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Abstract

Prediction and validation of Compound factors for prioritization of watersheds are an essential application using machine
learning (ML) techniques in water resource engineering. The current paper proposes a methodology to derive 14 morphomet-
ric and 3 topo-hydrological parameters using remote sensing (RS) and geographical information systems (GIS). Compound
factor (CF) values are calculated using weighted sum analysis (WSA), ReliefF, and the Pearson correlation coefficient, and
the important parameters are identified. Two machine learning models, multilayer perceptron (MLP) and support vector
machine (SVM), are utilized to predict CF values. Predication accuracy of ML models is evaluated with three parameters,
mean absolute error (MAE), Pearson correlation coefficient (PCC), and root mean square error (RMSE). It is observed
that the maximum value of PCC equal to 1 is achieved through ReliefF and SVM, whereas minimum MAE and RMSE are
observed with ReliefF and SVM when Tenfold cross-validation is applied. Since ReliefF shows better results, CF values are
calculated and applied to create the watershed. The proposed methodology is helpful for accurately predicting CF values
and advantageous to allocating the proper watershed, which will be useful for decision-making and implementation of con-
servation techniques for soil and water.

Keywords Morphometric analysis - RS - GIS - ML - Watershed prioritization - Feature ranking

Introduction

Watershed prioritization is crucial for developing water-
shed management planning and better land management. It
is essential to determine the watershed priority in the semi-
arid and arid regions as it helps manage water in ungauged
rivers. Spatial prioritization and watershed health help to
understand watershed conditions, and it also helps derive
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better management strategies in the data-scarce region
(Alilou et al. 2019).

Remote sensing (RS) and geographical information
systems (GIS) are promising tools for extracting cru-
cial parametrical information from watersheds. The RS
and GIS technique helps establish interrelationship with
parameters and decide the priority of watershed using the
WSA technique (Malik et al. 2019). Many researchers have
attempted to prioritize watersheds (Thakkar and Dhiman
2007; Patel et al. 2012, 2015; Samal et al. 2015; Kadam
et al. 2017; Memon et al. 2020; Kulimushi et al. 2021a;
Sengupta et al. 2021) and utilized different analysis tech-
niques for watershed prioritization such as multicriteria
decision analysis (MCDA) (Chowdary et al. 2013; Jaiswal
et al. 2015; Samal et al. 2015; Vulevi¢ and Dragovi¢ 2017),
Sediment Yield Index (Khan et al. 2001), Weighted Sum
Analysis (WSA) (Aher et al. 2014; Memon et al. 2020),
and Principal Component Analysis (PCA) (Farhan et al.
2017; Meshram and Sharma 2017). (Patel et al. 2022) has
utilized AHP- and TOPSIS-based subwatershed prioriti-
zation to facilitate soil erosion susceptibility analysis of
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the Ami river basin. Furthermore, (Yadav et al. 2018) has
prioritized subwatersheds for potential groundwater zone
using topographic sheet and CARTOSAT data to amelio-
rate the flash flood and droughts, and (Kulimushi et al.
2021b) has utilized compound parameter index (Ci) and
Erosion Hazard Rate Index (EHRI) derived from Analyti-
cal Hierarchy Process (AHP) for watershed priority assess-
ment. Out of all prioritization, the WSA technique is the
most familiar and prominent method for prioritizing the
watersheds in the present era; however, the recent devel-
opment of ML techniques helps to classify, predict, and
forecast the laboratory and computer-simulated data for
decision-making. Artificial Neural Network (ANN), sup-
port vector machine (SVM), and Random Forest are ML
models applied in various engineering applications.

ML is a probabilistic model frequently applied for pattern
recognition applications. It has been used for applications
like fault diagnosis (Kankar et al. 2011), motor current sig-
nature analysis (Singh et al. 2014), compressive strength
prediction (Sonebi et al. 2016), EEG (Upadhyay et al. 2016),
surface roughness prediction (Patel et al. 2020), fault sever-
ity analysis (Akhenia et al. 2021), tool wear rate prediction
(Shah et al. 2022), and many more applications, regardless
of field.

For evaluating any type of ML model and for knowing
how well the model predicts without biasedness, cross-val-
idation is used. In k-fold cross-validation, the data is parti-
tioned randomly into the k number of approximately equal
sets, from which the model is trained on k-1 sets and tested
on the remaining set. The procedure repeated k number of
times, and the final result is the average of all the results
obtained by repetition. The main benefit of applying this
strategy is that each sample is used for training k-1 times
and one time for testing, and the average results are obtained.
The regression model is used to develop a mathematical
function based on the experimental data in which param-
eters act as features. It is observed that in a feature vector,
prediction capability can be improved with identifications
of relevant and irrelevant features. To discard irrelevant fea-
tures, a feature selection strategy can be used to determine
the utility of individual features in a feature vector (Vakharia
et al. 2015a, b). Other feature ranking techniques like mutual
information (Dave et al. 2020), information gain (Naseri-
parsa et al. 2014), and ReliefF (Kononenko 1994) are also
used to improve the accuracy and prediction of classification
and regression problems.

With the availability of data, artificial intelligence tech-
niques have been applied in a variety of civil engineering
applications. According to literature research, it is found that
machine learning strategies are extremely helpful in predict-
ing and validating the experimental results. Furthermore,
for decision-making, a particular algorithm may not be suit-
able; therefore, in such situations, detailed investigations are
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needed to assess the utility of ML algorithms for particular
applications (Vakharia et al. 2022).

