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Abstract
Google Earth Engine (GEE) serves as a versatile platform for processing and visualising geospatial datasets, with its primary 
aim being to provide an open platform for planetary-scale geospatial analysis. Over time, GEE has proven itself as a valu-
able and robust tool, offering access to a wide array of imagery within a single consolidated system. Its cloud computing 
environment and computational power eradicate the need to store, process and analyse vast amount of satellite imagery on 
local computers. GEE has the potential to address some of the challenges associated with earth observation and geospatial 
applications, particularly in developing countries. Its development has lessened the reliance on high-speed processors and 
extensive storage capacities. Moreover, GEE presents users with a unique opportunity to conduct analyses with minimal 
financial investment and equipment requirements. The platform has showcased its capability to perform spatial and temporal 
analyses on global-scale data at significantly accelerated computational speed, rendering it an attractive tool for the scientific 
community, offering both versatility and accessibility. Its application spread across various sectors including crop inven-
tory, vegetation mapping and monitoring, land cover mapping, disaster management, hydrological studies, urban planning 
and management, wetland conservation and management, climate change analysis and forestry analysis. For researchers in 
developing countries, who often grapple with challenges related to data accessibility, funding for computer hardware and 
software and resource limitations, GEE opens up new avenues. However, despite its potential, the utilization of GEE in 
developing countries has fallen short of expectations. Therefore, it is crucial for developing countries to fully leverage this 
platform to accelerate their sustainable development.

Keywords  Crop inventory · Disaster management · Hydrology · Climate change · Forestry application · Urban planning 
and management

Introduction

The Google Earth Engine (GEE) is a cloud computing plat-
form designed to store and process massive datasets, often 
reaching petabyte scale, for analysis and decision-making 
purposes (Kumar and Mutanga 2018). It houses a large col-
lection of global time-series satellite imagery, including his-
torical earth imagery dating back over 40 years, all stored in 
a public data repository (Gorelick et al. 2017). These images 
become readily available for global-scale data mining fol-
lowing ingestion on a daily basis. The main advantage of 
GEE lies in its elimination of the need to download and 
process raw imagery locally; instead, all processing occurs 
seamlessly in the cloud (Yang et al. 2022). This feature is 
particularly valuable as it obviates the users to possess the 
latest machines or software. Consequently, scientists lack-
ing access to resources in less developed and developing 
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countries are afforded equal opportunity to conduct investi-
gations compared to their counterparts in developed coun-
tries (Mutanga and Kumar 2019). Although satellite images 
need not be downloaded, thereby proving advantageous in 
areas with slow internet connectivity, GEE still necessitates 
an online connection (Kumar and Mutanga 2018). Simi-
larly, while researchers may not solely rely on specialised 
remote sensing software such as Environment for Visual-
izing Images (ENVI) and Earth Resources Data Analysis 
System (ERDAS) Imagine, they may find them necessary 
for certain capabilities not available on GEE, such as object-
based image analysis. Thus, the GEE web platform broad-
ens the horizons for large-scale earth observation studies in 
resource-poor developing countries (Gorelick et al. 2017; 
Kumar and Mutanga 2018).

Data are sourced from several government-supported 
archives such as the Land Process Distributed Active 
Archive Center (LPDAAC), the USGS and the ESA Coper-
nicus Open Access Hub, with the repository updated regu-
larly (Kussul et al. 2015; Ma et al. 2015a, b). The fusion 
of data from various sensors can yield more accurate 
information, overcoming the limitation of individual sen-
sors, which proves convenient for users. The existing data-
set encompasses the entire Landsat series, the Moderate 
Resolution Imaging Spectrometer (MODIS); the National 
Oceanographic and Atmospheric Administration Advanced 
Very High-Resolution Radiometer (NOAA AVHRR); Sen-
tinel 1, 2 and 3 and the Advanced Land Observing Satellite 
(ALOS) (Kumar and Mutanga 2018). Users can delve into 
this extensive data repository for change detection, trend 
mapping and resource quantification on the Earth’s surface 
like never before (Mutanga and Kumar 2019). The Land-
sat dataset stands out as the most popular, constituting a 
significant portion of the GEE dataset, with data ranging 
from the past to the most recent Landsat series available for 
download and use. Most images have been pre-processed, 
with cloud removal and mosaicking carried out by previ-
ous users to streamline analysis; however, raw imagery is 
also available, adding value beyond cloud-removed mosaics 
(Kumar and Mutanga 2018). Similarly, several datasets have 
been pre-processed to transform raw digital numbers into 
top-of-atmosphere reflectance and even surface reflectance, 
eliminating the need for specialised software to correct for 
solar and atmospheric effects. Additionally, atmospheric and 
meteorological data are available within the GEE. Ready-to-
use computed products such as Enhanced Vegetation Index 
(EVI) and Normalized Difference Vegetation Index (NDVI) 
are also available in GEE (Kumar and Mutanga 2018).

Processing long-term global remote sensing data on a 
continuous basis necessitates substantial storage capacity 
and efficient processing capabilities. GEE is a unique tool 
that can efficiently process enormous amounts of geospa-
tial data, for example, hundreds of satellite photos, each 

containing tens of terabytes of data, and generate large-scale 
maps (Kussul et al. 2015; Ma et al. 2015a, b; Gorelick et al. 
2017; Ghaffarian et al. 2020; Amani et al. 2020a; Brown 
et al. 2022). GEE leverages Google’s computational infra-
structure to align data analysis, greatly improving processing 
efficiency and enabling large-scale, multi-temporal studies 
on a global scale (Kraaijenbrink et al. 2017; Robinson et al. 
2017; Yu et al. 2017; He et al. 2018). Users have the flex-
ibility to upload additional datasets and choose whether to 
share their uploaded data and generated scripts with others. 
Moreover, GEE offers Application Programming Interfaces 
(APIs) that allow two apps to communicate with each other 
and other tools to assist with large-scale data analysis. The 
user-friendly front-end makes it an ideal platform for inter-
active data exploration and algorithm creation (Gorelick 
et al. 2017). GEE analysis output can be exported in vari-
ous forms, such as map tiles, tables, videos and images in 
GeoTIFF or TFRecord format, or a new Earth Engine asset 
to a user’s Google Drive account or Google Cloud Storage 
(GCS). GCS is a paid service that requires the creation of 
a project, billing for the project and the setup of a storage 
bucket (Kumar and Mutanga 2018).

