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Abstract
Prediction and validation of Compound factors for prioritization of watersheds are an essential application using machine 
learning (ML) techniques in water resource engineering. The current paper proposes a methodology to derive 14 morphomet-
ric and 3 topo-hydrological parameters using remote sensing (RS) and geographical information systems (GIS). Compound 
factor (CF) values are calculated using weighted sum analysis (WSA), ReliefF, and the Pearson correlation coefficient, and 
the important parameters are identified. Two machine learning models, multilayer perceptron (MLP) and support vector 
machine (SVM), are utilized to predict CF values. Predication accuracy of ML models is evaluated with three parameters, 
mean absolute error (MAE), Pearson correlation coefficient (PCC), and root mean square error (RMSE). It is observed 
that the maximum value of PCC equal to 1 is achieved through ReliefF and SVM, whereas minimum MAE and RMSE are 
observed with ReliefF and SVM when Tenfold cross-validation is applied. Since ReliefF shows better results, CF values are 
calculated and applied to create the watershed. The proposed methodology is helpful for accurately predicting CF values 
and advantageous to allocating the proper watershed, which will be useful for decision-making and implementation of con-
servation techniques for soil and water.
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Introduction

Watershed prioritization is crucial for developing water-
shed management planning and better land management. It 
is essential to determine the watershed priority in the semi-
arid and arid regions as it helps manage water in ungauged 
rivers. Spatial prioritization and watershed health help to 
understand watershed conditions, and it also helps derive 

better management strategies in the data-scarce region 
(Alilou et al. 2019).

Remote sensing (RS) and geographical information 
systems (GIS) are promising tools for extracting cru-
cial parametrical information from watersheds. The RS 
and GIS technique helps establish interrelationship with 
parameters and decide the priority of watershed using the 
WSA technique (Malik et al. 2019). Many researchers have 
attempted to prioritize watersheds (Thakkar and Dhiman 
2007; Patel et al. 2012, 2015; Samal et al. 2015; Kadam 
et al. 2017; Memon et al. 2020; Kulimushi et al. 2021a; 
Sengupta et al. 2021) and utilized different analysis tech-
niques for watershed prioritization such as multicriteria 
decision analysis (MCDA) (Chowdary et al. 2013; Jaiswal 
et al. 2015; Samal et al. 2015; Vulević and Dragović 2017), 
Sediment Yield Index (Khan et al. 2001), Weighted Sum 
Analysis (WSA) (Aher et al. 2014; Memon et al. 2020), 
and Principal Component Analysis (PCA) (Farhan et al. 
2017; Meshram and Sharma 2017). (Patel et al. 2022) has 
utilized AHP- and TOPSIS-based subwatershed prioriti-
zation to facilitate soil erosion susceptibility analysis of 
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the Ami river basin. Furthermore, (Yadav et al. 2018) has 
prioritized subwatersheds for potential groundwater zone 
using topographic sheet and CARTOSAT data to amelio-
rate the flash flood and droughts, and (Kulimushi et al. 
2021b) has utilized compound parameter index (Ci) and 
Erosion Hazard Rate Index (EHRI) derived from Analyti-
cal Hierarchy Process (AHP) for watershed priority assess-
ment. Out of all prioritization, the WSA technique is the 
most familiar and prominent method for prioritizing the 
watersheds in the present era; however, the recent devel-
opment of ML techniques helps to classify, predict, and 
forecast the laboratory and computer-simulated data for 
decision-making. Artificial Neural Network (ANN), sup-
port vector machine (SVM), and Random Forest are ML 
models applied in various engineering applications.

ML is a probabilistic model frequently applied for pattern 
recognition applications. It has been used for applications 
like fault diagnosis (Kankar et al. 2011), motor current sig-
nature analysis (Singh et al. 2014), compressive strength 
prediction (Sonebi et al. 2016), EEG (Upadhyay et al. 2016), 
surface roughness prediction (Patel et al. 2020), fault sever-
ity analysis (Akhenia et al. 2021), tool wear rate prediction 
(Shah et al. 2022), and many more applications, regardless 
of field.