In the present paper, RS and GIS techniques are utilized
to derive morphometric parameters and topo-hydrological
parameters. Initially, the values and ranks to all 14 morpho-
metric and 3 topo-hydrological parameters are assigned, and
the CF values are calculated using well-known WSA tech-
niques. After that, two feature ranking techniques, ReliefF
and Pearson correlation coefficient, are applied to determine
the weightage of morphometric and topological parameters.
The weightage obtained from WSA, ReliefF, and PCC will
be used to calculate the CF values. Two well-known ML
models, SVM and MLP, with Tenfold cross-validations, are
applied to identify the best CF values. The accuracy of ML
models is examined with mean absolute error (MAE), corre-
lation coefficient (C,), and root mean square error (RMSE).
Based on better prediction capability, decision-making is
done for suitable watershed prioritization. As per the litera-
ture survey, most authors applied various techniques like
parameter averaging, WSA, AHP, MCDM, and TOPSIS.
To the authors’ best knowledge, decision-making for water-
shed prioritization using feature ranking and ML techniques
is not explored till now. Therefore, to fill the gap, a novel
approach for identifying relevant morphometric parameters
and consequently the CF values for watersheds prioritization
for the decision-making is executed in the present research.
The methodology proposed will be helpful in providing
an integrated solution to the decision-maker to restore the
watersheds against any uncertain critical conditions. Fig-
ure 1 shows the watershed prioritization methodology based
on feature ranking and ML.

Prediction using machine learning

In recent years, much attention has been focused on machine
learning. One of the key causes that are driving its signifi-
cance is the fact that machine learning provides a unified
framework for introducing intelligent decision-making
into many research areas. This is one of the primary driv-
ing forces behind its popularity in the industry as well as
academics. Machine learning models can learn patterns in
data whether the learning is supervised or unsupervised. The
model is developed based on input data, which will be fur-
ther used to predict unseen data.

Support vector machine

Support vector machine, more commonly referred to as
SVMs, is an intelligent computational model developed for
performing classification and regression analysis. In regres-
sion analysis, underlying relationships between the dependent
variable Y (CF) and the independent variable X (morphological
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Fig. 1 Proposed methodology
for watershed prioritization
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parameters) are determined. The relationship is generally
mapped by using a kernel function, which described how the
estimated Y deviates from the calculated values. Let the train-
ing data be represented as

t={(X. %), (X0, Y2),..c .. ,

where y represent the space for input patterns. If the kernel
function is assumed to be linear, it can be expressed as

(X,.Yy)} € x xR 1)

h(x) = (W, X)+b )

SVM is formulated as a convex optimization problem as

1
mmEIIWII2 3)

s.t.Y;— ((W,X;) +b) <&,Vi @)

Prioritization

Decision Making
System

((W.X; +b) — Yi < &, Vi) )
Here, w represents the hyperplane orientation, and b is
a scalar quantity known as intercept. When margin is con-

sidered Eqgs. 3, 4, and 5 can be further modified as (Vapnik
1995)

N
1 «
minz [ W] + c; (& +¢&) (6)

stY;— ((W.X;)+b) <e+&.Vi 7

((W.X)+b) - Y, <e+&Vi
£.& 20 ®)

£,.&;* represents the slack variables which are introduced
to deal with infeasible constraints. In present study, the
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penalty parameter “C” is chosen as 10 and radial basis ker-
nel function is used to effectively map the nonlinearity in
morphological parameters (Fig. 2a).

Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is another type of ANN archi-
tecture which consists of several layers and functions as a
global approximator for nonlinear input—output mapping.
MLPs are composed of neurons called perceptron. In our
model, morphological features which is represented as
{g=g, &» 83 ", g,) become an input to perceptron. The
input morphological features are passed through a function
u which computes the weighted sum of input features as
follows:

The output of the perceptron is calculated by an activation
function f, which is represented as

1, ifu(X) > 6

Y =/wX) = { 0, otherwise, ©)

The equation w,g, +w,g, + "+ w,g, —0=0 represents
the equation of hyperplane. Output=1 reflects that input
morphological parameters lies above the hyperplane, and
Output =0 reflects that input morphological parameters lie
below the hyperplane. Hence for output, it gives a set of
continuous values and mean square error as a loss function.
(Fig. 2b) shows the architecture of MLP with one hidden
layer. In the present study, authors have used only one hid-
den layer based on prior experience.
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Parameter estimations through GIS
and remote sensing

To determine the CF for any catchment area of the River,
a Rel-River catchment situated in Banaskantha district
of Gujarat, India, is considered in the present study as
shown in (Fig. 3a). Basin lies between 24° 50’ N to 24°
75" N latitude and 72° 00" E to 72° 45" E longitude and
has an area of 431 km? (Memon et al. 2020; Darji et al.
2021). The basin area is partitioned into 51 microwa-
tersheds, and Cartosat DEM 10 m resolution is used
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Fig.3 Study area. a Rel river basin map. b Rel river drainage map

to calculate slope and watershed boundary. ArcHydro
toolset is used for calculating and deriving the bound-
ary of the watershed. Drainage boundaries are derived
using Survey of India (SOI) toposheets (42D02, 42D03,
42D06), and the ordering of the drainages is given
according to the proposed technique by (Strahler 1964)
(Fig. 3b). ArcGIS 10.5 software was used to generate
the boundary of watersheds, digitize drainages, and
derive different morphometric parameters. Morphomet-
ric parameters such as linear aspects, areal aspects, and
relief aspects (Horton 1932, 1945; Miller 1953; Schumm
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1956; Melton 1957; Faniran 1968; Strahler 1997; Nooka
Ratnam et al. 2005) and topo-hydrological parameters
such as Stream Power Index (SPI) (Whipple and Tucker
1999), Sediment Transport Index (STI) (Moore and
Burch 1986), and Topographic Wetness Index (TWI)
(Beven and Kirkby 1979) are considered for the prior-
itization of watersheds (Table 1). The ranking of the
watersheds is calculated based on the WSA technique
established by (Aher et al. 2014). Every microwatershed
has different and unique characteristics, and watershed
priority is carried out to identify the vulnerable areas
for erosion. The weights have been calculated based on

the correlation between parameters and their values. Its
relation does a ranking of the parameters to soil erosion.
Based on the literature, the linear factor showed a posi-
tive correlation with soil erosion, so maximum priority is
given to the higher value, i.e., rank 1. In contrast, shape
factors negatively correlated with soil erosion, and the
ranking for these parameters was given in reverse order.

The final ranking and prioritization of watersheds have
been done using CF values. The CF values are calculated
with the help of morphological parameters weightage
obtained from WSA, ReliefF, and Pearson correlation
coefficient methods.

