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Abstract
In this paper, we applied two kinds of knowledge-driven methods, one using the fuzzy logic and another using geometric 
average to evaluate 3D mineral prospectivity for Sansong district, Yongyu apatite deposit, in the Phyongnam Basin, DPR 
Korea. Based on the ore geology studies of apatite deposits and the available spatial datasets in the study area, we used four 
independent evidential maps for 3D apatite deposit prospectivity modeling. They include (1) carbonatite, (2) biotite gneiss, 
(3) granitic gneiss, and (4) P2O5 values from the borehole data. The evidential factors were modeled into 3D space, and 3D 
P2O5 values from the borehole data were transformed into continuous values of the [0, 1] range using logistic sigmoid. In 
3D MPM just as 2D MPM, it is very economic and efficient to simultaneously apply the fuzzy logic and geometric average 
methods for mineral prospectivity modeling of the study area because two predictive models can use the same fuzzifica-
tion methodology based on fuzzy membership function. Our strategy is to fuzzify the evidential maps before applying the 
geometric average as well as in the fuzzy logic. The results for the two predictive models were validated by the prediction 
efficiency method. The results demonstrated that most of the validation data were distributed in voxels with high prospectivity 
values. Although the validation results were slightly worse than those in 2D MPM case study, our case studies suggested that 
both predictive models and their modeling results are useful for evaluating 3D prospectivity of apatite deposits in Sansong 
district, Yongyu apatite deposit, DPR Korea.
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Introduction

The predictive models in GIS-based mineral prospectivity 
modeling (MPM) can be typically subdivided into two main 
categories: knowledge-driven and data-driven models. The 
main characteristics of data-driven methods are that they 
are based on the spatial relationship between known min-
eral occurrences and input evidential layers and they are 
commonly suitable for brown fields (well-explored regions). 
Although many sophisticated data-driven methods based on 
artificial intelligence have been reported (Xiong and Zuo 
2018; Zhang et al. 2019; Li et al. 2020; Chen et al. 2020; 

Prado et al. 2020; Shirazy et al. 2021; Deng et al. 2022), 
the weights of evidence (WofE) method remains one of the 
most widely used data-driven approaches, and many case 
studies and modified or hybrid versions for MPM have been 
reported (Ford et al. 2015; Kreuzer et al. 2015; Ren et al. 
2016; Liu and Cheng 2019; Mao et al. 2019). In contrast, 
knowledge-driven approaches, unlike data-driven tech-
niques, only depend on expert opinions, and they include 
fuzzy logic (Ford et al. 2015; Nykänen et al. 2015; Yousefi 
and Carranza 2015a; Tao et al. 2021; Behera and Panigrahi 
2021), index overlay (Yousefi and Carranza 2015b; Li et al. 
2022), Dempster-Shafer belief theory (Mohammadpour et al. 
2021), analytical hierarchy process (Li et al. 2022; Shabani 
et al. 2022; Shirazi et al. 2022), and data envelopment anal-
ysis (Hosseini and Abedi 2015). Knowledge-driven meth-
ods are commonly applied in green fields (under-explored 
regions), and it is particularly suitable for the case studies in 
DPRK because most of MPM studies might be implemented 
in green fields rather than in brown fields.
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The geometric average belongs to a category of knowl-
edge-driven methods; therefore, it can be used in green 
fields, and it also has some inherent advantages over other 
methods (Yousefi and Carranza 2015c). The geometric 
average method can not only effectively treat some uncer-
tainties during MPM but also it does not require the same 
unit for different evidential values. In addition, it is easy to 
implement because it is based on a relatively simple model. 
The fuzzy logic method is also a kind of knowledge-driven 
methods which can effectively capture the fuzzy nature of 
evidential maps used in MPM, and recent researches focus 
on hybrid methods of the fuzzy logic and other techniques 
such as WofE (Mao et al. 2019; Behera and Panigrahi 2021). 
In particular, data fusion techniques by the hybrid fuzzy-
AHP have been recently used in the field of MPM (Khos-
ravi et al. 2022; Shabani et al. 2022; Shirazi et al. 2022). 
Our hybrid strategy is to fuzzify the evidential maps before 
applying the geometric average model as well as in the fuzzy 
logic. Although our previous studies (Kim et al. 2019) have 
revealed that GIS modeling techniques based on geomet-
ric average and fuzzy logic models can provide a fast and 
economic way to separate prospectivity target areas for Cu 
polymetallic mineralization in the study area, we recognize 
that it is necessary to efficiently incorporate 3D predictive 
models within available 3D GIS and to test generalization 
ability of our methodology in different case studies. Further-
more, 3D MPM studies have been rarely reported until now 
and just initiated in recent years in DPRK even though it has 
been already the main research field in many other parts of 
the world (Li et al. 2016; Mao et al. 2019; Mohammadpour 
et al. 2021; Deng et al. 2022). It will be the first attempt to 
implement 3D prospectivity modeling of non-metal deposits 
in DPRK, and it has also a practical significance to separate 
some prospectivity target areas for future mining and pro-
duction in Sansong district, Yongyu apatite deposit.

