAR data in the GEE platform, to estimate the composite
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area of flood inundation in the Ganga—Brahmaputra basin
during the monsoon season from July to September. Their
estimates showed 25,889 km? in Bangladesh, 20,837 km? in
Bihar, 17,307 km? in West Bengal and 13,460 km? in Assam
were inundated by floods. In recent years, drones have been
increasingly used to collect high-resolution images immedi-
ately after natural calamities like cyclones, floods, droughts
and heat waves (Vijaya Kumar et al. 2020). The images col-
lected by drones can be rapidly processed in GEE with mini-
mal human intervention, enhancing the speed and efficiency
of disaster response efforts.

Crop yield estimation

Accurate yield estimations on the regional level, in advance,
utilizing satellite remote sensing, are imperative to ensure
food security. Through the GEE, users can assess geographic
yield variability at field scales, thus gaining a more com-
prehensive understanding of yield variability even at the
state level (Gao et al. 2019). Jaafar and Mourad (2021) inte-
grated Landsat data, gridded weather data and global soil
datasets available in GEE to predict crop yields at a 30-m
resolution. Their operational model, Global Yield Mapper in
Earth Engine (GYMEE), has the potential to estimate potato,
wheat and corn yields with a relative error of + 6%. GYMEE
also facilitates the estimation of evapotranspiration (ET) at a
global scale, contributing to a better understanding of water
use efficiency by crops. Jin et al. (2019) combined Sentinel-1
and Sentinel-2 imagery within the GEE platform to gener-
ate a country map of maize production areas and yields for
Kenya and Tanzania in 2017 at 10-m resolution. This map-
ping task is particularly challenging due to the diverse small-
holder farming landscapes and year-round cloud cover in
East Africa. The maize/non-maize classier achieved an accu-
racy of 79% in Tanzania and 63% in Kenya. Furthermore,
they also developed a scalable crop yield mapper (SCYM)
to predict maize yield, which captured approximately 50%
of the yield variation at the district level in Western Kenya
compared to ground-based crop cut measurement. He et al.
(2018) used the GEE platform to merge MODIS and Land-
sat satellite data to estimate Gross Primary Productivity of
seven crops in Montana, USA, from 2008 to 2015 at 30-m
spatial resolution. The predicted annual crop output findings
were in strong agreement with country-level crop produc-
tion data provided by the US Department of Agriculture,
exhibiting a high correlation (r=0.96, p 0.05). Moreover,
the performance of predicted crop yields at a finer scale was
also significant (r=0.42, p 0.05). Rice, a major food crop
cultivated during rainy season (kharif), presents challenges
for optical remote sensing due to cloud cover (Vijayakumar
et al. 2022). Microwave remote sensing offers a solution by
penetrating cloud cover and provide more accurate infor-
mation during the rainy season, albeit involving complex
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processing. The GEE platform offers users a convenient
means to work with microwave remote sensing data, simpli-
fying the associated processing tasks. Additionally, micro-
wave remote sensing data from the European Space Agency
are now available free of cost, making it a valuable resource
for agriculture applications.