Table 1 Morphometric and topo-hydrological parameters considered in study

Parameter Aspect Parameters

Formula References

Morphometric parameters Linear aspect Stream order (V,)

Stream length (L)

Length of overland flow (L,)

Bifurcation ratio (R,,)

Areal aspect  Stream frequency (F,)
Drainage density (D)
Form factor (Rf)

Elongation ratio (R,)

Shape factor (B,)

Compactness constant (C,)

Circularity ratio (R,)

Drainage texture (R,)
Infiltration number (7))

Constant of channel maintenance C =1/D,

©
Relief aspect Basin relief (H)

Relief ratio (R),)
Ruggedness no. (R,)

Topo-hydrological parameters
(TWI)

Stream Power Index (SPI)
Sediment Transport Index (STI)

Topographic Wetness Index

Hierarchical order (Strahler 1964)
(Horton 1945)

(Horton 1945)

Length of stream

L,=1/D;*2, where L, = length
of overland flow and D, =
drainage density

R,=N,N,,,, where N, = total
no. of stream segments of
order

N, = number of segments of
next higher order

F,=N,/A, where A = area of
the basin

D,=L,JA, where L, = total
length of all order streams

R,= A/L,?, where L, = basin
length

R, = 4><I§/L,,

(Schumm 1956)

(Horton 1945)

(Horton 1932)

(Horton 1932)

(Schumm 1956)

(Nooka Ratnam et al. 2005)
(Horton 1945)
(Miller 1953)

By=L,}/A
C.=0.2821P/A%
R.= 47A/P?, where P = basin

perimeter
R, =N,/P (Horton 1945)
I, =F,xD, (Faniran 1968)

(Schumm 1956)

The maximum vertical distance
between the highest and lowest
points in the watershed

(Schumm 1956)

R,=H/L, (Schumm 1956)

R,=HXD, (Melton 1957)

TWI = ln( a ) (Beven and Kirkby 1979)
tan(f) / where a

= upslope catchment area
divided by contour length and
p = slope of the catchment

SPI = (a X tanf)

L \006 g\
STI= (ﬁ) X (00896)

(Whipple and Tucker 1999)
(Moore and Burch 1986)
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Table2 Stream order of
different watersheds

WS no Stream orders Summation of L (length) R, (bifurcation Basin
stream ratio) relief
1 i il v v VI

1 36 21 12 5 1 0 75 45.5 2.72 368
2 8 6 0 0 0 0 14 18.6 1.33 202
3 59 31 15 9 0 0 114 52.5 1.88 541
4 14 12 3 0 2 0 31 222 222 203
5 31 14 13 0 0 0 58 22.5 1.65 493
6 16 6 0 0 10 0 32 18.1 1.63 143
7 23 12 0 0 0 44 20.3 1.65 154
8 24 12 9 1 2 0 48 17.2 3.21 162
9 4 1 1 0 4 0 10 4.7 1.75 47
10 5 0 1 0 4 0 10 3.6 2.63 41
11 38 21 15 0 0 0 74 30.8 1.60 170
12 19 8 8 1 6 0 42 22.6 2.89 59
13 5 0 2 0 4 0 11 15.7 1.50 62
14 40 18 4 11 0 0 73 38.8 2.36 80
15 39 16 20 0 0 0 75 44.5 1.62 206
16 20 13 3 0 6 0 42 47.3 2.12 78
17 27 9 6 6 1 0 49 31.0 2.88 135
18 7 4 3 0 0 0 14 14.6 1.54 67
19 7 2 0 2 0 15 233 1.58 40
20 0 5 0 0 0 9 9.2 0.80 59
21 19 12 2 3 5 0 41 34.1 2.21 83
22 1 0 0 0 1 0 2 15.5 1.00 32
23 39 19 11 8 0 0 77 475 1.72 73
24 11 4 4 0 1 0 20 36.4 2.58 67
25 8 7 0 0 0 0 15 12.3 1.14 65
26 1 0 1 0 3 0 5 4.2 0.67 23
27 7 3 0 0 4 0 14 11.7 1.54 65
28 2 0 0 0 0 0 2 5.3 2.00 39
29 1 0 1 0 1 1 4 20.2 1.00 44
30 10 4 1 1 9 0 25 229 1.90 48
31 3 1 0 1 0 0 5 8.2 2.00 42
32 1 1 0 3 0 0 5 8.6 0.67 38
33 3 3 2 0 0 0 8 124 1.25 43
34 28 18 5 6 1 0 58 33.8 3.00 51
35 15 6 7 0 0 0 28 16.4 1.68 30
36 6 3 0 1 0 2 12 22.1 1.83 34
37 5 4 0 1 0 0 10 17.2 2.63 50
38 2 1 0 3 0 0 10.8 1.17 30
39 1 0 0 1 2 0 7.3 0.75 25
40 1 2 0 0 0 1 13.7 1.25 17
41 38 22 10 5 1 0 76 339 2.73 50
42 0 0 1 0 2 0 3 4.0 0.50 20
43 6 2 0 0 0 3 11 139 1.83 40
44 10 6 0 0 4 1 21 30.5 2.39 27
45 13 7 5 0 1 0 26 15.6 2.75 34
46 3 1 0 0 0 3 7 14.4 1.67 34
47 1 0 0 0 0 2 3 5.4 0.50 10
48 3 0 0 0 0 0 3 4.5 3.00 26
49 1 0 0 0 0 0 1 4.4 1.00 38
50 2 3 0 0 0 3 8 26.8 0.83 58
51 2 1 0 0 0 0 3 59 2.00 35
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Table 3 Parameter values