For evaluating any type of ML model and for knowing 
how well the model predicts without biasedness, cross-val-
idation is used. In k-fold cross-validation, the data is parti-
tioned randomly into the k number of approximately equal 
sets, from which the model is trained on k-1 sets and tested 
on the remaining set. The procedure repeated k number of 
times, and the final result is the average of all the results 
obtained by repetition. The main benefit of applying this 
strategy is that each sample is used for training k-1 times 
and one time for testing, and the average results are obtained. 
The regression model is used to develop a mathematical 
function based on the experimental data in which param-
eters act as features. It is observed that in a feature vector, 
prediction capability can be improved with identifications 
of relevant and irrelevant features. To discard irrelevant fea-
tures, a feature selection strategy can be used to determine 
the utility of individual features in a feature vector (Vakharia 
et al. 2015a, b). Other feature ranking techniques like mutual 
information (Dave et al. 2020), information gain (Naseri-
parsa et al. 2014), and ReliefF (Kononenko 1994) are also 
used to improve the accuracy and prediction of classification 
and regression problems.

With the availability of data, artificial intelligence tech-
niques have been applied in a variety of civil engineering 
applications. According to literature research, it is found that 
machine learning strategies are extremely helpful in predict-
ing and validating the experimental results. Furthermore, 
for decision-making, a particular algorithm may not be suit-
able; therefore, in such situations, detailed investigations are 

needed to assess the utility of ML algorithms for particular 
applications (Vakharia et al. 2022).

In the present paper, RS and GIS techniques are utilized 
to derive morphometric parameters and topo-hydrological 
parameters. Initially, the values and ranks to all 14 morpho-
metric and 3 topo-hydrological parameters are assigned, and 
the CF values are calculated using well-known WSA tech-
niques. After that, two feature ranking techniques, ReliefF 
and Pearson correlation coefficient, are applied to determine 
the weightage of morphometric and topological parameters. 
The weightage obtained from WSA, ReliefF, and PCC will 
be used to calculate the CF values. Two well-known ML 
models, SVM and MLP, with Tenfold cross-validations, are 
applied to identify the best CF values. The accuracy of ML 
models is examined with mean absolute error (MAE), corre-
lation coefficient (Cr), and root mean square error (RMSE). 
Based on better prediction capability, decision-making is 
done for suitable watershed prioritization. As per the litera-
ture survey, most authors applied various techniques like 
parameter averaging, WSA, AHP, MCDM, and TOPSIS. 
To the authors’ best knowledge, decision-making for water-
shed prioritization using feature ranking and ML techniques 
is not explored till now. Therefore, to fill the gap, a novel 
approach for identifying relevant morphometric parameters 
and consequently the CF values for watersheds prioritization 
for the decision-making is executed in the present research. 
The methodology proposed will be helpful in providing 
an integrated solution to the decision-maker to restore the 
watersheds against any uncertain critical conditions. Fig-
ure 1 shows the watershed prioritization methodology based 
on feature ranking and ML.

Prediction using machine learning

In recent years, much attention has been focused on machine 
learning. One of the key causes that are driving its signifi-
cance is the fact that machine learning provides a unified 
framework for introducing intelligent decision-making 
into many research areas. This is one of the primary driv-
ing forces behind its popularity in the industry as well as 
academics. Machine learning models can learn patterns in 
data whether the learning is supervised or unsupervised. The 
model is developed based on input data, which will be fur-
ther used to predict unseen data.

Support vector machine

Support vector machine, more commonly referred to as 
SVMs, is an intelligent computational model developed for 
performing classification and regression analysis. In regres-
sion analysis, underlying relationships between the dependent 
variable Y (CF) and the independent variable X (morphological 
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parameters) are determined. The relationship is generally 
mapped by using a kernel function, which described how the 
estimated Y deviates from the calculated values. Let the train-
ing data be represented as

where χ represent the space for input patterns. If the kernel 
function is assumed to be linear, it can be expressed as

SVM is formulated as a convex optimization problem as

(1)� =
{(

X1, Y1
)
,
(
X2, Y2

)
,…… ,

(
Xn, YN
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∈ � ×ℜ
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Here, w represents the hyperplane orientation, and b is 
a scalar quantity known as intercept. When margin is con-
sidered Eqs. 3, 4, and 5 can be further modified as (Vapnik 
1995)

ξi,ξi* represents the slack variables which are introduced 
to deal with infeasible constraints. In present study, the 
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Fig. 1  Proposed methodology 
for watershed prioritization
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penalty parameter “C” is chosen as 10 and radial basis ker-
nel function is used to effectively map the nonlinearity in 
morphological parameters (Fig. 2a).

Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is another type of ANN archi-
tecture which consists of several layers and functions as a 
global approximator for nonlinear input–output mapping. 
MLPs are composed of neurons called perceptron. In our 
model, morphological features which is represented as 
{g = g1, g2, g3, ⋯, gn) become an input to perceptron. The 
input morphological features are passed through a function 
u which computes the weighted sum of input features as 
follows:

The output of the perceptron is calculated by an activation 
function f, which is represented as

The equation w1g1 + w2g2 + ⋯ + wngn − θ = 0 represents 
the equation of hyperplane. Output = 1 reflects that input 
morphological parameters lies above the hyperplane, and 
Output = 0 reflects that input morphological parameters lie 
below the hyperplane. Hence for output, it gives a set of 
continuous values and mean square error as a loss function. 
(Fig. 2b) shows the architecture of MLP with one hidden 
layer. In the present study, authors have used only one hid-
den layer based on prior experience.

(9)Y = f (u(X)) =

{
1, ifu(X) > 𝜃

0, otherwise,

Fig. 2  Prediction using a 
support vector machine and b 
multilayer perceptron
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Parameter estimations through GIS 
and remote sensing

To determine the CF for any catchment area of the River, 
a Rel-River catchment situated in Banaskantha district 
of Gujarat, India, is considered in the present study as 
shown in (Fig. 3a). Basin lies between 24° 50′ N to 24° 
75′ N latitude and 72° 00′ E to 72° 45′ E longitude and 
has an area of 431  km2 (Memon et al. 2020; Darji et al. 
2021). The basin area is partitioned into 51 microwa-
tersheds, and Cartosat DEM 10  m resolution is used 

to calculate slope and watershed boundary. ArcHydro 
toolset is used for calculating and deriving the bound-
ary of the watershed. Drainage boundaries are derived 
using Survey of India (SOI) toposheets (42D02, 42D03, 
42D06), and the ordering of the drainages is given 
according to the proposed technique by (Strahler 1964) 
(Fig. 3b). ArcGIS 10.5 software was used to generate 
the boundary of watersheds, digitize drainages, and 
derive different morphometric parameters. Morphomet-
ric parameters such as linear aspects, areal aspects, and 
relief aspects (Horton 1932, 1945; Miller 1953; Schumm 

(a) (b)

Fig. 3  Study area. a Rel river basin map. b Rel river drainage map
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1956; Melton 1957; Faniran 1968; Strahler 1997; Nooka 
Ratnam et al. 2005) and topo-hydrological parameters 
such as Stream Power Index (SPI) (Whipple and Tucker 
1999), Sediment Transport Index (STI) (Moore and 
Burch 1986), and Topographic Wetness Index (TWI) 
(Beven and Kirkby 1979) are considered for the prior-
itization of watersheds (Table 1). The ranking of the 
watersheds is calculated based on the WSA technique 
established by (Aher et al. 2014). Every microwatershed 
has different and unique characteristics, and watershed 
priority is carried out to identify the vulnerable areas 
for erosion. The weights have been calculated based on 

the correlation between parameters and their values. Its 
relation does a ranking of the parameters to soil erosion. 
Based on the literature, the linear factor showed a posi-
tive correlation with soil erosion, so maximum priority is 
given to the higher value, i.e., rank 1. In contrast, shape 
factors negatively correlated with soil erosion, and the 
ranking for these parameters was given in reverse order.

The final ranking and prioritization of watersheds have 
been done using CF values. The CF values are calculated 
with the help of morphological parameters weightage 
obtained from WSA, ReliefF, and Pearson correlation 
coefficient methods.

Table 1  Morphometric and topo-hydrological parameters considered in study

Parameter Aspect Parameters Formula References

Morphometric parameters Linear aspect Stream order (Nu) Hierarchical order (Strahler 1964)
Stream length (L) Length of stream (Horton 1945)
Length of overland flow (Lo) Lo= 1/Dd*2, where Lo = length 

of overland flow and Dd = 
drainage density

(Horton 1945)

Bifurcation ratio (Rb) Rb = Nu/Nu+1, where Nu = total 
no. of stream segments of 
order

Nu+1 = number of segments of 
next higher order

(Schumm 1956)

Areal aspect Stream frequency (Fu) Fu = Nu/A, where A = area of 
the basin

(Horton 1945)