Users have the capability to build and run custom algo-
rithms through the programming interface, with the anal-
ysis being parallelized across multiple processors, thus 
significantly speeds up the processing time. This permits 
for the execution of continental-scale studies with relative 
ease, a feat unattainable through traditional desktop com-
puting (Gorelick et al. 2017). For example, a study analys-
ing global forest cover variations between the 2000 and 
2012 was completed in 100 h on GEE, processing 654,178 
Landsat 7 scenes with a spatial resolution of 30 m, total-
ling 707 terabytes of data. In contrast, the same analysis 
would have taken over 1,000,000 h on a desktop computer 
(Kumar and Mutanga 2018). Regardless of geographical 
location, the availability of a diverse time-series dataset 
and cutting-edge data processing algorithms accessible viz 
GEE, either directly or through shared resources from fellow 
users, increases our capacity to manage and analyse Earth 
observation data for informed decision-making. GEE fosters 
collaborative knowledge sharing by enabling users to upload 
their raster and vector datasets and freely share scripts with 
others (Kumar and Mutanga 2018). Additionally, the plat-
form offers data request forums and troubleshooting plat-
forms, enhancing data accessibility and providing processing 
assistance at user fingertips.

GEE offers several options for temporal analysis, each 
tailored to different needs and methodologies. These include 
continuous change detection and classification (CCDC), 
exponentially weighted moving average change detec-
tion (EWMACD) and Landsat-based trend identification 
(LandTrendr) (Kennedy et al. 2010; Zhu and Woodcock 
2014; Brooks et al. 2014). LandTrendr is a sophisticated 
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program designed to detect spectral changes at pixel level 
using Landsat data (Shelestov et al. 2017). CCDC utilizes 
harmonic functions to detect significant fluctuations in tem-
poral data, while EWMACD constructs a model based on 
training data and then compares the model to real data points 
using Shewhart X-bar charts and an exponentially weighed 
moving average. These methods offer diverse approaches to 
temporal analysis, enabling users to choose the most suit-
able technique for their specific research objectives within 
the GEE platform.

Despite its numerous advantages, the utilization of GEE 
remains low in developing countries, while developed coun-
tries have efficiently harnessed its capabilities across diverse 
sectors. This is largely attributed to factors such as limited 
awareness of the GEE platform and its capabilities, lack of 
basic technical skills and support, absence of partnerships 
and collaboration and challenges related to infrastructure 
and internet connectivity in developing countries. As a 
result, the potential of GEE for rapid large-scale geospatial 
analysis has yet to be fully realized in these regions. This 
review highlights the wide-ranging applications of GEE in 
sectors such as vegetation mapping, land cover and land use 
mapping, forestry analysis, urban planning, climate change 
analysis, wetland conservation, crop yield estimation, dis-
aster management and hydrological studies. In addition, we 
have proposed several interventions to enhance the utiliza-
tion of GEE in developing countries. These interventions 
include capacity building initiatives to enhance technical 
skills, technical assistance programs to provide support and 
guidance, awareness campaigns to promote GEE’s benefits, 
partnerships with other institutions to foster collaboration 
and tailored support for specific sectors or regions to address 
unique challenges and are crucial for overcoming barriers to 
adoption and maximizing the benefits of this powerful plat-
form for sustainable development. Overall, implementing 
these interventions developing countries can harness the full 
potential of GEE to address pressing challenges and drive 
sustainable development.

Present status of GEE utilization

Kumar and Mutanga (2018) investigated the country-wise 
usage pattern of GEE since its inception. They discovered 
that the usage of GEE was more skewed in technologically 
advanced countries like the USA, compared to countries in 
Asia, Africa and the Middle East. Institutions in less devel-
oped countries often do not effectively utilize this resource 
due to various reasons, including limited global cooperation, 
insufficient training and technical support, lack of technical 
skills for data processing, linguistic barriers (most impor-
tant root cause), limited funding, inadequate infrastruc-
ture facilities, slow internet connections, limited access to 

laboratory equipment, political legitimacy issues, restricted 
or no accessibility to data and limited research opportunities. 
Many researchers may not be aware that adopting GEE elim-
inates the need to download datasets. While GEE’s methods 
are simpler and more understandable, its application may 
remain elusive until a proper graphical user interface (GUI) 
is developed, like those found in ERDAS Imagine or ENVI. 
Consequently, the potential of the GEE platform is not fully 
appreciated in developing countries.

On the contrary, GEE scripts have the potential to be 
transformed into web apps with graphical user interface, 
thereby enhancing usability and portability. In less devel-
oped countries, there is a lack of awareness and weak data 
exchange networks (Velastegui-Montoya et al. 2023). Fur-
thermore, most scientists working in the application field 
lack a programming background. Despite the availability 
of big data processing engines, the cost of data collec-
tion remains a significant challenge, particularly when the 
required data is not within the GEE dataset (Dube et al. 
2016). Regarding the sector-wise usage of GEE, studies in 
the natural resources mapping and management domain, 
particularly in the forest and vegetation category, accounted 
a significant portion, followed by agriculture, hydrology, 
land use and land cover (LULC), urban studies, natural dis-
aster, atmosphere and climate research, image processing 
and pedosphere (Kumar and Mutanga 2018).

A comparison of GEE usage in developed 
and undeveloped countries

GEE is a powerful geospatial analysis platform, fundamen-
tally transforming the way we study and understand our 
planet. Its accessibility and versatility render it an invalu-
able tool for researchers, scientists, policymakers and envi-
ronmentalists across the globe. However, the utilization and 
impact of GEE can significantly diverge between devel-
oped and undeveloped countries, owing to differences in 
resources, infrastructure and priorities. Globally, GEE is 
employed by 125 countries. A continent-wise examination 
of the number of published publications unveils that Asia, 
closely followed by the American continent, has the highest 
volume of articles (Fig. 1). On both a global scale and within 
the Asian region, China emerges as the frontrunner in terms 
of publication numbers. Conversely, within the American 
continent, the USA holds the top position in publication 
output, closely trailed by Brazil (Velastegui-Montoya et al. 
2023).

In developed countries, access to high-quality geospatial 
data is plentiful. These countries often boast well-established 
satellite programs, advanced remote sensing capabilities and 
extensive data-sharing agreements. Researchers in devel-
oped countries leverage GEE to analyse vast datasets with 
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ease, to monitor land use changes, study climate patterns, 
manage natural resources and make data-driven decisions. 
Conversely, less developed countries may lack the resources 
and infrastructure necessary to collect and maintain exten-
sive Earth observation datasets. Access to high-resolution 
satellite imagery is limited, and data are not updated regu-
larly (Perera and Tateishi 1995). This limitation restricts 
the range and precision of analyses that can be conducted 
using GEE in these regions. Moreover, limited internet con-
nectivity and computer hardware further hinders access and 
utilization. While developed countries have greater access 
to data and infrastructure, they harness GEE to monitor 
environmental quality, sustainable agriculture and disaster 
management. Undeveloped countries face hurdles related to 
data access, infrastructure and financial resources (Kumar 
and Mutanga 2018), but they can still derive benefit from 
GEE by leveraging international partnerships and initiatives. 
Bridging the technology gap and promoting knowledge shar-
ing are essential steps in ensuring that GEE’s transformative 
potential benefits all countries, regardless of their develop-
ment status.