WSno R, D, F, R, L, R B, R, C. I R, C R, R, ST SPI  TWI
1 272 405 667 295 012 042 239 073 214 2701 022 025 961 149 455 -003  7.81
2 133 274 206 062 018 045 223 076 243 566 017 036 1298 055 202 -047  8.08
3 188 284 617 396 018 039 256 071 189 1753 028 035 1030 154 781 053 754
4 222 624 871 159 008 049 205 079 292 5438 012 016 914 127 241 -025 770
5 165 395 1019 314 013 046 218 076 218 4027 021 025 2193 195 942 144 6.23
6 163 203 359 175 025 043 232 074 173 728 034 049 790 029 133 —083 924
7 165 378 818 256 013 046 216 077 209 3091 023 026 758 058 201 -032 778
8 321 351 980 382 014 047 214 077 160 3436 039 029 943 057 230 001 7.18
9 175 365 774 140 014 056 178 085 177 2822 032 027 997 017 152 -090  9.10
10 263 224 628 130 022 055 183 083 173 1403 034 045 1152 009 173 =050 881
11 160 490 1176 363 010 045 221 076 229 5755 0.9 020 552 083 243 026 6.80
12 280 318 592 198 0.6 045 225 075 225 1885 020 031 261 019 139 -085 874
13 150 092 064 033 055 039 253 071 225 059 020 109 394 006 096 —148 982
14 236 336 632 285 015 042 240 073 212 2125 022 030 206 027 093 -1I5 965
15 162 255 430 167 020 039 254 071 303 1095 0.1 039 463 053 106 -124 937
16 212 246 218 125 020 039 257 070 215 536 022 041 165 0.9 084 -155 10.06
17 288 359 568 164 014 043 231 074 286 2037 012 028 436 048 105 -123 9.8
18 154 214 206 072 023 045 223 075 212 440 022 047 459 014 065 —166 1027
19 158 530 341 120 009 047 211 078 167 1806 036 019 172 021 080 -146  9.64
20 080 155 152 053 032 046 219 076 198 236 025 064 643 009 069 —1.63 10.08
21 221 315 379 161 016 042 238 073 218 1191 021 032 244 026 068 —172 10.10
22 100 293 038 012 017 046 216 077 202 111 025 034 207 009 107 -152 993
23 172 271 440 266 0.8 039 254 071 195 1194 026 037 154 020 074 —168 1024
24 258 217 119 068 023 040 253 071 204 259 024 046 184 015 066 -1.65 1032
25 114 143 173 078 035 043 231 074 185 247 029 070 527 009 061 -179 10.13
26 067 198 235 053 025 052 191 082 182 464 030 051 545 005 075 -166 10.06
27 154 119 142 058 042 043 235 074 217 170 021 084 553 008 085 —142 10.13
28 200 120 045 0.2 042 047 211 078 222 054 020 084 734 005 054 —175 1030
29 100 183 036 013 027 042 239 073 257 066 0.5 055 218 008 136 —1.56 1041
30 190 227 247 103 022 042 236 073 216 561 021 044 209 011 081 —141 10.10
31 200 157 095 035 032 046 216 077 176 149 032 064 510 007 056 -1.66 10.72
32 067 169 098 024 030 047 215 077 264 166 0.4 059 440 006 091 —178 10.64
33 125 153 099 038 033 044 229 075 208 151 023 065 346 007 066 —151 1049
34 300 195 335 186 026 039 254 071 212 655 022 051 151 010 077 -161 10.11
35 168 308 525 199 016 046 216 077 171 1617 034 032 182 009 055 —171 1044
36 183 161 087 049 031 041 246 072 18 140 029 062 154 005 067 -175 10.69
37 263 125 073 040 040 041 246 072 192 091 027 080 291 006 052 -174 1081
38 117 203 113 024 025 046 216 077 309 230 011 049 279 006 069 —194 1084
39 075 257 142 035 019 050 198 080 193 364 027 039 345 006 093 —143 10.11
40 125 379 L1l 033 013 049 205 079 181 419 031 026 124 006 092 -194 1076
41 273 240 539 334 021 041 247 072 171 1294 034 042 148 0.2 068 -178 10.11
42 050 366 273 048 014 057 174 085 170 1000 035 027 497 007 160 -136 1050
43 183 142 112 046 035 043 235 074 217 159 021 070 287 006 084 —186 10.70
44 239 359 248 131 014 043 230 074 155 889 041 028 089 010 077 —178 1049
45 275 264 441 176 019 046 219 076 172 1162 034 038 219 009 056 —1.92 1043
46 167 277 135 031 018 046 215 077 280 373 0.3 036 236 009 085 —192 10.83
47 050 262 145 030 019 053 190 082 194 381 026 038 18 003 111 -220 10.74
48 300 106 071 022 047 048 209 078 185 076 029 094 58 003 038 -188 10.74
49 100 068 015 005 074 045 222 076 210 010 023 148 858 003 040 —179 11.02
50 083 236 070 020 021 042 240 073 331 166 009 042 216 0.14 039 -176 1095
51 200 138 070 025 036 048 210 078 163 096 038 073 591 005 089 —095  9.99
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WSA techniques

The WSA is a statistical approach applied to calculate CF
values. The CF values are estimated using cross-correction
analysis by morphometric parameters and the assigned
weightage. The statistical expression for CF is written as
follows (Aher et al. 2014):

CF(WSA) = RMP x WMP (10)

where CF (WSA) represents compound factor, RMP repre-
sents the rank (preliminary priority) estimated from mor-
phometric and topo-hydrological parameters, and WMP rep-
resents the weight of morphometric and topo-hydrological
parameters obtained using a cross-correlation study (Table 2,
3, and 4). Weights are estimated with a ratio of morphometric
and topo-hydrological parameters with a sum of the correla-
tion coefficient value of each parameter (Table 5). Based on
the weightage of parameters, a model is constructed for sort-
ing watershed prioritization, which is computed as follows:

CF(WSA) = (0.055447) X R, + (0.087678) x D, + (0.114486)
XF, +(0.111822) X R, + (—0.08424) X L,
+(0.025944) X R, + (—0.01748) X B + (0.028237)

XR, +(=0.00423) X C, + (0.112984) X I,
+(0.007042) x R, + (0.089087) x C + (0.047331)

XR;, +(0.115931) X R, + (0.090761) x STI
+(0.105501) x SPI + (0.113691) x TWI

(11)

As observed in Table 7 and Eq. 11, the highest CF value

is 51.13, and it is for watershed 49, the second-highest value

1s 47.48, and it is for watershed 48, and so on for other water-
sheds, as shown in (Fig. 4a).