Hydrological studies

Water, a precious and finite resource, plays a vital role in
sustaining life, ecosystems, agriculture and industrial activi-
ties. Effective assessment and management of water resource
are crucial to ensure their sustainable use and availability for
present and future generations. In recent years, the advent of
remote sensing and geospatial technologies has revolution-
ized the monitoring and management of water resources.
GEE has emerged as a powerful tool for water resource man-
agement and various hydrological studies (Condega et al.
2022). Analysing satellite images to gauge the quantity and
quality of water sources has become a common practice,
facilitating improved spatial planning and informed deci-
sion-making (Lin et al. 2020). Monitoring surface water
resources through GEE has been particularly successful
when water indices are employed as a methodology. These
indices help track changes in water bodies over time and pro-
vide valuable information for water management (Mashala
et al. 2023). GEE supports the integration of climate data,
terrain information and land cover data to develop hydrolog-
ical models. These models predict surface water availability,
including streamflow (inflow, outflow) and water volume in
reservoirs (Jain et al. 2021). Hydrological models can be
calibrated using historical data and used to estimate future
reservoir volumes. One notable development in this field
is the work of Condeca et al. (2022) who devised a meth-
odology for the precise determination of reservoir volumes
using satellite images, water indices and GEE. This innova-
tive approach automates the calculation of flooded water
surface areas and stored water volumes in lakes, tanks and
ponds. By automating the mapping of surface water bodies
using satellite imagery, this methodology enables large-scale
monitoring of water resources, which is crucial for effective
water resource management and conservation efforts (Souza
et al. 2019; Sreekanth et al. 2021). GEE’s vast repository of
satellite imagery enables the creation of time-series analysis
to track changes in water levels and estimate reservoir vol-
umes (Sreekanth et al. 2021). GEE can incorporate altimetry
data from satellites like Jason-3 and Sentinel-3. Altimetry
data provides precise measurements of water levels in large
bodies of water, enhancing volume estimation accuracy. In
Diyarbakir province, Turkey, Acar (2020) utilized Senti-
nel-1 SAR images to detect unregistered electric distribution
transformers (EDT) in agricultural fields. This was achieved
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through the application of MLA, including Extreme Learn-
ing Machine (ELM), K-nearest Neighbour (K-NN), Naive
Bayes Algorithm (NBA) and SVM. The ELM technique
yielded the most promising results, successfully detecting
unregistered EDTs with a mean accuracy of 85.47%. Simi-
larly, Acar et al. (2023) identified illegal substations in the
agricultural fields of the southeast Anatolian region, Turkey,
using Landsat-8 OLI images and MLA. They employed the
LSTM (long short-term memory) method, a recurrent neu-
ral network model and the Logit-Boost method for auto-
matic recognition of substations. The Logit-Boost method
achieved an average accuracy of 88.89%, while the LSTM
method achieved an average accuracy of 84.21%. Despite the
remarkable processing capabilities offered by cloud comput-
ing, only a handful of studies have ventured to harness this
technology in sub-Saharan African countries, particularly in
rural catchments (Mashala et al. 2023).

Urban planning and management

Urban areas are dynamic and complex environments char-
acterized by rapid population growth, infrastructure devel-
opment and land use changes (Lin et al. 2020). In this con-
text, GEE offers unprecedented opportunities for enhancing
urban planning and management (Fig. 3). By leveraging
GEE capabilities, stakeholders can effectively monitor the
expansion of urban areas, identify patterns of development
and assess the impact of urbanization on natural ecosystems
(Liang et al. 2020; Mashala et al. 2023). This information
is crucial for understanding the drivers of urban growth,
forecasting future trends and guiding land use planning and
zoning decisions to promote sustainable development. Addi-
tionally, GEE facilitates a comprehensive understanding of
the evolving dynamics within urban landscapes, enabling
the identification of sustainable development pathways
and the formulation of pragmatic strategies to address the
intricate challenges confronting cities (Zelal and Derviso-
glu 2023). Another important application of GEE in urban
areas is mapping infrastructure and services, such as roads,

Monitoring urban growth and land use changes

Mapping urban infrastructure and services

Supporting disaster risk reduction and resilience

Assessing urban heat islands and air quality

Fig.3 Urban planning and management with GEE

buildings, parks and utilities at high spatial resolution
(Table 2). By utilizing this capability, planners and poli-
cymakers can pinpoint areas with infrastructure deficiency,
prioritize investment in public services and improve accessi-
bility and mobility for urban residents (Mashala et al. 2023).
Moreover, GEE supports the analysis of urban heat islands
and air quality by integrating satellite-derived data with
meteorological models and ground-based measurements. It
can map surface temperatures, identify heat island hotspots
and assess the impact of urbanization on local climate pat-
terns. Additionally, GEE aids in the monitoring of air qual-
ity indicators such as particulate matter, nitrogen dioxide
and ozone concentrations, providing insights into the health
impacts of air pollution on urban populations (Ghasempour
et al. 2021). This information can inform urban planning and
design strategies to mitigate heat island effects, reduce air
pollution and enhance the liveability of cities.

Wetland conservation and management

Wetlands are among the most biologically diverse and pro-
ductive ecosystems on Earth, providing a wide range of eco-
system services such as water purification, flood control and
carbon sequestration (Gardner and Finlayson 2018; Xu et al.
2019). However, they are also among the most threatened
ecosystems, facing degradation and loss due to factors such
as urbanization, agriculture and climate change (Dixon et al.
2016). Leveraging GEE, user can identify wetland habitats,
biodiversity hotspot, map land cover types, detect changes
in wetland ecosystems due to human activities or natural
processes and pinpoint priority areas for conservation within
wetland ecosystems (Fig. 4) (Pham et al. 2023). Further-
more, GEE facilitates the monitoring of invasive species,
habitat fragmentation and other threats to wetland biodiver-
sity, enabling timely interventions to mitigate their impacts
(Xu et al. 2019; Qu et al. 2023). This information is cru-
cial for assessing the health and resilience of wetlands and
informing conservation efforts (Moukrim et al. 2023). Addi-
tionally, GEE can monitor changes in wetland hydrological
regimes, track water flow patterns and assess the impact of
human activities such as water abstraction and land drainage
on wetland ecosystems (Zhang et al. 2023). GEE supports
the monitoring of water quality indicators such as turbidity,
nutrient concentrations and algal blooms, providing insights
into the health of wetland ecosystems and informing man-
agement decisions related to water resource management
and pollution control (Kavzoglu and Goral 2022; Kwong
et al. 2022; Kislik et al. 2022).