Assets and liabilities of GEE

The major advantage of GEE is the availability of corrected 
data, such as ortho-rectified, atmospherically corrected and 
calibrated top of atmosphere Landsat data in addition to raw 
data (Çolak et al. 2019). GEE simplifies the complex pre-
processing of SAR (Synthetic Aperture Radar) data by pro-
viding pre-processed, analysis-ready SAR datasets, a feature 
particularly beneficial for new users (Di Tullio et al. 2018). 
Moreover, GEE has the capacity to handle petabytes of 
remote sensing data across extensive geographic scales and 

longer time periods (Ravanelli et al. 2018). The functionali-
ties of GEE cater to the requirements of typical scientific 
project, with the complexities of parallel computing seam-
lessly concealed through processes automation (Ravanelli 
et al. 2018). With its formidable processing capabilities, the 
cloud-based platform enables the computation of multiple 
ensemble rules to improve classification accuracy. However, 
GEE does have certain limitations hindering its widespread 
utilization. These limitations include a restricted number of 
spatial functions, including Gaussian and Laplacian filters, 
edge detection methods (e.g. Sobel, Roberts and Canny), 
line detection using the Hough Transform and morphologi-
cal operators (e.g. dilation and erosion) due to parallel pro-
cessing. Additionally, GEE lacks support for certain features 
such as frequency-domain techniques (e.g. FFT and Wave-
let), hierarchical algorithms (e.g. hierarchical clustering), 
graph-based methods (e.g. graphcut), geometric descrip-
tors (e.g. Haar, SIFT, SURF) and physical-based models 
(e.g. radiative transfer models). Furthermore, the storage of 
complex SAR phase data is incompatible with GEE tiling 
principle, thereby limiting the application of Polarimetric 
SAR and Interferometric SAR, which heavily rely on phase 
information (Amani et al. 2020a).

Other deficiency of GEE includes challenges in creating 
new tools, as it demands an understanding of all GEE algo-
rithms and their functionality (Amani et al. 2020a). Addi-
tionally, there is a limited choice of classification and regres-
sion techniques available within GEE, and currently, there is 
no efficient and accurate segmentation algorithm available 
within the platform (Amani et al. 2019a). Increasing the 
number of training samples or input features is a common 
method to enhance the classification accuracy. However, 
under GEE’s classification methods, users are constrained to 
using only a limited number of samples or features (Amani 
et al. 2019b). Due to computational constraints, GEE cannot 
effectively conduct complex machine/deep learning algo-
rithms requiring large training datasets or longer training 
times (DeLancey et al. 2019). Users frequently confront 
time-consuming process when trying to download processed 
data midway through their workflow for additional analysis 
in a third-party software environment. This is often due to 
large map sizes and internet speed limitations (Amani et al. 
2020b). The various assets and liabilities of GEE are pre-
sented in Table 1.

Application of GEE in different sectors 
with special reference to agriculture

GEE has evolved as a formidable tool with diverse applica-
tions spanning various domains (Fig. 2). Within the agri-
culture domain, GEE’s applications are manifold. It facili-
tates plantation mapping and monitoring, phenology-based 

Fig. 1   Continent wise GEE publication
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classification, farmland and crop area mapping (Jin et al. 
2019), crop condition monitoring, crop yield estimation, irri-
gation mapping, as well as flood and drought mapping, and 
their impact assessment (Pandey et al. 2022). It versatility 
extends beyond agriculture (He et al. 2018), to encompass 
forestry, vegetation monitoring (Tsai et al. 2018), grassland 
surveillance (Parente and Ferreira 2018), mangrove mapping 
(Diniz et al. 2019), land use and land cover analysis, risk 
and disaster management (Liu et al. 2018), urban planning, 
surface temperature assessment (Ermida et al. 2020), climate 
change, forest fire tracking (Parks et al. 2018), hydrology, 
surface water mapping (Souza et al. 2019), assessment of 
built-up areas and mining, among others.

Crop inventory

Differentiating between various crops typically necessi-
tates images captured at different stages during the growth 
cycle of the crops. Vegetation indices (VIs) derived from 
satellite data have extensive applications in ecological 
research, ecosystem modelling and land surface monitor-
ing. Nevertheless, satellite remote sensing datasets inher-
ently contain noise due to factors such as cloud cover, air 
pollution, data processing issues and device malfunction. 
Most readily available NDVI products that address these 
complications are of coarse resolution. Accessing high-
resolution NDVI datasets and producing them pose several 
technological and methodological challenges. Additionally, 
the existing cropland maps face challenges due to imprecise 
geo-location of individual farms caused by their coarse-
resolution (≥ 250 m), leading to uncertainties in calculated 
cropland areas from such products. Furthermore, large-scale, 
high-resolution crop mapping encounters complexities in 

processing a large amount of heterogeneous high-resolution 
satellite imagery, acquired by various sensors, commonly 
known as the “Big Data” problem (Shelestov et al. 2017). 
The use of GEE solves these challenges in handling and 
processing big data and has proven to be more efficient in 
terms of cost, time, computation and automation (Amani 
et al. 2020b). Wang et al (2019) successfully created crop-
type maps with over 80% accuracy without relying on in-
season field data. They achieved this using Fourier transform 
coefficients of Landsat time series within the GEE platform.

GEE-based near real-time rice area mapping has emerged 
as a robust method across Southeast Asia, achieving an 
impressive accuracy of 96.5% and a kappa coefficient of 
0.92 when compared to field survey data. This approach pre-
sents a valuable alternative to time-consuming and costly 
field surveys. In Tanzania and Kenya, practical applications 
of GEE yielded correct classification of cropland/non-crop-
land with an accuracy of 85%. Similarly, the maize/non-
maize classifier achieved an accuracy of 79% and 63% in 
Tanzania and Kenya, respectively (Jin et al. 2019). Among 
different classification models, support vector machine 
(SVM) and artificial neural networks (ANN) demonstrated 
superior performance compared to random forest (RF) and 
C5.0 models (Minasny et al. 2019). Amani et al (2020b) 
utilized the GEE cloud computing platform along with an 
ANN algorithm and Sentinel-1 and Sentinel-2 images to 
produce object-based Annual Space-Based Crop Inventory 
(ACI) maps for Canada for 2018. The developed ACI map 
exhibited an overall accuracy and a Kappa coefficient of 77% 
and 0.74, respectively. Additionally, the average Producer 
Accuracy (PA) and User Accuracy (UA) for the 17 crop-
land classes were 79% and 77%, respectively. Gumma et al. 
(2020) developed a high spatial resolution (30 m or better) 
cropland map of South Asia for the year 2015 using Landsat 
satellite images and machine learning algorithms (MLA) 
on the GEE cloud computing platform. The developed map 
achieved producer’s, user’s and overall accuracy of 89.9%, 
95.3% and 88.7% respectively. Shelestov et al. (2017) tested 
the efficiency of the GEE platform by executing complex 
workflows involving multi-temporal satellite images (e.g. 
Landsat-8 and Sentinel-2) to produce a high-resolution 
(30 m) crop classification map for country-level analysis. 
Results from the study demonstrated the efficiency of GEE 
through cloud-based parallel processing and the accessibil-
ity of pre-processed data. Notably, the study revealed that 
a neural network–based approach exhibited superior clas-
sification accuracy compared to other classifiers available 
in GEE, including SVM, decision tree and RF algorithms. 
Bağcı et al. (2023) employed an innovative DL methodology, 
specifically a Deep Transformer Encoder, to autonomously 
identify corn and cotton crops in Diyarbakir, Turkey, using 
satellite image indices from Sentinel-1 and Landsat-8. The 
findings revealed impressive accuracy rates of 85%, 95% and 

Fig. 2   Application of GEE in various sectors
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87.5% for the Sentinel-1 dataset, Landsat-8 dataset and the 
combined Sentinel-1 and Landsat-8 datasets, respectively.