The aims of the paper are (1) to answer the question “How 
can we extend the fuzzy logic and the geometric average 
methods from 2 to 3D studies?”, (2) to separate target areas 
in the Sansong district of the Yongyu deposit to prepare new 
areas for future drilling and mining, and (3) to compare the 
results of 3D MPM for non-metal deposits with those of 
our previous 2D MPM for Cu polymetallic deposits. To do 
this, we implement 3D modeling for four factors extracted 
from the geological database in Sansong district, Yongyu 
apatite deposit, using SGrid object of commercial 3D GIS 
software (GOCAD), and they are integrated based on two 
predictive models—one using the fuzzy logic and another 
using the geometric average. We created two 3D prospec-
tivity models in the study area, compared the results of two 
predictive models, and tested possibility of their application 
for 3D MPM of non-metal deposits by using prediction effi-
ciency curve based on the validation data in the study area. 
We also compared our results with those in the previous 2D 

study (Kim et al. 2019). In our study, we choose the Sansong 
district of the Yongyu apatite deposit as the research area to 
verify our method and to provide some new target areas for 
future mining and production. In the Yongyu deposit, the 
study area is considered to be the only choice for the future 
mining and production, and the urgent task is to separate 
some new prospectivity volumes to design more detailed 
geological survey and to drill some additional boreholes.

Geological background

General geology

Yongyu apatite deposit is situated in Yongyu district of 
Pyongwon county, South Pyongan Province, DPR Korea. 
The study area is tectonically located in the northwestern 
part of Phyongnam Basin (Fig. 1). The Phyongnam Basin 
borders Rangnim Massif by Chongchongang fault zone on 
the north and Kyonggi Massif by Wonsan-Seoul fault zone 
on the south. And it can be subdivided into Pyongyang uplift 
and Sariwon-Sohung Basin, and it also includes several 
emergences such as Yangdok Emergence, Pyongwon Emer-
gence, Anak-Sinchon Emergence, and Ichon Emergence 
(Paek et al. 1993).

The study area tectonically belongs to Pyongwon Emer-
gence, Pyongyang uplift of Phyongnam Basin. The geology 
of the study area basically consists of sedimentary metamor-
phic rocks, altered granites, and carbonate rocks of Paleo-
proterozoic strata, Jungsan Complex (Fig. 2).

In the study area, the sedimentary metamorphic rocks 
include biotite gneiss, garnet biotite gneiss, biotite schist, 
amphibole schist, and siliceous shale. The altered granites 
consist of gneissic biotite granitite, garnet biotite granitite, 
chlorite biotite granitite, and amphibole biotite granitite. 
And altered granites contain different amount of altered 
residues of biotite gneiss, siliceous schist, and metabasite. 
The carbonate rocks are included in the sedimentary meta-
morphic rocks and altered granites of Paleoproterozoic Jun-
gsan Complex. In the study area, NW and NE trending fault 
systems are developed and NW trending faults are cut and 
transposed by NE trending faults. The area for current study 
was selected because of two practical reasons: (1) it is nec-
essary to provide spatial information where to focus future 
drilling in further development for Sansong district, Yongyu 
apatite deposit, and (2) availability of borehole datasets.

Ore geology

The apatite deposits in DPR Korea are divided into mag-
matic, carbonatite, sedimentary metamorphic pegmatic, 
skarn, and hydrothermal (Choe et al. 2011). The magmatic 
apatite deposits are genetically and spatially associated 
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with alkaline-mafic, alkaline-intermediate, and alkaline-
ultramafic rocks within Andol Complex, Pyoksong Com-
plex, Sakju Complex, Yonsan Complex, and Pyongyang 
Complex. The apatite ore bodies of this type deposit are 
mainly developed within the altered rocks formed by biotiti-
zation and chloritization from amphibole and pyroxene and 
albitization-zoisitization from plagioclase. Some deposits 
of this type might be included in the category of magmatic-
metamorphic deposits. The majority of sedimentary apa-
tite deposits are developed within the sedimentary rocks of 
Pyongsan group and Junghwa group of Hwangju Formation, 
and minority of them are included in the sedimentary rocks 
of Jikhyon Formation, Mukchon Formation, and Onsong 

Formation. In addition, the sedimentary metamorphic apa-
tite deposits occurred within the rocks of Rangnim Complex, 
Jungsan Complex, and Hwanghae Complex. The apatite ore 
bodies in the carbonatite deposits are composed of apatite-
calcite carbonatite within Neoarchean and Paleoproterozoic 
sedimentary metamorphic rocks. Most of industrial apatite 
deposits including Phungnyon, Yongyu, and Jungsan depos-
its belong to the category of carbonatite deposits. The apatite 
ore bodies are included within the carbonatite rocks which 
are developed in veins within the altered granites.