Mahdianpari et al. (2018) harnessed high-resolution Sen-
tinel 1 and 2 satellite data to develop an extensive wetland
inventory map of Newfoundland province, Canada. Their
investigation unveiled that employing an object-based
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Monitoring wetland dynamics

Mapping wetland biodiversity

Assessing wetland hydrology and water quality

I

Supporting wetland restoration and management

Fig.4 Wetland conservation and management through GEE

approach yielded superior results compared to pixel-based
classification when delineating wetlands within the GEE
platform, achieving an accuracy of 70% and 90% for all
wetland and non-wetland classes, respectively. Despite the
higher precision observed in classifying wetland types using
multi-year optical data compared to Synthetic Aperture
Radar (SAR), the amalgamation of both data sets notably
enhanced overall accuracy levels. Similarly, Moukrim et al.
(2023) created a water transition map covering the period
from 1984 to 2019 to examine the spatiotemporal evolu-
tion of Dayet Aoua lake. Their findings revealed that recent
changes in climate and land use in the lake’s surroundings
have affected the dynamics and recovery capacity of Dayet
Aoua. Thus, GEE plays a crucial role in supporting wetland
restoration and management efforts by providing tools for
spatial planning, decision support and stakeholder engage-
ment. The platform enables stakeholders to visualize and
analyze geospatial data, model ecosystem dynamics and
simulate the impact of management interventions such as
habitat restoration, water flow restoration and invasive spe-
cies control.

Climate change analysis

Climate change poses one of the most pressing challenges of
our time, with far-reaching impacts on ecosystems, econo-
mies and societies worldwide. Developing countries, often
more vulnerable to the effects of climate change due to lim-
ited resources and infrastructure, require effective tools and
resources to understand and mitigate its impacts (Vijaya-
kumar et al. 2021b). GEE offers unprecedented opportu-
nities for advancing climate change research, monitoring
and adaptation efforts (Fig. 5). By harnessing its capabili-
ties, researchers, policymakers and communities can bet-
ter understand the drivers and impacts of climate change,
develop effective mitigation and adaptation strategies and
work towards a more sustainable and resilient future. One
of the key applications of GEE in climate change studies is
monitoring land use and land cover changes (Lin et al. 2020;

Monitoring
land use and
land cover
changes

Assessing
climate
vulnerability
and resilience

Facilitating
climate
change

education
and outreach

Quantifying
carbon
sequestration
and emission

Fig.5 GEE for climate change analysis

Mashala et al. 2023). By leveraging machine learning (ML)
algorithms and image processing techniques, researchers can
analyze these images to track changes in land use patterns
such as deforestation, urbanization and agricultural expan-
sion (Arévalo et al. 2020; Kafy et al. 2023). This information
is crucial for assessing the impact of human activities on
ecosystems and understanding their contribution to climate
change. GEE enables researchers to estimate carbon stocks
in forests, grasslands and other vegetation types by combin-
ing satellite data with ground-based measurements and eco-
system models (Venkatappa et al. 2021; Kafy et al. 2023).
This information used to monitor deforestation rates assesses
the effectiveness of conservation efforts and supports cli-
mate change mitigation strategies such as REDD + (Reduc-
ing Emissions from Deforestation and Forest Degradation).
Moreover, GEE facilitates the analysis of greenhouse gas
emissions from various sources such as deforestation, agri-
culture and industrial activities, providing valuable insights
for policymakers and stakeholders (Roopsind et al. 2019).
GEE also supports the assessment of climate vulner-
ability and resilience at local, regional and global scales.
By integrating climate models, remote sensing data and
socioeconomic indicators, researchers can identify areas
that are most susceptible to climate impacts such as sea-
level rise, droughts and extreme weather events (Venkatappa
et al. 2021). This information is essential for prioritizing
adaptation measures, improving disaster preparedness
and building resilient communities (Vijayakumar et al.
2021b). For example, between 2015 and 2019, droughts
affected approximately 9.42 million hectares of cropland,
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while floods impacted 3.72 million hectares in Southeast
Asia. Over the same period, an estimated total loss of 20.64
million tons of crop production was recorded. Analysis of
40 years of data (from 1980 to 2019) in GEE revealed that
rain fed crops in Thailand, Cambodia and Myanmar were
significantly impacted by droughts, whereas Indonesia, the
Philippines and Malaysia were more vulnerable to floods
(Venkatappa et al. 2021). Additionally, GEE enables the
monitoring of environmental changes over time, allowing
for the evaluation of adaptation strategies and the identifi-
cation of best practices. Based on aggregated time series of
NDVI, temperature and rainfall data, Workie and Debella
(2018) found that the onset of the growing season has shifted
to an earlier time, and the duration of the growing season
has increased in Ethiopia over the last 14 years. Adjusting
crop growing periods is crucial for maximizing the use of
summer rainfall in agriculture. However, realizing the full
potential of GEE requires collaboration, capacity building
and continued innovation to address emerging challenges
and leverage new opportunities in the fight against climate
change. The application of GEE for climate change analysis
remains largely untapped in developing countries, despite
its immense potential to support adaptation and mitigation
efforts in these regions. By leveraging GEE’s capabilities,
developing countries can enhance their understanding of cli-
mate change impacts, strengthen their resilience to climate-
related hazards and contribute to global efforts to address
this urgent challenge.