Vegetation mapping and monitoring

Biophysical measures such as the Leaf Area Index (LAI), 
Fraction Vegetation Cover (FVC) and Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR) play a crucial 
role in vegetation monitoring (Huete et al. 2002; Fensholt 
2004). These measures provide valuable insight into vegeta-
tion health and coverage. LAI quantifies the amount of green 
vegetation that absorbs or scatters solar radiation, aiding in 
the assessment of plant canopy density. Conversely, FVC 
partitions the contributions of soil and vegetation, assist-
ing in the distinguishing between bare ground and vege-
tated areas. FAPAR, a key vegetation indicator, is linked 
to ecosystem production and provides insights on the effi-
ciency of plants in utilizing solar energy for photosynthe-
sis (Putzenlechner et al. 2022). Remote sensing data can 
be utilized to estimate these critical variables, which have 
applications across various fields including ecology, mete-
orology and agriculture. GEE offers a range of vegetation 
indices, simplifying the process of conducting vegetation-
related research efficiently and quickly (Tsai et al. 2018). 
Consequently, GEE has been extensively employed in tasks 
such as vegetation mapping and monitoring, forest mapping, 
tracking deforestation and forest expansion, assessing forest 
health, monitoring pasture and evaluating rangeland condi-
tions (Parks et al. 2018). Its capabilities have significantly 
advanced research and management in these ecological and 
agricultural domains.

GEE leverages cloud computing and remote sensing 
data to implement a near real-time approach for vegetation 
assessment (Poortinga et al. 2018). One of the key tools in 
this endeavour is the Moderate Resolution Imaging Spec-
troradiometer (MODIS) Enhanced Vegetation Index (EVI) 
product, which effectively reduces canopy background var-
iations while maintaining sensitivity in densely vegetated 
areas (Huete et al. 2002). To address the impact of smoke 
and sub-pixel thin clouds in the atmosphere, the blue band of 
remote sensing data is utilised atmospheric correction. Eco-
Dash is a web-based tool that harnesses the EVI data from 
MODIS products obtained from both Terra and Aqua sen-
sors to map vegetation on a planetary scale. This approach 
facilitates the global monitoring of vegetation, enabling the 
detection of both improvement and degradation using satel-
lite imagery and cloud computing. It offers a cost-effective 
and efficient solution for land managers and environmental 
practitioners involved in land management and monitoring 
(Poortinga et al. 2018). In contrast, traditional approaches 
to such monitoring can be prohibitively expensive in terms 
of both time and resources.

Goldblatt et al. (2017) demonstrated the effectiveness of 
GEE classification using low-spectral but high-spatial reso-
lution input data from WorldView, surpassing the classifi-
cation results obtained from Landsat 30-m resolution data 
with complete spectral information. This approach high-
lights the advantage of high spatial resolution input data 
in detecting sparse vegetation, as well as distinguishing the 
space between trees, seasonal shrubs and grasses. Achieving 
accuracy in vegetation and land use mapping using remote 
sensing images can be challenging, particularly in regions 
with persistent cloud cover and rugged topography. GEE, 
as an open-source image analysis pipeline, offers a reliable 
method for monitoring forest cover and land use pattern in 
hilly, forested areas prone to cloud cover (Tsai et al. 2018). 
The utilization of spectral vegetation index (SVI) products 
and shade/illumination normalisation procedures contributes 
to significantly higher mapping accuracies compared to non-
normalized spectral bands. He et al. (2018) used cloud com-
puting platform to compute spectral vegetation indices from 
multi-seasonal Landsat data. Furthermore, the increasing 
use of drones is gradually replacing many labour-intensive 
and complex agricultural practices and is expected to play an 
increasingly significant role in the future (Vijayakumar et al. 
2021a). GEE has the potential to facilitate the implemen-
tation of precision agriculture in developing countries by 
enabling the fusion of images with diverse temporal and spa-
tial resolutions, including both drone and satellite imagery, 
along with varying degrees of spectral quality (Moltó 2022). 
The GEE’s rapid processing capabilities further enhance its 
suitability for such applications.

Land cover mapping

In the modern era, a plethora of satellites regularly provide 
free high spatial resolution data, opening up new opportuni-
ties for the regular creation of high-resolution land use and 
land cover maps (LULC) over vast territory (Roy et al. 2014). 
A prime example of this is the development of a LULC map 
for Chinese protected areas, which leverages time series data 
from GEE along with novel algorithms designed to address 
challenges like cloud cover and terrain effects. The GEE 
platform has played a pivotal role in facilitating the develop-
ment of algorithms such as SimpleCloudScore, F-Mask and 
ACCA (Automated Cloud-Cover Assessment), which are 
instrumental in cloud removal from satellite images. Tu et al. 
(2020) successfully created a 10-m resolution land cover 
map for Guangdong Province, China, by integrating multi-
source remote sensing data from Sentinel-1, Sentinel-2 
and Luojia-1 within the GEE platform. The resulting map 
boasted an overall accuracy and Kappa coefficient of 86.1% 
and 0.84 respectively. Notably, their research found that RF 
models outperformed SVM, minimum distance (MD) and 
classification and regression tree (CART) models in terms 
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of performance. Lin et al. (2020) monitored LULC changes 
spanning from 1990 to 2019 on Haitan Island, China, using 
GEE. Their investigation unveiled notable transformations. 
The cultivated area and water area experienced a decline 
of 13.63% and 0.95%, respectively, while forest coverage 
and built-up land surged by 30.94% and 16.20% within the 
study area over the same period. The predominant processes 
driving these changes included reforestation, reduction in 
cultivated land and expansion of built-up areas on Haitan 
Island. Across the entire continent of Africa, cropland and 
non-cropland areas were surveyed using a combination 
of 10-day Sentinel data and 16-day Landsat TM data. For 
cropland, the overall accuracy reached 94%, with producer’s 
accuracy at 85.9% and user’s accuracy at 68.5% (Xiong et al. 
2017). In the context of smallholder farmland mapping in 
southern Mali, ensemble classifiers and high spatial resolu-
tion data from Worldview 2 were employed. The ensemble 
approach, combining various spatial and spectral variables 
from multispectral Worldview-2 images, field data and five 
machine learning classifiers, enhanced the overall accuracy 
(75.9%) by 4.65% compared to the best individual classifier. 
Interestingly, the study found that adding more classifiers did 
not lead to continuous improvements in classification results 
(Aguilar et al. 2018).