According to their distribution characteristics, ore bod-
ies are subdivided into Ryusongsan, Orijae, Sansong, 
Tokungsan, Jangjae, and Jolgol ore bodies. Among them, 

Fig. 1   Location of the study 
area with tectonic units (the 
black-red box indicates the 
location of the study area; 
TFB, Tumangang Fold Belt; 
KM, Kwanmo Massif; KMB, 
Kilju-Myongchon Basin; HRB, 
Hyesan-Riwon Basin; RM, 
Rangnim Massif; PB, Phyong-
nam Basin) (Paek et al. 1993)

Fig. 2   Geological map of the study area, exploration profiles, and borehole locations
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Ryusongsan and Orijae ore bodies have been already tun-
neled and Sansong ore body has not been yet developed until 
now. In this paper, we focus on exploration targeting in San-
song district. The ore bodies occurred in the form of parallel 
veins in the study area. The veins are divided or merged 
along their strike and slope direction. The width and slope 
of the veins change at depth, and the border between ore 
bodies and host rocks is relatively clear. The ore types are 
divided into carbonatite, altered, and oxide, and they can be 
subdivided into some groups according to the characteristics 
of mineral association. Carbonatite is the main ore type in 
the ore bodies, and they occur in the form of phlogopite-
apatite-calcite and apatite-calcite. The altered ore bodies are 
developed inside the host rocks in contact between carbon-
atite and host rocks. The composition of altered ores depends 
on the composition of host rock and type of alteration. In 
the case of biotite gneiss, the apatite ores occur in the form 
of apatite-calcite-biotite and apatite-quartz-feldspar-biotite. 
The altered ores are dominantly developed within the biotite 
gneiss and granitic gneiss in Sansong district. The oxide 
ore types are developed in the weathered zones of all the 
ore bodies, and they are mainly located in the southwestern 
part of Sansong district. The average depth of weathered 
zones is 10 to 20 m. The oxide ores are apatite-vermiculite 
and apatite-clay. The genesis of the mineral deposit in the 
study area had been considered to be diagenesis in the past. 
But recent studies showed that the mineral deposits in the 
study area would occur by intrusion of carbonatite magma 
and metasomatism of pneumatolytic hydrothermal fluid fol-
lowing intrusion of ultramafic–mafic magma through several 
stages although the main magma source has not been clari-
fied so far and it has been in the focus of the study yet (Choe 
et al. 2011; Ju 2020).

Based on the consideration of ore geology in the study 
area (Fig. 3), we modeled carbonatite, biotite gneiss, and 
granitic gneiss as host rocks of apatite ore bodies. In addi-
tion, we used P2O5 values from the borehole data in the 

study area. So, there included four factors in total for 3D 
mineral prospectivity modeling of apatite deposits.

Methods and results

Three‑dimensional modeling

Building datasets

In this paper, the spatial geological datasets designed and 
derived for three-dimensional modeling for three-dimen-
sional MPM in the study area can be summarized as fol-
lows: (a) the plane maps (e.g., 5000 geological map, 1:2000 
deposit-scale map) with surface survey dataset; (b) the 25 
mineral exploration line cross section data; and (c) the 61 
mineral exploration borehole dataset with P2O5 assay (the 
XYZ coordinates, assay data, borehole trajectory, lithology 
logging). In the mineral exploration borehole data, the num-
ber of exploration line is 25 and its spacing is 100 m. The 
number of boreholes is 61, and sample length is about 1 m 
on average with maximum of 4.1 m. The average depth of 
boreholes is 194.6 m with minimum of 74.25 m and maxi-
mum of 281.1 m. The trajectory data of boreholes are also 
added to the borehole datasets. The average inclination of 
boreholes is approximately 85° and azimuth is 340° in the 
21 exploration lines with the number 49–59 and 45° in the 
4 exploration lines with the number 66–69. The geological 
map, cross section, and borehole datasets were designed and 
built in ArcGIS 10.4 platform.