Drainage density (Dd) Dd = Lu/A, where Lu = total 
length of all order streams

(Horton 1932)

Form factor (Rf) Rf = A/Lb
2, where Lb = basin 

length
(Horton 1932)

Elongation ratio (Re) Re =

√
4 ×

A

pi
∕Lb

(Schumm 1956)

Shape factor (Bs) Bs = Lb
2∕A (Nooka Ratnam et al. 2005)

Compactness constant (Cc) Cc = 0.2821P∕A0.5 (Horton 1945)
Circularity ratio (Rc) Rc = 4πA/P2, where P = basin 

perimeter
(Miller 1953)

Drainage texture (Rt) Rt = Nu∕P (Horton 1945)
Infiltration number (If) If = Fu × Dd (Faniran 1968)
Constant of channel maintenance 

(C)
C = 1∕Dd (Schumm 1956)

Relief aspect Basin relief (H) The maximum vertical distance 
between the highest and lowest 
points in the watershed

(Schumm 1956)

Relief ratio (Rh) Rh = H∕Lb (Schumm 1956)
Ruggedness no. (Rn) Rn = H × Dd (Melton 1957)

Topo-hydrological parameters Topographic Wetness Index 
(TWI)

TWI = ln

(
a

���(�)

)
 , where a 

= upslope catchment area 
divided by contour length and 
β = slope of the catchment

(Beven and Kirkby 1979)

Stream Power Index (SPI) SPI = (a × tan�) (Whipple and Tucker 1999)
Sediment Transport Index (STI)

STI =

(
a

22.13

)0.06

×

(
sin�

0.0896

)1.3 (Moore and Burch 1986)
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Table 2  Stream order of 
different watersheds

WS no Stream orders Summation of 
stream

L (length) Rb (bifurcation 
ratio)

Basin
relief

I II III IV V VI

1 36 21 12 5 1 0 75 45.5 2.72 368
2 8 6 0 0 0 0 14 18.6 1.33 202
3 59 31 15 9 0 0 114 52.5 1.88 541
4 14 12 3 0 2 0 31 22.2 2.22 203
5 31 14 13 0 0 0 58 22.5 1.65 493
6 16 6 0 0 10 0 32 18.1 1.63 143
7 23 9 12 0 0 0 44 20.3 1.65 154
8 24 12 9 1 2 0 48 17.2 3.21 162
9 4 1 1 0 4 0 10 4.7 1.75 47
10 5 0 1 0 4 0 10 3.6 2.63 41
11 38 21 15 0 0 0 74 30.8 1.60 170
12 19 8 8 1 6 0 42 22.6 2.89 59
13 5 0 2 0 4 0 11 15.7 1.50 62
14 40 18 4 11 0 0 73 38.8 2.36 80
15 39 16 20 0 0 0 75 44.5 1.62 206
16 20 13 3 0 6 0 42 47.3 2.12 78
17 27 9 6 6 1 0 49 31.0 2.88 135
18 7 4 3 0 0 0 14 14.6 1.54 67
19 7 4 2 0 2 0 15 23.3 1.58 40
20 4 0 5 0 0 0 9 9.2 0.80 59
21 19 12 2 3 5 0 41 34.1 2.21 83
22 1 0 0 0 1 0 2 15.5 1.00 32
23 39 19 11 8 0 0 77 47.5 1.72 73
24 11 4 4 0 1 0 20 36.4 2.58 67
25 8 7 0 0 0 0 15 12.3 1.14 65
26 1 0 1 0 3 0 5 4.2 0.67 23
27 7 3 0 0 4 0 14 11.7 1.54 65
28 2 0 0 0 0 0 2 5.3 2.00 39
29 1 0 1 0 1 1 4 20.2 1.00 44
30 10 4 1 1 9 0 25 22.9 1.90 48
31 3 1 0 1 0 0 5 8.2 2.00 42
32 1 1 0 3 0 0 5 8.6 0.67 38
33 3 3 2 0 0 0 8 12.4 1.25 43
34 28 18 5 6 1 0 58 33.8 3.00 51
35 15 6 7 0 0 0 28 16.4 1.68 30
36 6 3 0 1 0 2 12 22.1 1.83 34
37 5 4 0 1 0 0 10 17.2 2.63 50
38 2 1 0 3 0 0 6 10.8 1.17 30
39 1 0 0 1 2 0 4 7.3 0.75 25
40 1 2 0 0 0 1 4 13.7 1.25 17
41 38 22 10 5 1 0 76 33.9 2.73 50
42 0 0 1 0 2 0 3 4.0 0.50 20
43 6 2 0 0 0 3 11 13.9 1.83 40
44 10 6 0 0 4 1 21 30.5 2.39 27
45 13 7 5 0 1 0 26 15.6 2.75 34
46 3 1 0 0 0 3 7 14.4 1.67 34
47 1 0 0 0 0 2 3 5.4 0.50 10
48 3 0 0 0 0 0 3 4.5 3.00 26
49 1 0 0 0 0 0 1 4.4 1.00 38
50 2 3 0 0 0 3 8 26.8 0.83 58
51 2 1 0 0 0 0 3 5.9 2.00 35
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Table 3  Parameter values