Abdollahi et  al. (2023) harnessed the power of GEE 
to generate high-fidelity land cover maps of metropolitan 
Melbourne for the year 2020, leveraging a combination of 
Landsat-8 multitemporal data, spectral indices and topo-
graphic components. Their investigation unearthed com-
pelling insights: employing the SVM approach yielded an 
impressive overall accuracy (OA) and kappa accuracy of 
88.47% and 85.34%, respectively. Notably, the application of 
a postprocessing technique resulted in substantial enhance-
ments in both OA and kappa coefficient, with values increas-
ing to 92.90% and 90.99%, respectively. Wahap and Shafri 
(2020) conducted land cover monitoring over Klang Valley, 
Malaysia, utilizing multiple machine learning algorithms 
(MLA) and Landsat composites form three different years 
(1988–2003–2018) available on the GEE cloud platform. 
Among the classification algorithms, CART showed the 
best accuracy, achieving 94.7%, 97.7% and 96.5% in 1988, 
2003 and 2018 respectively, outperforming RF and SVM. 
A study on the land cover changes in Singapore used Land-
sat, Moderate Resolution Imaging Spectro-radiometer and 
GlobCover imagery available in GEE. The findings indicated 
that land reclamation and forest cover changes in Singapore 
were primarily driven by monsoon cycles affecting South-
east Asia, rather than anthropogenic factors (Sidhu et al. 
2018). In the Tigris-Euphrates basin, LULC was mapped 
at a 30-m resolution using 1184 Landsat-8 scenes available 
on the GEE platform. Temporal changes were accounted for 
by creating six 2-month interval composite layers for the 
target year 2019, using the spectral and thermal bands of 

Landsat-8. Image segmentation was performed using sim-
ple non-iterative clustering (SNIC) techniques and the RF 
algorithm. The resulting LULC map displayed a reasonable 
overall accuracy of 91.7%, with the highest user’s accuracy 
observed in water and wetland classes and the lowest in rain 
fed crop and rangeland. Producer’s accuracy was highest in 
water and barren areas and the lowest in garden and range-
land (Shafizadeh-Moghadam et al. 2021). A land-cover map 
of San Salvador basin in Uruguay was generated using GEE. 
The map displayed good agreement with past agriculture 
census data and revealed the transformation of grassland 
to cropland in the period 1990–2018 (Hastings et al. 2020). 
This demonstrates the utility of GEE in tracking and analys-
ing land cover changes over time.

Disaster management and earth sciences

Measuring the progress of post-disaster recovery and com-
prehending its various elements and influencing factors is a 
complex process. Governments and disaster planners rely 
on accurate information to formulate effective solutions for 
rebuilding affected areas and restoring normalcy. Natural 
catastrophe mapping often requires rapid processing, and 
while GEE may have some delay in making photos available, 
it remains a valuable platform for such application (Ghaffar-
ian et al. 2020). Users can upload their own photographs to 
the platform and employ GEE processing capacity to obtain 
timely deliverables. Droughts can have devastating impacts 
on surface water availability. GEE’s access to vegetation 
indices and climate data allows for the early detection and 
monitoring of drought conditions (Sazib et al. 2018; Ejaz 
et al. 2023). Globally, the GEE platform is being used to 
monitor drought occurrences by utilizing soil moisture con-
tent as an indicator. The model has been successfully tested 
in Ethiopia and South Africa (Kibret et al. 2020). The cloud-
based engine enables the integration of global soil moisture 
datasets and web-based processing tools, facilitating the 
estimation of drought duration and intensity (Sazib et al. 
2018). Ghaffarian et al. (2020) used GEE to evaluate the 
3-year recovery process in the aftermath of Typhoon Haiyan 
in Leyte, Philippines, in 2013. The land cover maps gener-
ated using GEE showed accuracies exceeding 88%, and the 
analysis of selected land cover changes revealed that most 
municipalities had returned to their pre-disaster conditions 
after 3 years. GEE enables real-time flood monitoring using 
satellite imagery and rainfall data (Pandey et al. 2022). This 
information is valuable for flood preparedness and response. 
Nghia et al. (2022) used Sentinel-1 SAR data within GEE 
for flood mapping and monitoring in the downstream prov-
inces of the Mekong River. The results revealed a gradual 
shift in flooding patterns in the downstream provinces of 
the Mekong Delta. Pandey et al. (2022) used Sentinel-1A 
SAR data in the GEE platform, to estimate the composite 
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area of flood inundation in the Ganga–Brahmaputra basin 
during the monsoon season from July to September. Their 
estimates showed 25,889 km2 in Bangladesh, 20,837 km2 in 
Bihar, 17,307 km2 in West Bengal and 13,460 km2 in Assam 
were inundated by floods. In recent years, drones have been 
increasingly used to collect high-resolution images immedi-
ately after natural calamities like cyclones, floods, droughts 
and heat waves (Vijaya Kumar et al. 2020). The images col-
lected by drones can be rapidly processed in GEE with mini-
mal human intervention, enhancing the speed and efficiency 
of disaster response efforts.

Crop yield estimation

Accurate yield estimations on the regional level, in advance, 
utilizing satellite remote sensing, are imperative to ensure 
food security. Through the GEE, users can assess geographic 
yield variability at field scales, thus gaining a more com-
prehensive understanding of yield variability even at the 
state level (Gao et al. 2019). Jaafar and Mourad (2021) inte-
grated Landsat data, gridded weather data and global soil 
datasets available in GEE to predict crop yields at a 30-m 
resolution. Their operational model, Global Yield Mapper in 
Earth Engine (GYMEE), has the potential to estimate potato, 
wheat and corn yields with a relative error of ± 6%. GYMEE 
also facilitates the estimation of evapotranspiration (ET) at a 
global scale, contributing to a better understanding of water 
use efficiency by crops. Jin et al. (2019) combined Sentinel-1 
and Sentinel-2 imagery within the GEE platform to gener-
ate a country map of maize production areas and yields for 
Kenya and Tanzania in 2017 at 10-m resolution. This map-
ping task is particularly challenging due to the diverse small-
holder farming landscapes and year-round cloud cover in 
East Africa. The maize/non-maize classier achieved an accu-
racy of 79% in Tanzania and 63% in Kenya. Furthermore, 
they also developed a scalable crop yield mapper (SCYM) 
to predict maize yield, which captured approximately 50% 
of the yield variation at the district level in Western Kenya 
compared to ground-based crop cut measurement. He et al. 
(2018) used the GEE platform to merge MODIS and Land-
sat satellite data to estimate Gross Primary Productivity of 
seven crops in Montana, USA, from 2008 to 2015 at 30-m 
spatial resolution. The predicted annual crop output findings 
were in strong agreement with country-level crop produc-
tion data provided by the US Department of Agriculture, 
exhibiting a high correlation (r = 0.96, p 0.05). Moreover, 
the performance of predicted crop yields at a finer scale was 
also significant (r = 0.42, p 0.05). Rice, a major food crop 
cultivated during rainy season (kharif), presents challenges 
for optical remote sensing due to cloud cover (Vijayakumar 
et al. 2022). Microwave remote sensing offers a solution by 
penetrating cloud cover and provide more accurate infor-
mation during the rainy season, albeit involving complex 