GOCAD software and SGrid

Mineralization processes occur in 3D, and they are better 
represented by their geological signatures in 3D datasets. 
Therefore, MPM would be best modeled in 3D space rather 
than in 2D. But regional-scale 3D MPM is rarely feasible 

Fig. 3   Mineral deposit model of 
Sansong district, Yongyu apatite 
deposit
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mainly because regional-scale public-domain 3D datasets 
over large areas are generally not available (Xiao et al. 
2015). However, deposit-scale 3D datasets for specific target 
areas are occasionally available and can be used for delineat-
ing further drilling targets at the deposit-scale. In addition, 
more commercial 3D GIS products, such as GOCAD, Sur-
pac, and Micromine (Geovia 2015; Micromine 2015; Wang 
et al. 2020; Cheng 2021), became widely available, and 
this has led to developing 3D MPM, particularly at detailed 
scales (Yuan et al. 2014; Xiao et al. 2015; Mao et al. 2019; 
Cheng 2021; Mohammadpour et al. 2021; Deng et al. 2022). 
One of the main challenges in 3D MPM based on 3D GIS 
is to efficiently incorporate 3D predictive models within 3D 
GIS because most of commercial 3D GIS software does not 
include corresponding models, modules, and tools for 3D 
MPM (Li et al. 2016).

GOCAD is a software which uses discrete smooth inter-
polation (DSI) technique as the core interpolation algorithm 
(Mallet 2002). It can be used to build the surface or sub-
surface element which has a triangular grid structure and 
can be reconstructed using ArcGIS and other GIS software 
(Perrouty and Lindsay 2014). The DSI equation provides a 
powerful and efficient numerical method for modeling the 
geometry and the properties of curves, surfaces, and sol-
ids. In this study, we use SGrid in GOCAD 2015 software 
to build 3D geological model according to the need of 3D 
modeling after building datasets in ArcGIS 10.4 platform. 
An SGrid object is a flexible, 3D grid for modeling proper-
ties, computing reservoir volumes, and creating flow simu-
lations in GOCAD. An SGrid object can contain property 
values either at the centers or the corners of its cells. The 
dimensions of the SGrid are defined by its origin, the three 
axes, the number of points along each axis, and the three 
step vectors of each cell (Fig. 4). This object is important in 
reservoir geology and engineering where anisotropy plays 
a significant role in hydrocarbon migration and accumula-
tion. In this case, we use SGrid as main object for modeling 
3D geological objects including P2O5 grade because grade 
values might be considered to be anisotropic in 3D space.

Three‑dimensional geological modeling

The three-dimensional geological models for carbonatite, 
biotite gneiss, and granitic gneiss in the study area were 
constructed using the geoscientific datasets in GOCAD soft-
ware. The digitized cross section data in ArcGIS were con-
verted into surface models using DSI algorithm in GOCAD 
(Fig. 5).

In order to create 3D geological model, the cross section 
data should be first digitized in ArcGIS. Digitizing is one 
of the most excellent functions of ArcGIS. The digitized 
cross section data can be imported as cultural data (ArcView 
shapefile) into GOCAD. The shapefile contains several prop-
erties: XYZ and ID. The imported cross section data will be 
treated as curves in GOCAD. To create surface from two 
curves, it is necessary to link nodes, and then, curve parts 
are created. Before creating curve parts, it is necessary to set 
some parameters such as level and part name. After creat-
ing surfaces from each two curves is finished, the first and 
last curves are closed by using closed curves function in 
GOCAD. All individual parts are merged, and triangles are 
smoothed and interpolated using beautify triangles function. 
Finally, 3D geological models are obtained by using DSI 
algorithm in GOCAD.

Three‑dimensional modeling P2O5 grade

In this paper, 3D modeling for P2O5 grade in Sansong dis-
trict was conducted using SGrid model in GOCAD based on 
borehole datasets and 3D ore body model. The borehole data 
were converted into ASCII format and imported to GOCAD. 
The statistical analysis results for the P2O5 grade values are 
given in Table 1.

The main steps for 3D modeling of P2O5 grade using 
SGrid in GOCAD and the methodology of our 3D prospec-
tivity modeling are summarized in Fig. 6. Three evidential 
factors including carbonatite, biotite gneiss, and granitic 
gneiss are weighted by fuzzy scores from experts after 3D 
modeling in GOCAD. The P2O5 grade is interpolated by 

Fig. 4   Graphic examples of an 
SGrid object and its compo-
nents. a SGrid and its step vec-
tors. b SGrid and its end points 
(Micromine 2015)
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ordinary kriging and weighted by continuous fuzzy mem-
bership function after 3D modeling in GOCAD. These four 
evidential factors are integrated by two kinds of predictive 
models including the fuzzy logic and the geometric average, 
and their results are validated by the prediction efficiency 
curve. Finally, the effectiveness of 3D prospectivity mod-
eling will be compared with our previous 2D case study 
(Kim et al. 2019).

When creating 3D SGrid object, we used a cell size of 
100*50*25 in 3D space in consideration of the cage of study 
area and computation efficiency (Fig. 7).