WS no Rb Dd Fu Rt Lo Rf Bs Re Cc If Rc C Rh Rn STI SPI TWI

1 2.72 4.05 6.67 2.95 0.12 0.42 2.39 0.73 2.14 27.01 0.22 0.25 9.61 1.49 4.55 −0.03 7.81
2 1.33 2.74 2.06 0.62 0.18 0.45 2.23 0.76 2.43 5.66 0.17 0.36 12.98 0.55 2.02 −0.47 8.08
3 1.88 2.84 6.17 3.96 0.18 0.39 2.56 0.71 1.89 17.53 0.28 0.35 10.30 1.54 7.81 0.53 7.54
4 2.22 6.24 8.71 1.59 0.08 0.49 2.05 0.79 2.92 54.38 0.12 0.16 9.14 1.27 2.41 −0.25 7.70
5 1.65 3.95 10.19 3.14 0.13 0.46 2.18 0.76 2.18 40.27 0.21 0.25 21.93 1.95 9.42 1.44 6.23
6 1.63 2.03 3.59 1.75 0.25 0.43 2.32 0.74 1.73 7.28 0.34 0.49 7.90 0.29 1.33 −0.83 9.24
7 1.65 3.78 8.18 2.56 0.13 0.46 2.16 0.77 2.09 30.91 0.23 0.26 7.58 0.58 2.01 −0.32 7.78
8 3.21 3.51 9.80 3.82 0.14 0.47 2.14 0.77 1.60 34.36 0.39 0.29 9.43 0.57 2.30 0.01 7.18
9 1.75 3.65 7.74 1.40 0.14 0.56 1.78 0.85 1.77 28.22 0.32 0.27 9.97 0.17 1.52 −0.90 9.10
10 2.63 2.24 6.28 1.30 0.22 0.55 1.83 0.83 1.73 14.03 0.34 0.45 11.52 0.09 1.73 −0.50 8.81
11 1.60 4.90 11.76 3.63 0.10 0.45 2.21 0.76 2.29 57.55 0.19 0.20 5.52 0.83 2.43 0.26 6.80
12 2.89 3.18 5.92 1.98 0.16 0.45 2.25 0.75 2.25 18.85 0.20 0.31 2.61 0.19 1.39 −0.85 8.74
13 1.50 0.92 0.64 0.33 0.55 0.39 2.53 0.71 2.25 0.59 0.20 1.09 3.94 0.06 0.96 −1.48 9.82
14 2.36 3.36 6.32 2.85 0.15 0.42 2.40 0.73 2.12 21.25 0.22 0.30 2.06 0.27 0.93 −1.15 9.65
15 1.62 2.55 4.30 1.67 0.20 0.39 2.54 0.71 3.03 10.95 0.11 0.39 4.63 0.53 1.06 −1.24 9.37
16 2.12 2.46 2.18 1.25 0.20 0.39 2.57 0.70 2.15 5.36 0.22 0.41 1.65 0.19 0.84 −1.55 10.06
17 2.88 3.59 5.68 1.64 0.14 0.43 2.31 0.74 2.86 20.37 0.12 0.28 4.36 0.48 1.05 −1.23 9.18
18 1.54 2.14 2.06 0.72 0.23 0.45 2.23 0.75 2.12 4.40 0.22 0.47 4.59 0.14 0.65 −1.66 10.27
19 1.58 5.30 3.41 1.20 0.09 0.47 2.11 0.78 1.67 18.06 0.36 0.19 1.72 0.21 0.80 −1.46 9.64
20 0.80 1.55 1.52 0.53 0.32 0.46 2.19 0.76 1.98 2.36 0.25 0.64 6.43 0.09 0.69 −1.63 10.08
21 2.21 3.15 3.79 1.61 0.16 0.42 2.38 0.73 2.18 11.91 0.21 0.32 2.44 0.26 0.68 −1.72 10.10
22 1.00 2.93 0.38 0.12 0.17 0.46 2.16 0.77 2.02 1.11 0.25 0.34 2.07 0.09 1.07 −1.52 9.93
23 1.72 2.71 4.40 2.66 0.18 0.39 2.54 0.71 1.95 11.94 0.26 0.37 1.54 0.20 0.74 −1.68 10.24
24 2.58 2.17 1.19 0.68 0.23 0.40 2.53 0.71 2.04 2.59 0.24 0.46 1.84 0.15 0.66 −1.65 10.32
25 1.14 1.43 1.73 0.78 0.35 0.43 2.31 0.74 1.85 2.47 0.29 0.70 5.27 0.09 0.61 −1.79 10.13
26 0.67 1.98 2.35 0.53 0.25 0.52 1.91 0.82 1.82 4.64 0.30 0.51 5.45 0.05 0.75 −1.66 10.06