ReliefF

ReliefF is a feature ranking method for selecting important
features for classification and regression problems. In this
method, predictors that give different values for the same
response values are penalized, and predictors that give dif-
ferent values for different response values are rewarded.
Final predictor weights are computed using intermediate
weights.

bWy _pem Wy )
Wx n—Wg

where n is several instances, Wpp is weighted with differ-
ent response values and different values for predictor, W,
is weighted with different values for response R, and Py is
weights with different values for predictor p (Robnik—gikonja
et al. 1997).

The ReliefF method is used to assign the ranks to the mor-
phometric parameters. /;ranked first with the weightage of
0.058, whereas F), is ranked second with the weightage of

0.056. Other subsequent values, ranks, and weights are men-
tioned in Table 6. The final equation of compound factor
obtained using the ReliefF method is as follows:

CF(RF) = (0.00532) X R, + (0.02866) x D, + (0.05694) X F,
+(0.04566) X R, + (0.02452) X L, + (—0.03597)

XR; +(—0.03246) X B, + (—0.03282) X R,
+(—0.0182) X C, +(0.05803) X I, + (=0.0198) X R,
+(0.02878) x C + (0.01382) X R;, + (0.05113) X R,

+(0.02103) x STI + (0.02622) x SPI + (0.03788)
XTWI

(13)

As observed in Table 7 and Eq. 13, the highest CF value is

14.37, corresponding to watershed 51, and the second-high-

est value is 12.78, corresponding to watershed 50; likewise,

other subsequent CF values are calculated, which are shown
in Table 7 and Fig. 4b.

Pearson correlation coefficient (PCC)

The Pearson correlation coefficient (C,) is generally used to
measure and rank the relationship between the calculated and
predicted values. A value near+ 1 indicates a perfect correla-
tion from the model output, whereas the value of — 1 indicates
negative correlations. If a value is closer to 0, it means that
there is no direct correlation between the calculated and pre-
dicted parameters (Gibbons 2014).

c X([") c j)
X = —’[;Y — _4J9)
=2 =, (14)

pCC Z:il (X(p,i) - Xp) (Y(q.i) - Yl{)
0 = = —— — a5
\/Z[=1 (X(p,o _Xp> Xici (Y(qJ) - Yq)

Here, PCC, ;) gives the value of the Pearson linear correla-
tion coefficient, m is the length of parameters, and X, and Y,
give the values of a mean of each parameter.

The Pearson correlation coefficient method was used to
assign the ranks to the morphometric parameters. /,is assigned
rank 1 with a weightage of 0.93, whereas F), is assigned rank
2 with a weightage of 0.9197. Other subsequent values, ranks,
and weights are cited in Table 6. The equation of compound
factor based on the weightage of correlation coefficient ranked
features is as follows:

CF(PCC) = (0.3689) X R, + (0.8069) X D, + (0.9197) X F,
+(0.8659) X R, + (=0.7855) x L, + (0.1328) X R,
+(=0.071) X B, + (0.1487) X R, + (~0.0267) X C,

+(0.9373) X I, + (0.0484) X R, + (0.8161) x C
+(0.2701) X R, + (0.9104) X R, + (0.7203) x STI
+(0.7744) x SPI + (0.8488) X TWI
(16)
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Table 4 Preliminary priority WSno R, D, F, R, L, R B, R C. I R C R, R, STI SPI TWI

ranking of linear, areal, and

shape parameters 1 § 4 7 6 48 11 38 11 32 7 19 4 6 3 3 5 7
2 37 20 27 28 31 24 26 26 43 24 9 19 2 8 7 8 8
3 20018 10 1 32 1 50 2 18 12 34 18 4 2 2 2 4
4 14 1 4 18 51 44 7 44 48 2 4 1 8§ 4 5 6 5
5 22 5 2 5 45 29 21 27 37 3 14 5 1 1 1 1 1
6 30 33 19 14 17 17 33 17 9 22 42 33 10 11 14 10 13
7 29 7 5 9 46 30 16 32 27 5 24 6 11 6 8§ 1 6
8 1 12 3 2 40 38 13 33 2 50 12 7 7 6 4 3
9 24 9 6 19 41 S0 2 50 12 6 40 8 5 18 11 12 1l
10 9 30 9 21 22 49 3 49 10 14 43 30 3 26 9 9 10
11 32 03 1 3 49 25 24 28 42 1 10 3 17 5 4 3 2
12 4 14 11 11 36 26 28 23 40 10 11 14 32 16 12 11 9
13 36 50 47 39 2 2 45 3 41 49 12 50 26 38 19 22 17
14 13 13 8 7 39 12 40 12 29 8 20 13 40 12 20 14 16
15 31 25 17 15 26 3 47 4 49 19 2 24 2 9 17 16 14
16 16 26 26 22 27 4 51 1 33 26 21 26 45 17 27 25 20
17 5 10 12 16 42 18 31 18 47 9 5 10 25 10 18 15 12
18 34 32 28 26 20 27 27 24 30 28 22 32 23 20 42 30 3l
19 33 2 20 23 50 39 11 40 4 11 48 2 44 14 30 21 15
20 46 41 30 30 11 31 22 29 23 35 28 40 13 27 35 28 22
21 15 15 18 17 37 13 37 13 38 17 15 15 33 13 37 35 23
2 42 17 49 49 35 32 17 34 24 44 29 17 39 28 16 24 18
23 25 21 16 8 33 5 48 5 22 16 30 21 46 15 34 33 30
24 11 31 35 27 21 7 46 6 25 33 27 31 42 19 40 29 33
25 41 43 29 25 8 19 32 19 15 34 35 43 19 29 43 43 28
26 48 35 25 31 18 47 5 47 14 27 38 35 18 45 33 31 21
27 35 48 32 29 4 20 34 20 35 37 16 47 16 33 25 19 29
28 17 47 48 S0 S 40 12 41 39 S0 13 48 12 46 47 37 32
29 43 37 S0 48 15 14 39 14 44 48 8 37 36 34 13 26 34
30 20 29 24 24 23 15 36 15 34 25 17 29 38 23 29 18 24
31 18 40 41 37 12 33 18 35 11 42 41 41 20 35 44 32 43
32 49 38 40 44 14 41 14 36 45 38 7 38 24 39 23 40 40
33 38 42 39 36 10 23 29 25 26 41 25 42 27 36 41 23 37
34 2 36 21 12 16 6 49 7 31 23 23 36 48 24 31 27 25
35 26 16 14 10 38 34 19 37 6 13 44 16 43 30 46 34 36
36 22039 42 32 13 8 42 8 17 43 36 39 47 47 39 38 41
37 10 46 43 35 6 9 43 9 19 46 32 46 29 40 48 36 47
38 40 34 36 45 19 35 20 38 S0 36 3 34 31 41 36 49 49
39 47 24 33 38 28 46 6 46 20 32 33 25 28 42 21 20 26
40 39 6 38 40 47 45 8 45 13 29 39 7 50 43 22 50 46
41 7 27 13 4 24 10 44 10 7 15 45 27 49 22 38 4l 27
) 50 8 22 33 43 SI 1 51 5 20 47 9 21 37 10 17 39
43 23 44 37 34 9 21 35 21 36 40 18 44 30 44 28 45 42
44 12 11 23 20 44 22 30 22 1 21 51 11 51 25 32 42 38
45 6 22 15 13 29 36 23 30 8 18 46 22 35 31 45 47 35
46 27 19 34 41 34 37 15 39 46 31 6 20 34 32 26 48 48
47 5123 31 42 30 48 4 48 21 30 31 23 41 49 15 51 44
48 349 44 46 3 42 9 42 16 47 37 49 15 50 51 46 45
49 44 51 51 51 1 28 25 31 28 51 26 51 9 51 49 44 51
50 45 28 45 47 25 16 41 16 SI 39 1 28 37 21 50 39 50
51 19 45 46 43 7 43 10 43 3 45 49 45 14 48 24 13 19
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Fig.4 Watershed prioritized
maps using a CF (WSA), b CF
(RF), and ¢ CF (PCC)