The ordinary kriging method was selected as an inter-
polation method for 3D grade modeling. For calculating an 
experimental variogram, the lag distance and the number of 
lags were assigned to 75.2 m and 30, respectively. The band-
width and maximum number of neighborhood were assigned 
to 22.5° and 24, respectively. The three-dimensional mod-
eling result of P2O5 grade is given in Fig. 8.

Three‑dimensional prospectivity modeling using 
fuzzy logic and geometric average

Like our previous studies, we did not apply any data-driven 
approaches but chose fuzzy logic and geometric average 
belonging to a category of knowledge-driven techniques as 
integration methods for 3D MPM in the Sansong district. 
The selection of the fuzzy logic and geometric average for 
3D prospectivity modeling in the study area was based on 
three following reasons: (1) both are relatively simple mod-
els and easy to implement in 3D MPM studies as well as 
in 2D MPM studies, (2) it is also to avoid the disadvan-
tage of data-driven approaches in terms of exploration bias 
(Coolbaugh et al. 2007), and (3) it is to test possibility for 
application of the fuzzy logic and geometric average in 3D 
MPM for non-metal deposits. Therefore, some of borehole 
datasets were used to validate the predictive model results 
in our study.

Fig. 5   3D geological models of 
a carbonatite, b biotite gneiss, 
and c granitic gneiss using DSI 
in GOCAD

Table 1   The statistics of P2O5 grade values

Number of samples Minimum (%) Median (%) Maximum (%) Mean (%) Standard deviation (%) Variance (%)

844 0.01 6.07 17.98 6.05 2.86 8.16
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Fig. 6   Main steps for 3D pro-
spectivity modeling

Fig. 7   3D SGrid object used for 
3D MPM

Fig. 8   3D modeling result of P2O5 grade
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Fuzzification and integration using fuzzy logic model

The fuzzy logic model is based on fuzzy set theory, and it 
was first introduced by Zadeh (1965). In fuzzy set theory, the 
membership of a set is defined on a continuous scale from 
full non-membership to full membership. A fuzzy set of A 
is a set of ordered pairs (Nykänen et al. 2015):

where X is a collection of objects and �A(x) is the member-
ship function of x in A . The degree of membership of x in 
A is defined by the membership function �A(x) , and it can 
be expressed by either linear or non-linear function. Yousefi 
and Carranza (2015a) demonstrated that non-linear transfor-
mation is more reasonable than linear technique for fuzzi-
fication of evidential maps for MPM. Different non-linear 
transformation functions such as a logistic sigmoid function 
have been widely used for rescaling in MPM (Nykänen et al. 
2015; Yousefi and Carranza 2015a, b, c). This kind of non-
linear membership functions can be applied to 3D MPM 
studies as well as 2D study.

To rescale interpolated P2O5 assay data, we used the 
following logistic sigmoid function (Yousefi and Carranza 
2015a):

where �(x) is a fuzzy membership function; s and i are slope 
and inflection point of the logistic function, respectively; and 
x is a map value to be transformed in the [0, 1] range. Using 
suitable values of two parameters in Eq. (2), it is possible 
to transform integers and floating values of different ranges 
into [0, 1] values. The selection of suitable values for two 
parameters in Eq. (2) for calculating the fuzzy membership 
was conducted by trial-and-error scheme. In our case, the 
logistic sigmoid function expressed in Eq. (2) was applied 
to transform interpolated P2O5 assay data.

For the other three evidential factors including carbon-
atite, biotite gneiss, and granitic gneiss, the weights for 
integrating with P2O5 assay data were empirically assigned 
according to the importance for occurrence of apatite ore 
bodies because they did not have continuous voxel values. 
Therefore, the voxel values for these three factors are not 
continuous but categorical. In this study, the fuzzy scores 
were respectively assigned 1 for carbonatite, 0.8 for biotite 
gneiss, and 0.7 for granitic gneiss.

The fuzzy scores are assigned by following reasons: First, 
it is natural that the fuzzy score for carbonatite is 1 because 
it was clarified and modeled through drilling data. And ore 
bodies in the study area are exclusively occurred in the bio-
tite gneiss and granitic gneiss though they are occasionally 
present in other country rocks. In addition, it proved that 

(1)A = {[x,�A(x)]|x ∈ X}

(2)�(x) =
1

1 + e−s(x−i)

the biotite gneiss would be slightly more favorable country 
rock than granitic gneiss through statistical analysis from 57 
boreholes and their cross section data. It is probably because 
the biotite gneiss has more fractures and fissures favorable 
for the formation of ore bodies in the study area. Finally, 
these fuzzy scores are agreed with the field workers who 
have many experiences in this area.