27 1.54 1.19 1.42 0.58 0.42 0.43 2.35 0.74 2.17 1.70 0.21 0.84 5.53 0.08 0.85 −1.42 10.13
28 2.00 1.20 0.45 0.12 0.42 0.47 2.11 0.78 2.22 0.54 0.20 0.84 7.34 0.05 0.54 −1.75 10.30
29 1.00 1.83 0.36 0.13 0.27 0.42 2.39 0.73 2.57 0.66 0.15 0.55 2.18 0.08 1.36 −1.56 10.41
30 1.90 2.27 2.47 1.03 0.22 0.42 2.36 0.73 2.16 5.61 0.21 0.44 2.09 0.11 0.81 −1.41 10.10
31 2.00 1.57 0.95 0.35 0.32 0.46 2.16 0.77 1.76 1.49 0.32 0.64 5.10 0.07 0.56 −1.66 10.72
32 0.67 1.69 0.98 0.24 0.30 0.47 2.15 0.77 2.64 1.66 0.14 0.59 4.40 0.06 0.91 −1.78 10.64
33 1.25 1.53 0.99 0.38 0.33 0.44 2.29 0.75 2.08 1.51 0.23 0.65 3.46 0.07 0.66 −1.51 10.49
34 3.00 1.95 3.35 1.86 0.26 0.39 2.54 0.71 2.12 6.55 0.22 0.51 1.51 0.10 0.77 −1.61 10.11
35 1.68 3.08 5.25 1.99 0.16 0.46 2.16 0.77 1.71 16.17 0.34 0.32 1.82 0.09 0.55 −1.71 10.44
36 1.83 1.61 0.87 0.49 0.31 0.41 2.46 0.72 1.86 1.40 0.29 0.62 1.54 0.05 0.67 −1.75 10.69
37 2.63 1.25 0.73 0.40 0.40 0.41 2.46 0.72 1.92 0.91 0.27 0.80 2.91 0.06 0.52 −1.74 10.81
38 1.17 2.03 1.13 0.24 0.25 0.46 2.16 0.77 3.09 2.30 0.11 0.49 2.79 0.06 0.69 −1.94 10.84
39 0.75 2.57 1.42 0.35 0.19 0.50 1.98 0.80 1.93 3.64 0.27 0.39 3.45 0.06 0.93 −1.43 10.11
40 1.25 3.79 1.11 0.33 0.13 0.49 2.05 0.79 1.81 4.19 0.31 0.26 1.24 0.06 0.92 −1.94 10.76
41 2.73 2.40 5.39 3.34 0.21 0.41 2.47 0.72 1.71 12.94 0.34 0.42 1.48 0.12 0.68 −1.78 10.11
42 0.50 3.66 2.73 0.48 0.14 0.57 1.74 0.85 1.70 10.00 0.35 0.27 4.97 0.07 1.60 −1.36 10.50
43 1.83 1.42 1.12 0.46 0.35 0.43 2.35 0.74 2.17 1.59 0.21 0.70 2.87 0.06 0.84 −1.86 10.70
44 2.39 3.59 2.48 1.31 0.14 0.43 2.30 0.74 1.55 8.89 0.41 0.28 0.89 0.10 0.77 −1.78 10.49
45 2.75 2.64 4.41 1.76 0.19 0.46 2.19 0.76 1.72 11.62 0.34 0.38 2.19 0.09 0.56 −1.92 10.43
46 1.67 2.77 1.35 0.31 0.18 0.46 2.15 0.77 2.80 3.73 0.13 0.36 2.36 0.09 0.85 −1.92 10.83
47 0.50 2.62 1.45 0.30 0.19 0.53 1.90 0.82 1.94 3.81 0.26 0.38 1.85 0.03 1.11 −2.20 10.74
48 3.00 1.06 0.71 0.22 0.47 0.48 2.09 0.78 1.85 0.76 0.29 0.94 5.80 0.03 0.38 −1.88 10.74
49 1.00 0.68 0.15 0.05 0.74 0.45 2.22 0.76 2.10 0.10 0.23 1.48 8.58 0.03 0.40 −1.79 11.02
50 0.83 2.36 0.70 0.20 0.21 0.42 2.40 0.73 3.31 1.66 0.09 0.42 2.16 0.14 0.39 −1.76 10.95
51 2.00 1.38 0.70 0.25 0.36 0.48 2.10 0.78 1.63 0.96 0.38 0.73 5.91 0.05 0.89 −0.95 9.99
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WSA techniques