processing. The GEE platform offers users a convenient 
means to work with microwave remote sensing data, simpli-
fying the associated processing tasks. Additionally, micro-
wave remote sensing data from the European Space Agency 
are now available free of cost, making it a valuable resource 
for agriculture applications.

Hydrological studies

Water, a precious and finite resource, plays a vital role in 
sustaining life, ecosystems, agriculture and industrial activi-
ties. Effective assessment and management of water resource 
are crucial to ensure their sustainable use and availability for 
present and future generations. In recent years, the advent of 
remote sensing and geospatial technologies has revolution-
ized the monitoring and management of water resources. 
GEE has emerged as a powerful tool for water resource man-
agement and various hydrological studies (Condeça et al. 
2022). Analysing satellite images to gauge the quantity and 
quality of water sources has become a common practice, 
facilitating improved spatial planning and informed deci-
sion-making (Lin et al. 2020). Monitoring surface water 
resources through GEE has been particularly successful 
when water indices are employed as a methodology. These 
indices help track changes in water bodies over time and pro-
vide valuable information for water management (Mashala 
et al. 2023). GEE supports the integration of climate data, 
terrain information and land cover data to develop hydrolog-
ical models. These models predict surface water availability, 
including streamflow (inflow, outflow) and water volume in 
reservoirs (Jain et al. 2021). Hydrological models can be 
calibrated using historical data and used to estimate future 
reservoir volumes. One notable development in this field 
is the work of Condeça et al. (2022) who devised a meth-
odology for the precise determination of reservoir volumes 
using satellite images, water indices and GEE. This innova-
tive approach automates the calculation of flooded water 
surface areas and stored water volumes in lakes, tanks and 
ponds. By automating the mapping of surface water bodies 
using satellite imagery, this methodology enables large-scale 
monitoring of water resources, which is crucial for effective 
water resource management and conservation efforts (Souza 
et al. 2019; Sreekanth et al. 2021). GEE’s vast repository of 
satellite imagery enables the creation of time-series analysis 
to track changes in water levels and estimate reservoir vol-
umes (Sreekanth et al. 2021). GEE can incorporate altimetry 
data from satellites like Jason-3 and Sentinel-3. Altimetry 
data provides precise measurements of water levels in large 
bodies of water, enhancing volume estimation accuracy. In 
Diyarbakir province, Turkey, Acar (2020) utilized Senti-
nel-1 SAR images to detect unregistered electric distribution 
transformers (EDT) in agricultural fields. This was achieved 
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through the application of MLA, including Extreme Learn-
ing Machine (ELM), K-nearest Neighbour (K-NN), Naive 
Bayes Algorithm (NBA) and SVM. The ELM technique 
yielded the most promising results, successfully detecting 
unregistered EDTs with a mean accuracy of 85.47%. Simi-
larly, Acar et al. (2023) identified illegal substations in the 
agricultural fields of the southeast Anatolian region, Turkey, 
using Landsat-8 OLI images and MLA. They employed the 
LSTM (long short-term memory) method, a recurrent neu-
ral network model and the Logit-Boost method for auto-
matic recognition of substations. The Logit-Boost method 
achieved an average accuracy of 88.89%, while the LSTM 
method achieved an average accuracy of 84.21%. Despite the 
remarkable processing capabilities offered by cloud comput-
ing, only a handful of studies have ventured to harness this 
technology in sub-Saharan African countries, particularly in 
rural catchments (Mashala et al. 2023).

Urban planning and management

Urban areas are dynamic and complex environments char-
acterized by rapid population growth, infrastructure devel-
opment and land use changes (Lin et al. 2020). In this con-
text, GEE offers unprecedented opportunities for enhancing 
urban planning and management (Fig. 3). By leveraging 
GEE capabilities, stakeholders can effectively monitor the 
expansion of urban areas, identify patterns of development 
and assess the impact of urbanization on natural ecosystems 
(Liang et al. 2020; Mashala et al. 2023). This information 
is crucial for understanding the drivers of urban growth, 
forecasting future trends and guiding land use planning and 
zoning decisions to promote sustainable development. Addi-
tionally, GEE facilitates a comprehensive understanding of 
the evolving dynamics within urban landscapes, enabling 
the identification of sustainable development pathways 
and the formulation of pragmatic strategies to address the 
intricate challenges confronting cities (Zelal and Derviso-
glu 2023). Another important application of GEE in urban 
areas is mapping infrastructure and services, such as roads, 

buildings, parks and utilities at high spatial resolution 
(Table 2). By utilizing this capability, planners and poli-
cymakers can pinpoint areas with infrastructure deficiency, 
prioritize investment in public services and improve accessi-
bility and mobility for urban residents (Mashala et al. 2023). 
Moreover, GEE supports the analysis of urban heat islands 
and air quality by integrating satellite-derived data with 
meteorological models and ground-based measurements. It 
can map surface temperatures, identify heat island hotspots 
and assess the impact of urbanization on local climate pat-
terns. Additionally, GEE aids in the monitoring of air qual-
ity indicators such as particulate matter, nitrogen dioxide 
and ozone concentrations, providing insights into the health 
impacts of air pollution on urban populations (Ghasempour 
et al. 2021). This information can inform urban planning and 
design strategies to mitigate heat island effects, reduce air 
pollution and enhance the liveability of cities.