Forestry application

Forests in developing countries face significant threats,
including deforestation, degradation and unsustainable land
use practices. Addressing these obstacles necessitates the
implementation of efficient monitoring and management
strategies. GEE has emerged as a valuable asset in con-
fronting the intricate hurdles linked with forest ecosystems
globally (Fig. 6). One of the primary applications of GEE in
forestry is the utilization of satellite imagery for monitoring
forest cover and land use changes (Arévalo et al. 2020; Kafy
et al. 2023). It allows researchers and land managers to track
forest dynamics over time (Table 3). By analysing multi-
temporal satellite imagery, GEE enables the detection of

Forest Forest fire

) mapping and / etection and

inventory

/ momtonng

deforestation, forest degradation and reforestation activities
with high spatial and temporal resolution (Lin et al. 2020;
Kombate et al. 2022). Jena and Pradhan (2019) investigated
the impact of tin mining activity, settlements and illegal log-
ging on forest dynamics in Belitung Island, Indonesia, using
a combination of Landsat ETM, MODIS global land cover
and Hansen global forest change datasets within the GEE
platform. The study revealed a progressive decline in for-
est cover from 2012 to 2017, coinciding with a significant
expansion of active tin mining areas, agricultural land and
human settlements (Jena and Pradhan 2019). GEE facili-
tates the creation of accurate forest maps and inventories. By
employing ML algorithms and classification models, GEE
enables automated forest mapping, species identification
and estimation of forest biomass (Lasaponara et al. 2022).
These capabilities are invaluable for forestry professionals
in assessing forest resources, planning sustainable land use
practices and monitoring the effectiveness of conservation
initiatives (Kafy et al. 2023).

GEE by leveraging satellite data identifies active fire
hotspots and track fire progression. By integrating weather
data, terrain information and historical fire patterns, GEE
enhances early warning systems and supports timely fire
management strategies, thereby mitigating the impacts of
wildfires on forests and adjacent communities (Luu et al.
2024). It also facilitates the estimation of forest carbon
stocks and fluxes. By analysing vegetation indices, canopy
structure and biomass distribution, GEE enables the quan-
tification of carbon sequestration rates and the assessment
of forest carbon dynamics (Kafy et al. 2023). This informa-
tion is vital for policymakers, conservation organizations
and carbon offset initiatives seeking to enhance forest con-
servation and climate resilience. GEE supports biodiversity
conservation efforts by habitat mapping, species distribution
modeling and landscape connectivity analysis. By integrat-
ing satellite imagery with ecological data, GEE enables the
identification of critical habitats, migration corridors and
biodiversity hotspots (Crego et al. 2022). This knowledge
aids conservation practitioners in prioritizing conservation
actions, identifying areas of high conservation value and
monitoring habitat changes over time. The forest application
of GEE remains largely untapped in developing countries,
despite its immense potential to support forest monitoring,
management and conservation efforts. By leveraging GEE’s

Carbon
sequestration
and climate
change
mitigation

Biodiversity
. conservation

and habitat

monitoring

Fig. 6 GEE application in forestry
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capabilities, developing countries can enhance their capacity
to address forest-related challenges and contribute to sus-
tainable development and environmental stewardship. While
GEE offers tremendous potential for forestry applications,
several challenges remain to be addressed. These include
data interoperability, algorithm validation and capacity
building for end-users in developing countries.