The WSA is a statistical approach applied to calculate CF 
values. The CF values are estimated using cross-correction 
analysis by morphometric parameters and the assigned 
weightage. The statistical expression for CF is written as 
follows (Aher et al. 2014):

where CF (WSA) represents compound factor, RMP repre-
sents the rank (preliminary priority) estimated from mor-
phometric and topo-hydrological parameters, and WMP rep-
resents the weight of morphometric and topo-hydrological 
parameters obtained using a cross-correlation study (Table 2, 
3, and 4). Weights are estimated with a ratio of morphometric 
and topo-hydrological parameters with a sum of the correla-
tion coefficient value of each parameter (Table 5). Based on 
the weightage of parameters, a model is constructed for sort-
ing watershed prioritization, which is computed as follows:

As observed in Table 7 and Eq. 11, the highest CF value 
is 51.13, and it is for watershed 49, the second-highest value 
is 47.48, and it is for watershed 48, and so on for other water-
sheds, as shown in (Fig. 4a).

ReliefF

ReliefF is a feature ranking method for selecting important 
features for classification and regression problems. In this 
method, predictors that give different values for the same 
response values are penalized, and predictors that give dif-
ferent values for different response values are rewarded. 
Final predictor weights are computed using intermediate 
weights.

where n is several instances, WRP is weighted with differ-
ent response values and different values for predictor, WR 
is weighted with different values for response R, and PR is 
weights with different values for predictor p (Robnik-Šikonja 
et al. 1997).

The ReliefF method is used to assign the ranks to the mor-
phometric parameters. If ranked first with the weightage of 
0.058, whereas Fu is ranked second with the weightage of 

(10)CF(WSA) = RMP ×WMP

(11)

CF(WSA) = (0.055447) × Rb + (0.087678) × Dd + (0.114486)

×Fu + (0.111822) × Rt + (−0.08424) × Lo
+(0.025944) × Rf + (−0.01748) × Bs + (0.028237)

×Re + (−0.00423) × Cc + (0.112984) × If
+(0.007042) × Rc + (0.089087) × C + (0.047331)

×Rh + (0.115931) × Rn + (0.090761) × STI

+(0.105501) × SPI + (0.113691) × TWI

(12)Pw =
WRp

WR

−
pR −WRp

n −WR

0.056. Other subsequent values, ranks, and weights are men-
tioned in Table 6. The final equation of compound factor 
obtained using the ReliefF method is as follows:

As observed in Table 7 and Eq. 13, the highest CF value is 
14.37, corresponding to watershed 51, and the second-high-
est value is 12.78, corresponding to watershed 50; likewise, 
other subsequent CF values are calculated, which are shown 
in Table 7 and Fig. 4b.