Wetland conservation and management

Wetlands are among the most biologically diverse and pro-
ductive ecosystems on Earth, providing a wide range of eco-
system services such as water purification, flood control and 
carbon sequestration (Gardner and Finlayson 2018; Xu et al. 
2019). However, they are also among the most threatened 
ecosystems, facing degradation and loss due to factors such 
as urbanization, agriculture and climate change (Dixon et al. 
2016). Leveraging GEE, user can identify wetland habitats, 
biodiversity hotspot, map land cover types, detect changes 
in wetland ecosystems due to human activities or natural 
processes and pinpoint priority areas for conservation within 
wetland ecosystems (Fig. 4) (Pham et al. 2023). Further-
more, GEE facilitates the monitoring of invasive species, 
habitat fragmentation and other threats to wetland biodiver-
sity, enabling timely interventions to mitigate their impacts 
(Xu et al. 2019; Qu et al. 2023). This information is cru-
cial for assessing the health and resilience of wetlands and 
informing conservation efforts (Moukrim et al. 2023). Addi-
tionally, GEE can monitor changes in wetland hydrological 
regimes, track water flow patterns and assess the impact of 
human activities such as water abstraction and land drainage 
on wetland ecosystems (Zhang et al. 2023). GEE supports 
the monitoring of water quality indicators such as turbidity, 
nutrient concentrations and algal blooms, providing insights 
into the health of wetland ecosystems and informing man-
agement decisions related to water resource management 
and pollution control (Kavzoglu and Goral 2022; Kwong 
et al. 2022; Kislik et al. 2022).

Mahdianpari et al. (2018) harnessed high-resolution Sen-
tinel 1 and 2 satellite data to develop an extensive wetland 
inventory map of Newfoundland province, Canada. Their 
investigation unveiled that employing an object-based Fig. 3   Urban planning and management with GEE
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approach yielded superior results compared to pixel-based 
classification when delineating wetlands within the GEE 
platform, achieving an accuracy of 70% and 90% for all 
wetland and non-wetland classes, respectively. Despite the 
higher precision observed in classifying wetland types using 
multi-year optical data compared to Synthetic Aperture 
Radar (SAR), the amalgamation of both data sets notably 
enhanced overall accuracy levels. Similarly, Moukrim et al. 
(2023) created a water transition map covering the period 
from 1984 to 2019 to examine the spatiotemporal evolu-
tion of Dayet Aoua lake. Their findings revealed that recent 
changes in climate and land use in the lake’s surroundings 
have affected the dynamics and recovery capacity of Dayet 
Aoua. Thus, GEE plays a crucial role in supporting wetland 
restoration and management efforts by providing tools for 
spatial planning, decision support and stakeholder engage-
ment. The platform enables stakeholders to visualize and 
analyze geospatial data, model ecosystem dynamics and 
simulate the impact of management interventions such as 
habitat restoration, water flow restoration and invasive spe-
cies control.

Climate change analysis

Climate change poses one of the most pressing challenges of 
our time, with far-reaching impacts on ecosystems, econo-
mies and societies worldwide. Developing countries, often 
more vulnerable to the effects of climate change due to lim-
ited resources and infrastructure, require effective tools and 
resources to understand and mitigate its impacts (Vijaya-
kumar et al. 2021b). GEE offers unprecedented opportu-
nities for advancing climate change research, monitoring 
and adaptation efforts (Fig. 5). By harnessing its capabili-
ties, researchers, policymakers and communities can bet-
ter understand the drivers and impacts of climate change, 
develop effective mitigation and adaptation strategies and 
work towards a more sustainable and resilient future. One 
of the key applications of GEE in climate change studies is 
monitoring land use and land cover changes (Lin et al. 2020; 

Mashala et al. 2023). By leveraging machine learning (ML) 
algorithms and image processing techniques, researchers can 
analyze these images to track changes in land use patterns 
such as deforestation, urbanization and agricultural expan-
sion (Arévalo et al. 2020; Kafy et al. 2023). This information 
is crucial for assessing the impact of human activities on 
ecosystems and understanding their contribution to climate 
change. GEE enables researchers to estimate carbon stocks 
in forests, grasslands and other vegetation types by combin-
ing satellite data with ground-based measurements and eco-
system models (Venkatappa et al. 2021; Kafy et al. 2023). 
This information used to monitor deforestation rates assesses 
the effectiveness of conservation efforts and supports cli-
mate change mitigation strategies such as REDD + (Reduc-
ing Emissions from Deforestation and Forest Degradation). 
Moreover, GEE facilitates the analysis of greenhouse gas 
emissions from various sources such as deforestation, agri-
culture and industrial activities, providing valuable insights 
for policymakers and stakeholders (Roopsind et al. 2019).

GEE also supports the assessment of climate vulner-
ability and resilience at local, regional and global scales. 
By integrating climate models, remote sensing data and 
socioeconomic indicators, researchers can identify areas 
that are most susceptible to climate impacts such as sea-
level rise, droughts and extreme weather events (Venkatappa 
et al. 2021). This information is essential for prioritizing 
adaptation measures, improving disaster preparedness 
and building resilient communities (Vijayakumar et  al. 
2021b). For example, between 2015 and 2019, droughts 
affected approximately 9.42 million hectares of cropland, 

Fig. 4   Wetland conservation and management through GEE

Fig. 5   GEE for climate change analysis
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while floods impacted 3.72 million hectares in Southeast 
Asia. Over the same period, an estimated total loss of 20.64 
million tons of crop production was recorded. Analysis of 
40 years of data (from 1980 to 2019) in GEE revealed that 
rain fed crops in Thailand, Cambodia and Myanmar were 
significantly impacted by droughts, whereas Indonesia, the 
Philippines and Malaysia were more vulnerable to floods 
(Venkatappa et al. 2021). Additionally, GEE enables the 
monitoring of environmental changes over time, allowing 
for the evaluation of adaptation strategies and the identifi-
cation of best practices. Based on aggregated time series of 
NDVI, temperature and rainfall data, Workie and Debella 
(2018) found that the onset of the growing season has shifted 
to an earlier time, and the duration of the growing season 
has increased in Ethiopia over the last 14 years. Adjusting 
crop growing periods is crucial for maximizing the use of 
summer rainfall in agriculture. However, realizing the full 
potential of GEE requires collaboration, capacity building 
and continued innovation to address emerging challenges 
and leverage new opportunities in the fight against climate 
change. The application of GEE for climate change analysis 
remains largely untapped in developing countries, despite 
its immense potential to support adaptation and mitigation 
efforts in these regions. By leveraging GEE’s capabilities, 
developing countries can enhance their understanding of cli-
mate change impacts, strengthen their resilience to climate-
related hazards and contribute to global efforts to address 
this urgent challenge.

Forestry application

Forests in developing countries face significant threats, 
including deforestation, degradation and unsustainable land 
use practices. Addressing these obstacles necessitates the 
implementation of efficient monitoring and management 
strategies. GEE has emerged as a valuable asset in con-
fronting the intricate hurdles linked with forest ecosystems 
globally (Fig. 6). One of the primary applications of GEE in 
forestry is the utilization of satellite imagery for monitoring 
forest cover and land use changes (Arévalo et al. 2020; Kafy 
et al. 2023). It allows researchers and land managers to track 
forest dynamics over time (Table 3). By analysing multi-
temporal satellite imagery, GEE enables the detection of 

deforestation, forest degradation and reforestation activities 
with high spatial and temporal resolution (Lin et al. 2020; 
Kombate et al. 2022). Jena and Pradhan (2019) investigated 
the impact of tin mining activity, settlements and illegal log-
ging on forest dynamics in Belitung Island, Indonesia, using 
a combination of Landsat ETM, MODIS global land cover 
and Hansen global forest change datasets within the GEE 
platform. The study revealed a progressive decline in for-
est cover from 2012 to 2017, coinciding with a significant 
expansion of active tin mining areas, agricultural land and 
human settlements (Jena and Pradhan 2019). GEE facili-
tates the creation of accurate forest maps and inventories. By 
employing ML algorithms and classification models, GEE 
enables automated forest mapping, species identification 
and estimation of forest biomass (Lasaponara et al. 2022). 
These capabilities are invaluable for forestry professionals 
in assessing forest resources, planning sustainable land use 
practices and monitoring the effectiveness of conservation 
initiatives (Kafy et al. 2023).