Interventions to realize GEE potential
in developing countries

Realizing the potential of GEE in developing countries
requires a combination of interventions aimed at addressing
technological, institutional and capacity-related challenges.
The key interventions that can help unlock GEE’s potential
in these regions are presented in Fig. 7. Infrastructure devel-
opment: enhance access to reliable internet connectivity and
computing resources, including hardware and software, to
facilitate the use of GEE in remote areas of developing coun-
tries. Capacity building: provide training programs, work-
shops and educational resources to build technical capacity
among local researchers and practitioners in remote sensing,
geospatial analysis and GEE usage. Localization of tools and
resources: adapt GEE tools, applications and educational
materials to local contexts, languages and specific needs
of developing countries to ensure relevance and usability.
Partnerships and collaboration: foster partnerships and col-
laboration among governments, non-governmental organiza-
tions (NGOs), academic institutions and the private sector to

Infrastructure development

|

Capacity building
) Localization of tools and resources
Awareness and advocacy
Partnerships and collaboration
Customized solutions
w Financial & policy support
Monitoring and evaluation

Community engagement

Fig. 7 Interventions to realize GEE potential in developing countries

@ Springer

share knowledge, resources and expertise in leveraging GEE
for various applications. Awareness and advocacy: raise
awareness about the potential benefits of GEE for addressing
environmental and societal challenges in developing coun-
tries through advocacy campaigns, outreach activities and
knowledge-sharing platforms.

Policy support: develop supportive policies, regulations
and frameworks that facilitate the use of GEE for environ-
mental monitoring, natural resource management, disaster
response and climate change adaptation in developing coun-
tries. Financial support: provide financial support and incen-
tives, including grants, funding opportunities and subsidies,
to encourage investment in GEE infrastructure, capacity
building and research initiatives in developing countries.
Customized solutions: tailor GEE applications and solutions
to address specific challenges faced by developing countries,
such as deforestation, water scarcity, agricultural productiv-
ity and urbanization, to maximize impact and effectiveness.
Community engagement: engage local communities, indig-
enous groups and marginalized populations in the design,
implementation and monitoring of GEE projects to ensure
inclusivity, equity and sustainability. Monitoring and evalu-
ation: establish monitoring and evaluation mechanisms to
assess the impact, effectiveness and sustainability of GEE
interventions in achieving desired outcomes and informing
future decision-making processes. By implementing these
interventions in a coordinated and collaborative manner,
developing countries could harness the full potential of GEE
to address pressing environmental, social and economic
challenges and contribute to sustainable development and
resilience building at local, national and global scales.

Conclusion

Satellite imaging has emerged as an indispensable source
for accurate mapping and information, yet the burgeoning
volume and variety of remote sensing data present chal-
lenges in effectively extracting relevant information. Pro-
cessing multiple satellite images captured by different sen-
sors to create high-resolution maps for large areas requires
efficient and precise data processing tools. GEE stands out
as a geo-big data platform hosted in the cloud that adeptly
addresses these challenges. GEE effectively handles mas-
sive amounts of data, a significant bottleneck for researchers
working with satellite imagery. It provides access to open-
access remote sensing datasets, and a variety of algorithms,
including cloud masking functions and classifiers, facilitates
tasks such as compiling country-wide farmland inventories.
The cloud-based GEE platform offers seamless access to
a wealth of freely available satellite imagery. Additionally,
GEE supports pixel-based classification for crop mapping,
making it a versatile tool for researchers. A key advantage
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of GEE is its user-friendly approach, allowing users to share
code snippets and eliminating the need for deep knowledge
of programming languages like JavaScript or Python. Fur-
thermore, the platform boasts a thriving online community,
making it accessible to a wide range of users.

GEE’s extensive collection of pre-processed data layers,
filtered to remove cloud cover and converted to various use-
ful formats like top-of-atmosphere reflectance and surface
reflectance, further enhances its usability. Particularly, for
researchers in underdeveloped and developing countries,
grappling with the massive volume of satellite data and
conducting large-scale geographical analyses can be daunt-
ing due to infrastructure and technological limitations. GEE
has proven to be a valuable and affordable resource for these
researchers, levelling the playing field and enabling them
to overcome major obstacles associated with geospatial
analysis. While GEE has shown its capacity to analyze and
derive meaningful results from massive global datasets and
automate algorithms for operational use, it is important for
more researchers in developing countries to fully harness its
potential for their own projects and studies. GEE represents
an opportunity for these researchers to access powerful geo-
spatial analysis tools and contribute to the advancement of
scientific knowledge and sustainable development.
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