@ Springer

Legend
Watershed Ranking CF(WSA)

Kilomcters
0 2 4 8 12 16

Legend
Watershed Ranking CF(RF)

Kilometers

0o 2 4 8 12

N

A

Legend
Watershed Ranking CF(PCC)

Kilometers
0 2 4 8 12 16




Arab J Geosci (2023) 16:71

Page 130f20 71

Table 6 Weightage of

Sr. No Parameters Weightage WSA Weightage ReliefF Weightage Pearson
pare.lmeters based on WSA, . correlation coefficient
ReliefF, and Pearson correlation
coefficient 1 Rb 0.0554 0.00532 0.3689

2 Dd 0.0876 0.02866 0.8069

3 Fu 0.1144 0.05694 0.9197

4 Rt 0.111822 0.04566 0.8659

5 Lo —0.08424 0.02452 —0.7855

6 Rf 0.025944 —0.03597 0.1328

7 Bs —0.01748 —0.03246 —-0.071

8 Re 0.028237 —0.03282 0.1487

9 Cc —0.00423 -0.0182 —0.0267

10 If 0.112984 0.05803 0.9373

11 Rc 0.007042 —0.0198 0.0484

12 C 0.089087 0.02878 0.8161

13 Rh 0.047331 0.01382 0.2701

14 Rn 0.115931 0.05113 0.9104

15 STI 0.090761 0.02103 0.7203

16 SPI 0.105501 0.02622 0.7744

17 TWI 0.113691 0.03788 0.8488

As observed in Table 7 and Eq. 16, the highest CF value
is 405.67, and it is for watershed 51, the second-highest
value is 375.3, and it is for watershed 49. The watershed
map constructed is shown in Fig. 4c.

Results and discussion

The present paper calculates and derives the basic morpho-
metric parameters using RS and GIS techniques. Various
parameters are mentioned in Tables 2 and 3, and the ranks
are assigned based on the relation of parameters with soil
erodibility, which is shown in Table 4. In the present study,
the prioritization of the watershed was decided based on
CF values calculated through WSA, ReliefF, and the Pear-
son correlation coefficient method. Validation and com-
parison of CF values have been done using MLP and SVM
models.

Watershed priority based on CF values

The watershed CF values are calculated using WSA, ReliefF,
and the correlation coefficient method. For prioritization, the
lowest value of CF is given the priority rank 1, the next lower
value is given the priority rank of 2, and so on for all the 51
microwatersheds; CF values are calculated through the three
methods mentioned above. Furthermore, the prioritized water-
sheds are categorized into five categories, i.e., very high, high,

moderate, low, and very low. Finally, the categories of water-
shed maps are utilized for the decision-making system.

As observed in Table 7, the lowest CF values based on
WSA are 1.34, hence, it is assigned rank 1, and the same
ranking is assigned, which will be useful for prioritizing
the watersheds (Table 7). The CF values calculated and
the prioritized watersheds based on WSA, ReliefF, and
Pearson correlation coefficient are shown. For CF values
obtained through ReliefF, all the 51 microwatersheds of
the Rel River catchment are classified into five priority
categories such as (i) very high (—1.355 to <1.789), (ii)
high (1.789 to <£4.933), (iii) medium (4.933 to <8.078),
(iv) low (8.078 to <11.223), and (v) very low (> 11.223)
as given in Table 8. It is observed through Table 8§ that
the 8 microwatersheds belong to very high category (WS
no. 1,3,4,5,7,8,9, and 11), 8 microwatersheds under a
high category (WS no. 2, 6, 10, 12, 14, 15, 17, and 19),
14 microwatersheds under medium (WS no. 16, 18, 20,
21, 23, 26, 30, 34, 35, 39, 41, 42, 44, and 45), 12 micro-
watersheds under a low category (WS no. 22, 24, 25, 27,
31, 32, 33, 38, 40, 46, 47, and 51), and 9 microwatershed
under the very low category (WS no. 13, 28, 29, 36, 37,
43,48, 49, and 50). The CF values obtained from Eqs. 11,
13, and 16 watershed are constructed, shown in Fig. 4a—c.