GEE by leveraging satellite data identifies active fire 
hotspots and track fire progression. By integrating weather 
data, terrain information and historical fire patterns, GEE 
enhances early warning systems and supports timely fire 
management strategies, thereby mitigating the impacts of 
wildfires on forests and adjacent communities (Luu et al. 
2024). It also facilitates the estimation of forest carbon 
stocks and fluxes. By analysing vegetation indices, canopy 
structure and biomass distribution, GEE enables the quan-
tification of carbon sequestration rates and the assessment 
of forest carbon dynamics (Kafy et al. 2023). This informa-
tion is vital for policymakers, conservation organizations 
and carbon offset initiatives seeking to enhance forest con-
servation and climate resilience. GEE supports biodiversity 
conservation efforts by habitat mapping, species distribution 
modeling and landscape connectivity analysis. By integrat-
ing satellite imagery with ecological data, GEE enables the 
identification of critical habitats, migration corridors and 
biodiversity hotspots (Crego et al. 2022). This knowledge 
aids conservation practitioners in prioritizing conservation 
actions, identifying areas of high conservation value and 
monitoring habitat changes over time. The forest application 
of GEE remains largely untapped in developing countries, 
despite its immense potential to support forest monitoring, 
management and conservation efforts. By leveraging GEE’s 

Fig. 6   GEE application in forestry
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capabilities, developing countries can enhance their capacity 
to address forest-related challenges and contribute to sus-
tainable development and environmental stewardship. While 
GEE offers tremendous potential for forestry applications, 
several challenges remain to be addressed. These include 
data interoperability, algorithm validation and capacity 
building for end-users in developing countries.

Interventions to realize GEE potential 
in developing countries

Realizing the potential of GEE in developing countries 
requires a combination of interventions aimed at addressing 
technological, institutional and capacity-related challenges. 
The key interventions that can help unlock GEE’s potential 
in these regions are presented in Fig. 7. Infrastructure devel-
opment: enhance access to reliable internet connectivity and 
computing resources, including hardware and software, to 
facilitate the use of GEE in remote areas of developing coun-
tries. Capacity building: provide training programs, work-
shops and educational resources to build technical capacity 
among local researchers and practitioners in remote sensing, 
geospatial analysis and GEE usage. Localization of tools and 
resources: adapt GEE tools, applications and educational 
materials to local contexts, languages and specific needs 
of developing countries to ensure relevance and usability. 
Partnerships and collaboration: foster partnerships and col-
laboration among governments, non-governmental organiza-
tions (NGOs), academic institutions and the private sector to 

share knowledge, resources and expertise in leveraging GEE 
for various applications. Awareness and advocacy: raise 
awareness about the potential benefits of GEE for addressing 
environmental and societal challenges in developing coun-
tries through advocacy campaigns, outreach activities and 
knowledge-sharing platforms.

Policy support: develop supportive policies, regulations 
and frameworks that facilitate the use of GEE for environ-
mental monitoring, natural resource management, disaster 
response and climate change adaptation in developing coun-
tries. Financial support: provide financial support and incen-
tives, including grants, funding opportunities and subsidies, 
to encourage investment in GEE infrastructure, capacity 
building and research initiatives in developing countries. 
Customized solutions: tailor GEE applications and solutions 
to address specific challenges faced by developing countries, 
such as deforestation, water scarcity, agricultural productiv-
ity and urbanization, to maximize impact and effectiveness. 
Community engagement: engage local communities, indig-
enous groups and marginalized populations in the design, 
implementation and monitoring of GEE projects to ensure 
inclusivity, equity and sustainability. Monitoring and evalu-
ation: establish monitoring and evaluation mechanisms to 
assess the impact, effectiveness and sustainability of GEE 
interventions in achieving desired outcomes and informing 
future decision-making processes. By implementing these 
interventions in a coordinated and collaborative manner, 
developing countries could harness the full potential of GEE 
to address pressing environmental, social and economic 
challenges and contribute to sustainable development and 
resilience building at local, national and global scales.

Conclusion

Satellite imaging has emerged as an indispensable source 
for accurate mapping and information, yet the burgeoning 
volume and variety of remote sensing data present chal-
lenges in effectively extracting relevant information. Pro-
cessing multiple satellite images captured by different sen-
sors to create high-resolution maps for large areas requires 
efficient and precise data processing tools. GEE stands out 
as a geo-big data platform hosted in the cloud that adeptly 
addresses these challenges. GEE effectively handles mas-
sive amounts of data, a significant bottleneck for researchers 
working with satellite imagery. It provides access to open-
access remote sensing datasets, and a variety of algorithms, 
including cloud masking functions and classifiers, facilitates 
tasks such as compiling country-wide farmland inventories. 
The cloud-based GEE platform offers seamless access to 
a wealth of freely available satellite imagery. Additionally, 
GEE supports pixel-based classification for crop mapping, 
making it a versatile tool for researchers. A key advantage Fig. 7   Interventions to realize GEE potential in developing countries
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of GEE is its user-friendly approach, allowing users to share 
code snippets and eliminating the need for deep knowledge 
of programming languages like JavaScript or Python. Fur-
thermore, the platform boasts a thriving online community, 
making it accessible to a wide range of users.

GEE’s extensive collection of pre-processed data layers, 
filtered to remove cloud cover and converted to various use-
ful formats like top-of-atmosphere reflectance and surface 
reflectance, further enhances its usability. Particularly, for 
researchers in underdeveloped and developing countries, 
grappling with the massive volume of satellite data and 
conducting large-scale geographical analyses can be daunt-
ing due to infrastructure and technological limitations. GEE 
has proven to be a valuable and affordable resource for these 
researchers, levelling the playing field and enabling them 
to overcome major obstacles associated with geospatial 
analysis. While GEE has shown its capacity to analyze and 
derive meaningful results from massive global datasets and 
automate algorithms for operational use, it is important for 
more researchers in developing countries to fully harness its 
potential for their own projects and studies. GEE represents 
an opportunity for these researchers to access powerful geo-
spatial analysis tools and contribute to the advancement of 
scientific knowledge and sustainable development.
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