In order to integrate four fuzzified evidential maps, 
we applied “fuzzy gamma” operators. This operator was 
selected because it is the compromise between the “increa-
sive” nature of fuzzy algebraic sum and the “decreasive” 
effect of the fuzzy algebraic product and it is possible to 
adjust fine change of contribution of all evidential maps. 
In this study, the gamma value was assigned to 0.85 after 
testing many different gamma values. The 3D prospectivity 
map by the fuzzy logic is given in Fig. 9.

Geometric average model

At the same time of integrating fuzzified evidential maps 
using fuzzy logic model, geometric average model was also 
applied to combine evidential maps and achieve compara-
tive analysis.

The geometric average can be defined as the nth root of 
the products of values where n is the count of values. The 
geometric average, GA , of a dataset 

{
v1, v2,⋯ , vn

}
 is written 

by the following (Yousefi and Carranza 2015c):

The geometric average model can be applied only to evi-
dential maps with non-negative values. In this study, the 
geometric average can be easily applied to all the eviden-
tial maps because they have been already transformed using 
non-linear fuzzy membership function. The modified geo-
metric average function for 3D MPM of the apatite deposit, 
GA−apatite , for a certain unit cell of the study area can be 
written as follows:

where FCA,FBG,FGG and FP2O5
 are respectively fuzzy scores 

of carbonatite, biotite gneiss, granitic gneiss, and interpo-
lated P2O5 assay data which have been already fuzzified 
using logistic fuzzy membership function in fuzzy logic 
modeling. Among the four fuzzy scores, FCA,FBG,FGG 
assigned by expertise are categorical and FP2O5

 assigned by 
fuzzy membership function is continuous. Another prospec-
tivity map for the apatite mineralization of the study area 
was created by using Eq. (4) (Fig. 10).

(3)GA(v1, v2,⋯ , vn) =

�
n�

i=1

vi

�1∕n

= n
√
v1v2 ⋯ vn

(4)GA−apatite

(
FCA,FBG,FGG,FP2O5

)
=

(
4∏

i=1

Fi

)1∕4

= 4

√
FCAFBGFGGFP2O5
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The integration of these evidence layers using fuzzy logic 
and geometric average models was performed using spatial 
analyses in ArcGIS and script in GOCAD.

Validation and results

Prediction efficiency curves (or capture efficiency curves) 
were used to evaluate the performance of the two models. 
Prediction efficiency curves depict the cumulative propor-
tion of validation data captured by a prospectivity model in 
cumulative proportions of the study area. Prediction effi-
ciency curve can be plotted by the proportion of the valida-
tion data (known deposits) versus proportion of volume (or 
area in 2D). Prediction efficiency curve of the best prospec-
tivity model shows an inverted “L”-shaped curve with the 
elbow close to (0, 1); that is, it predicts all validation data 
in a very small proportion of the study area, indicating a 
perfect prediction performance. On the other hand, an inef-
ficient prospectivity model returns a diagonal line across the 
graph, that is, the proportion of the study area, indicating a 
random classification of prospectivity. Clearly, the higher 
the curve above the diagonal line, the better the performance 
of the prospectivity model. In order to validate the predic-
tive models, we randomly chose 46 borehole data which had 
P2O5 values more than 10% and the validation data occupies 

about 5.5% of total borehole samples. In the current study, 
both fuzzy logic and geometric average models yield predic-
tion efficiency curves that are above diagonal line; however, 
the geometric average curve lies above the fuzzy logic curve, 
indicating that the former performs better in predicting the 
validation data (Fig. 11). In this study, prediction efficiency 
curves were made in MATLAB R2015a.

Prediction efficiency curves can also be used to reclassify 
the prospectivity volumes into two or more classes. High 
prospectivity volumes are characterized by portions of the 
prediction efficiency curve that have steep slopes. They 
represent large portions of prospectivity volumes in rela-
tively small proportions of the study area. On the other hand, 
medium and low prospectivity volumes are characterized by 
portions of the prediction efficiency curve that have respec-
tively gentle and nearly horizontal slopes in relatively large 
proportions of the study area. The slope changing points in 
the prediction efficiency curves can be used as cutoff values 
for reclassifying into high-, medium-, and low-prospectivity 
zones. According to this procedure, we used the inflection 
points on the curves as threshold values for reclassifica-
tion of the continuous-scale prospectivity results into three 
classes (Figs. 9 and 10).

High-prospectivity zones on the two prospectivity maps 
occupy 13.4% and 12.3% of the total volume occupied by 

Fig. 9   a 3D prospectivity mod-
eling results by the fuzzy logic 
and b its classified results



	 Arab J Geosci (2024) 17:117117  Page 10 of 13

the Sansong ore body, respectively; however, the geomet-
ric average performs better in predicting validation data 
(Table 2). The fuzzy logic and geometric average models 
capture 71.7% and 76.1% of the validation data in the high-
prospectivity zones, respectively.