ML model predictions
Two ML algorithms, MLP and SVM, have been utilized to

predict the CF values for the prioritization of watersheds. The
training and Tenfold cross-validation are performed on all the
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Table 7 Final priority ranking
based on CF (WSA), CF (RF),
and CF (CC)

@ Springer

Watershed no CF (WSA) Rank (WSA) CF (RF) Rank (RF) CF (PCC) Rank (PCC)
1 1.528264 2 0.27492 6 6.7236 3
2 16.01509 13 3.86089 14 122.861 13
3 4.903464 6 0.91985 8 40.4664 7
4 3.938099 4 -0.89169 4 16.962 4
5 1.335835 1 —1.35562 1 1.6663 1
6 18.4453 16 3.9834 15 147.303 17
7 5.845198 7 0.06385 5 34.9447 6
8 4.310874 5 -0.92929 3 26.2914 5
9 11.61175 11 0.61581 7 77.8723 11
10 17.83164 15 2.26766 10 136.1282 15
11 1.943757 3 —1.03453 2 3.8269

12 10.66848 9 2.01432 9 77.2943

13 36.81942 37 11.72068 45 299.5558 40
14 10.70105 10 2.52398 12 77.4664 10
15 15.71252 12 4.34046 16 124.3031 14
16 22.29458 19 6.8578 25 174.8333 20
17 9.879781 8 2.45127 11 70.8866 8
18 29.97648 28 7.48339 27 232.9969 28
19 16.69544 14 3.32148 13 112.5607 12
20 33.24179 31 8.05952 30 261.6969 34
21 18.98612 17 5.2402 17 142.7939 16
22 31.16441 29 9.42732 35 234.603 29
23 20.29711 18 5.57612 21 154.4773 18
24 29.3392 27 8.96685 32 231.492 27
25 35.69458 36 9.17599 33 282.7589 36
26 34.10074 35 7.56216 28 261.2875 33
27 33.69377 32 8.90357 31 270.836 35
28 45.27464 49 12.40651 47 358.6792 49
29 37.55711 38 11.83673 46 296.0889 38
30 24.4378 22 6.78556 24 190.649 24
31 39.75809 43 10.70476 41 312.3009 44
32 40.25462 46 10.58357 39 311.6823 43
33 38.47929 41 10.62681 40 303.8441 42
34 24.55777 24 6.6908 23 195.7769 25
35 24.50611 23 5.31351 18 179.0141 23
36 40.02803 45 12.51027 48 316.2031 46
37 41.60316 48 12.74387 49 333.7207 48
38 41.5177 47 11.12328 42 319.6869 47
39 31.92323 30 7.92383 29 240.4292 30
40 33.82409 33 9.44803 36 244.6926 31
41 22.54344 20 5.53433 20 174.0157 19
42 24.59601 25 5.48176 19 175.2774 21
43 39.93747 44 11.28255 43 315.9518 45
44 24.13611 21 6.89754 26 176.7408 22
45 26.92503 26 5.98962 22 202.8793 26
46 33.90714 34 9.38026 34 254.4021 32
47 38.02727 40 9.71542 37 283.0729 37
48 47.48223 50 12.77914 50 375.3013 50
49 51.12991 51 14.36773 51 405.6693 51
50 38.61711 42 11.60586 44 299.0939 39
51 38.00189 39 9.95714 38 300.9122 41
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Table 8 Priority category based

Zone CF(RF) value Watershed number
on CF (RF) values
Very high —1.355t0 1.789 1,3,4,5,7,8,9,and 11
High 1.789 to 4.933 2,6,10, 12, 14,15, 17, and 19
Moderate 4.933 to 8.078 16, 18, 20, 21, 23, 26, 30, 34, 35, 39, 41, 42, 44, and 45
Low 8.078 to 11.223 22,24,25,27,31, 32, 33, 38, 40, 46, 47, and 51
Very low >11.223 13, 28, 29, 36, 37, 43, 48, 49, and 50

51 microwatersheds, and the derived parameters are normal-
ized in the range [— 1 to+ 1] to minimize the biasing error.
Results of the prediction are shown in Fig. Sa—f. The CF
(WSA) values predicted through SVM and MLP are shown in
Fig. 5a, b. It is observed that SVM accurately predicts the CF
values with a very less average error of 0.04 whereas there
is a slight deviation in prediction results with MLP with an

average error of 0.90 for all the watershed values considered.
Similarly when CF (RF) is predicted, then, an average error
of 0.02 and 0.28 is observed from SVM and MLP, respec-
tively, as shown in Fig. 5c, d. Further, the average error of
0.36 and 7.65 is observed when CF (PCC) is predicted, as
shown in Fig. Se, f. The results can infer that the best CF
values for watershed prioritization should be obtained from

Fig.5 a—f Tenfold cross valida-
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W Actual ®Predicted

MLP-Tenfold

tion prediction results using 55
SVM and ANN 50
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ReliefF Eq. 13 as there are very few mean errors observed
from both SVM and MLP. Moreover, to evaluate the suit-
ability of ML algorithms, three performance metrics: mean
absolute error, correlation coefficient, and root mean square
error, are calculated, and the results are discussed below.

Correlation coefficient

The correlation coefficient (R) is calculated to find the relation-
ship between the dependent and independent variables. When
R is observed as+ 1, it indicates a perfect correlation between
the two variables, while — 1 indicates a negative correlation
between two variables. The # shows the total number of obser-
vations, Y, a shows the mean value of all the first variables in
the data set, and Y b represents the mean value of all the sec-
ond variables in the data set. It is mathematically calculated by

R nYyab—3adb
Viz @ -Yanyp - (3b)

an

Mean absolute error

Mean absolute error (MAE) has been used to analyze the
performance of the ML model. The difference between the
predicted value and the actual value is calculated by

1 n
MAE—Z;|O,-—®| (18)

Here, @, shows the predicted value by the machine learn-
ing model, and @ shows the actual value from experiments.