The better performance of the geometric average model 
is further illustrated by the prediction efficiency curves 

(Fig. 11), which are conceptually similar to the capture effi-
ciency curves but depict the performance of prospectivity 
models in predicting validation data. Figure 11 shows that 
the curve for the geometric average model lies above the 
curve for the fuzzy logic model in high-prospectivity areas.

The target volumes classified by the fuzzy logic occupy 
13.4% of the study area and contain 71.7% of the total num-
ber of validation data. It also means that 33 out of 46 voxels 
for validation data are present in the most favorable volume 
with high prospectivity values. Meanwhile, the resulting 
volumes by the geometric average model occupy 12.3% of 
the total volume for the study area but contain 76.1% of the 
total volume for the validation data. In other words, 35 out 
of 46 total voxels are present in the most favorable volume 
with high prospectivity values.

Discussion

In the current study, our focus was on answering the question 
“Can we use the fuzzy logic and geometric average meth-
ods for 3D mineral prospectivity modeling of non-metal 
resources rather than 2D MPM of metal resources in the 
DPR Korea?”. The answer was positive, and it can be effec-
tively done by using 3D modeling based on SGrid model in 

Fig. 10   a 3D prospectivity 
modeling results by the geomet-
ric and b its classified results

Fig. 11   Prediction efficiency curves for fuzzy logic and geometric 
average models
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GOCAD. In other words, extension of 2D MPM towards 3D 
MPM was easily implemented by introducing SGrid model 
in GOCAD.

In our study, both fuzzy logic and geometric average models 
yield prediction efficiency curves that are above diagonal line, 
and it indicates that both results are definitely better than a 
result based on a random selection of target volumes, and two 
models are useful for 3D MPM in Sansong district, Yongyu 
apatite deposit, DPR Korea. In addition, the geometric aver-
age curve lies above the fuzzy logic curve, and it indicates that 
the former performs better in predicting the validation data 
like 2D case study. We compared the results with those in our 
previous 2D case study (Kim et al. 2019). In our previous 2D 
study, the target areas classified by the fuzzy logic occupy 15% 
of the whole study area and contain 78% of the total number 
of validation data. In the current 3D study, they are 15% and 
71.7%, respectively. Meanwhile, in the 2D study, the resulting 
areas by the geometric average model occupy 13% of the study 
area but contain 93% of the total number of known mineral 
occurrences. The numbers are 12.3% and 76.1% in the current 
3D study, respectively. Even though the target areas or volumes 
classified by the fuzzy logic and the geometric average are 
almost the same in 2D and 3D case studies, the areas with high 
prospectivity values in 2D contain slightly more validation 
data than the volumes with high prospectivity values in 3D. 
The comparison results indicate that prediction results in 3D 
are slightly less effective than those in 2D study, but two mod-
els can be also applied to 3D studies as well as 2D. The main 
advantages of the fuzzy logic and geometric average methods 
are that they can be easily and simultaneously applied to 3D 
MPM without any additional troublesome extensions as well 
as 2D MPM, and they can be used for discrete-scale evidential 
maps as well as continuous-scale evidential maps.

In the modeling results, the most favorable districts which 
give the highest prospectivity values both in fuzzy logic and 
geometric average are mainly consistent from each other, and 
they are considered to be new drilling targets, and they can 
also be valuable for the design of future mining and develop-
ment. The most of favorable voxels are mainly distributed in 
biotite gneiss and granitic gneiss, and it is because the min-
eralization of apatite had predominantly occurred in those 
two layers. In addition, higher prospectivity values of biotite 

gneiss show that it would have more fractures and fissures 
favorable for the formation of apatite compared with gra-
nitic gneiss and others. Meanwhile, some high prospectivity 
voxels are distributed in the zones with low values of P2O5 
grade, and it is mainly because they are included within the 
carbonatite zone with highest fuzzy scores.

The study area is elongated from the west to the east and 
short from the north and the south. The current mining and 
production of ore bodies are being implemented in Manpung 
and Phungnyon districts, the eastern parts 2.5 km distant from 
Sansong district, Yongyu apatite deposit. The current districts 
have been already drilled over 800 m at depth, and they will 
be exhausted after some years, and we need to prepare some 
new districts for future mining and production. The Sansong 
district may be the only choice for future mining and produc-
tion in the Yongyu apatite deposit. According to our results, 
the westmost, central, and northeast parts of the study area 
can be regarded as the most unfavorable zones, and the west 
and southeast parts are considered to be the most favorable 
zones with highest prospectivity values. Therefore, the most 
favorable target areas can be divided into two parts: west and 
southeast. However, the depth of prospectivity volumes is dif-
ferent from zones. The west part with high prospectivity values 
is distributed from the surface to 250 m at depth, and it is 
relatively widespread. Meanwhile, the southeast part is located 
from the top to 350 m at depth, and it is relatively deep and 
narrowly distributed from the top to the depth. The volume of 
the former is slightly larger than the latter, and the condition of 
the former for drilling and production is much more conveni-
ent than the latter. Our research results were presented for the 
geological survey of Yongyu mine to design more detailed 
geological survey and to drill some additional boreholes.

Some kinds of uncertainty must be involved in our 3D pro-
spectivity modeling, and they should be discussed here. The 
main sources of uncertainty in mineral prospectivity modeling 
are related to some factors, and they can be classified into two 
categories of uncertainties: stochastic and systemic uncertain-
ties (Lisitsin et al. 2014; Zuo et al. 2015). Stochastic uncertainty 
is mainly associated with data quality, and systemic uncertainty 
is related to modeling procedures. In our study, systemic uncer-
tainty can be represented by assigning fuzzy scores reflecting 
expert opinion through statistical study of cross section data. 

Table 2   Summarized results of 
prospectivity modeling

Model Zone % volume Validation data

Number Percent

Fuzzy logic High-prospectivity zone 13.4 33 71.7
Medium-prospectivity zone 34.3 11 24.0
Low-prospectivity zone 52.3 2 4.3

Geometric average High-prospectivity zone 12.3 35 76.1
Medium-prospectivity zone 36.4 10 21.7
Low-prospectivity zone 51.3 1 2.2
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The uncertainty linked to 3D modeling could not be signifi-
cant though it would not be quantified because 3D model was 
created through stochastic mathematical modeling (DSI) in 
GOCAD based on hard data (borehole data). For the P2O5 
grade, the geometric average as well as fuzzy logic can assign 
continuous weights and avoid the problem of uncertainty due 
to simplification and discretization of continuous value spatial 
evidences into some classes using intervals.

Conclusions

In this paper, two knowledge-driven methods using the 
fuzzy logic and geometric average were simultaneously 
applied to generate 3D mineral prospectivity models in 
Sansong district, Yongyu apatite deposit, DPR Korea. GIS 
and GOCAD modeling techniques based on two knowledge-
driven approaches can provide a fast and economic way to 
separate 3D prospectivity target areas for apatite deposit in 
the study area although they have some subjective elements 
because of using expert opinions just as 2D case.

The spatial evidences for 3D MPM modeling consisted of 
four geological layers, and three evidences were weighted by 
experts. And P2O5 assay data were transformed into the [0, 
1] range by using the logistic sigmoid function. The three 
categorical fuzzy scores and one continuous fuzzy score 
were integrated by the fuzzy logic and geometric average 
models. The fuzzy logic and geometric average methods can 
use the same fuzzification methodology based on the same 
fuzzification scheme; therefore, it is very economic and effi-
cient to simultaneously apply two predictive models for 3D 
MPM. In addition, they can be easily applied to 3D case 
simply by converting pixels into voxels as well as 2D MPM.

The geometric average modeling performs better than the 
fuzzy logic modeling in predicting the validation data although 
the results are slightly worse than those in 2D. The comparative 
analysis result demonstrated that most of the validation voxels 
are distributed in volumes with high prospectivity values. The 
target volumes classified by the fuzzy logic occupy 13.4% of the 
total volume and contain 71.7% of the total number of valida-
tion voxels. Compared with the fuzzy logic, the resulting voxels 
by the geometric average occupy 12.3% of the total volume 
but contain 76.1% of the total number of the validation voxels.

The prediction efficiency analysis shows that the curve 
for the geometric average model lies above the curve for the 
fuzzy logic model. The locations of validation data in San-
song district were randomly selected among borehole data.

To summarize our study, the fuzzy logic and geometric 
average can be effectively used for 3D non-metallic MPM 
study as well as 2D metallic MPM. Our future work will 
focus on continuous fuzzification of spatial evidences based 
on reasonable and objective approach instead of subjective 

opinions and 3D metallic MPM case studies using more spa-
tial evidences based on sophisticated modelings.

Concluding remarks

The main findings of this study are as follows:

1.	 In this paper, two knowledge-driven methods using the 
fuzzy logic and geometric average were simultaneously 
applied to generate 3D prospectivity target volumes in 
the study area. Two predictive models used the same 
fuzzification strategy of evidential maps, and they exhib-
ited good generalization capability in 3D MPM.

2.	 The results were validated by the prediction efficiency 
curves indicating the curve for the geometric average 
model lied above the curve for the fuzzy logic model.

3.	 The most favorable target areas can be divided into two parts: 
west and southeast. The west part with high prospectivity 
values is distributed from the surface to 250 m at depth, and 
it is relatively widespread. Meanwhile, the southeast part is 
located from the top to 350 m at depth, and it is relatively 
deep and narrowly distributed from the top to the depth.
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