Root mean square error

Root mean square error (RMSE) represents the standard devi-
ation of the residuals. RMSE is commonly used in hydrology,
forecasting, and regression analysis to verify experimental
results.

RMSE = + (19)
n

where i is variable, n represents data points, @i represent
actual observations, and @ represents predicted observation.

Tables 9 and 10 show the results of SVM Tenfold and MLP
Tenfold for CF (WSA), CF (RF), and CF (CC) values. The
prediction of ML models is compared with three performance
metrics correlation coefficient, MAE, and RMSE values. Ini-
tially, the performance of the ML model is evaluated through a
correlation coefficient. It is observed that there is no significant
deviation in performance metrics from both the SVM and MLP

@ Springer

Table 9 Statistical evaluation of SVM Tenfold model

Parameters Ideal values CF (WSA) CF (RF) CF (CC)
Correlation coefficient 1 1 1 1

MAE 0 0.0472 0.0236  0.3684
RMSE 0 0.0565 0.032 0.4361

Table 10 Statistical evaluation of MLP Tenfold model

Parameters Ideal values CF (WSA) CF (RF) CF (CC)
Correlation coefficient 1 0.9946 0.9949 0.9938
MAE 0 0.9021 0.2856 7.6514
RMSE 0 1.4233 0.4402  12.2689

models. The correlation coefficient was observed as 1, which
signifies a very good correlation between the calculated and
predicted values.

Figure 6a, b shows the SVM Tenfold and MLP Tenfold
results to compare the prediction of CF values using MAE and
RMSE. From Fig. 6, it is clear that the minimum MAE is 0.0236
for CF (RF) using the SVM Tenfold model compared to the
minimum MAE of 0.2856 for CF (RF) using the MLP Ten-
fold model. Furthermore, the minimum RMSE is 0.032 for CF
(RF) using the SVM Tenfold model compared to the minimum
RMSE of 0.440 for CF (RF) using the MLP Tenfold model. The
maximum MAE is 0.3684 for CF (CC) using an SVM Tenfold
compared to the maximum MAE of 7.6514 for CF (CC) using
MLP Tenfold. Also, the maximum RMSE observed is 0.4361
for CF (CC) using SVM Tenfold, compared to the maximum
RMSE of 12.26 for CF (RF) using the MLP Tenfold model.
Results show that the SVM Tenfold gives better prediction capa-
bility as compared to MLP Tenfold for the prediction of CF
values with CF (RF), followed by CF (WSA) and CF (PCC),
respectively.

Figure 7a—c shows the variation in MAE and RMSE for
the CF (RF), CF (WSA), and CF (PCC) predicted using
the SVM Tenfold and MLP Tenfold models. The minimum
MAE observed is 0.0236 with CF (RF), whereas the mini-
mum MAE is 0.3684 for CF (PCC) from SVM Tenfold.
The maximum MAE is 0.2856 with CF (RF) compared to
7.6514 with CF (CC) from MLP Tenfold. Furthermore,
the minimum RMSE for predicting CF (RF) is 0.032 com-
pared to 0.4361 in CF (CC) using SVM Tenfold. The maxi-
mum RMSE for predicting CF (RF) is 0.4402 compared
to 12.2689 in CF (CC) using MLP Tenfold. It is observed
that CF values calculated from ReliefF exhibit a higher
correlation coefficient as well as very low MAE and RMSE
values with both SVM and ANN models (Tables 9 and 10);
therefore, CF values calculated from ReliefF are used for
constructing watershed prioritization. The final watershed
priority category map of 51 microwatersheds is shown in
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Fig.6 Tenfold cross validation
prediction results using a SVM
and b ANN
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Fig. 8. It is observed that the percentage area of microwa-
tersheds under the very high category is 13.45%, for a high
category, it is 15.72%, for medium category is 30.24%, low
category is 18.81%, and for very low category, it is 21.78%.

Fig.7 MAE and RMSE varia-

tions with SVM and MLP for a
CF (RF) and b CF (WSA) and

CF (CC)

(b)

This information is beneficial in implementing water man-
agement strategies regarding soil and water conservation
measures. The result also shows its vulnerability to erosion
and runoff potential. This watershed is mainly situated in
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Fig.8 Watershed priority map
based on CF (RF) values

the upstream part of the catchment or basin and high slopes
and elongated basins.

Conclusion

In the methodology proposed, the utility of feature
ranking is initially explored in detail for estimating the
weightage of various morphological and topological
parameters. Afterward, the CF values for various water-
sheds are calculated from WSA, ReliefF, and Pearson cor-
relation coefficient, obtained from the assigned weightage
of various morphological and topological parameters. To
determine the best CF values, ML algorithms are explored
in detail. Finally, the performance of models is estimated
after comparing the three parameters, i.e., mean absolute
error, correlation coefficient, and root mean square error.
The findings are mentioned below:

1. The SVM model gives better results for predicting vari-
ous watersheds as compared to MLP model.

2. The comparison of MAE and RMSE for predicting CF
(RF), CF (WSA), and CF (CC) reveals that CF (RF) is
the best model for the prediction of CF values as com-
pared to other calculations; hence, it is utilized for pri-
oritization of watersheds.

3. It is suggested that watersheds 1, 3,4, 5, 7, 8, 9, and
11 have a very high vulnerability to soil erosion, fol-
lowed by the rest of the watersheds in the study region.
Hence, appropriate soil and water conservation meas-
ures should be adopted to protect against degradation.

@ Springer
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Based on a study conducted, the integrated framework
of RS, GIS, feature ranking, and machine learning seems
to be an efficient water resource management technique
for watershed ranking and prioritization. Tenfold cross-
validation and feature ranking is a novel approach for
accurately predicting CF for watershed ranking and
prioritization. The proposed methodology should be
extended to investigate the influence of more RS and
GIS techniques as well as exploration of more morpho-
metric and topological parameters and analyze its effect
on constructing various watersheds for soil and water
conservation. It should be noted that the performance of
ML models for prediction is dependent on the calculated
or extracted parameters.
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