Pearson correlation coefficient (PCC)

The Pearson correlation coefficient (Cr) is generally used to 
measure and rank the relationship between the calculated and 
predicted values. A value near + 1 indicates a perfect correla-
tion from the model output, whereas the value of − 1 indicates 
negative correlations. If a value is closer to 0, it means that 
there is no direct correlation between the calculated and pre-
dicted parameters (Gibbons 2014).

Here, PCC(p,q) gives the value of the Pearson linear correla-
tion coefficient, m is the length of parameters, and Xp and Yq 
give the values of a mean of each parameter.

The Pearson correlation coefficient method was used to 
assign the ranks to the morphometric parameters. If is assigned 
rank 1 with a weightage of 0.93, whereas Fu is assigned rank 
2 with a weightage of 0.9197. Other subsequent values, ranks, 
and weights are cited in Table 6. The equation of compound 
factor based on the weightage of correlation coefficient ranked 
features is as follows:

(13)

CF(RF) = (0.00532) × Rb + (0.02866) × Dd + (0.05694) × Fu

+(0.04566) × Rt + (0.02452) × Lo + (−0.03597)

×Rf + (−0.03246) × Bs + (−0.03282) × Re

+(−0.0182) × Cc + (0.05803) × If + (−0.0198) × Rc

+(0.02878) × C + (0.01382) × Rh + (0.05113) × Rn

+(0.02103) × STI + (0.02622) × SPI + (0.03788)

×TWI

(14)Xp =

m∑

i=1

X(p,i)

m
;Yq =

m∑

j=1

Y(q,j)

m

(15)PCC(p,q) =

∑m

i=1

�
X(p,i) − Xp

��
Y(q,i) − Yq

�

�
∑m

i=1

�
X(p,i) − Xp

�2 ∑m

j=1

�
Y(q,j) − Yq

�2

(16)

CF(PCC) = (0.3689) × Rb + (0.8069) × Dd + (0.9197) × Fu

+(0.8659) × Rt + (−0.7855) × Lo + (0.1328) × Rf

+(−0.071) × Bs + (0.1487) × Re + (−0.0267) × Cc

+(0.9373) × If + (0.0484) × Rc + (0.8161) × C

+(0.2701) × Rh + (0.9104) × Rn + (0.7203) × STI

+(0.7744) × SPI + (0.8488) × TWI
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Table 4  Preliminary priority 
ranking of linear, areal, and 
shape parameters

WS no Rb Dd Fu Rt Lo Rf Bs Re Cc If Rc C Rh Rn STI SPI TWI

1 8 4 7 6 48 11 38 11 32 7 19 4 6 3 3 5 7
2 37 20 27 28 31 24 26 26 43 24 9 19 2 8 7 8 8
3 21 18 10 1 32 1 50 2 18 12 34 18 4 2 2 2 4
4 14 1 4 18 51 44 7 44 48 2 4 1 8 4 5 6 5
5 28 5 2 5 45 29 21 27 37 3 14 5 1 1 1 1 1
6 30 33 19 14 17 17 33 17 9 22 42 33 10 11 14 10 13
7 29 7 5 9 46 30 16 32 27 5 24 6 11 6 8 7 6
8 1 12 3 2 40 38 13 33 2 4 50 12 7 7 6 4 3
9 24 9 6 19 41 50 2 50 12 6 40 8 5 18 11 12 11
10 9 30 9 21 22 49 3 49 10 14 43 30 3 26 9 9 10
11 32 3 1 3 49 25 24 28 42 1 10 3 17 5 4 3 2
12 4 14 11 11 36 26 28 23 40 10 11 14 32 16 12 11 9
13 36 50 47 39 2 2 45 3 41 49 12 50 26 38 19 22 17
14 13 13 8 7 39 12 40 12 29 8 20 13 40 12 20 14 16
15 31 25 17 15 26 3 47 4 49 19 2 24 22 9 17 16 14
16 16 26 26 22 27 4 51 1 33 26 21 26 45 17 27 25 20
17 5 10 12 16 42 18 31 18 47 9 5 10 25 10 18 15 12
18 34 32 28 26 20 27 27 24 30 28 22 32 23 20 42 30 31
19 33 2 20 23 50 39 11 40 4 11 48 2 44 14 30 21 15
20 46 41 30 30 11 31 22 29 23 35 28 40 13 27 35 28 22
21 15 15 18 17 37 13 37 13 38 17 15 15 33 13 37 35 23
22 42 17 49 49 35 32 17 34 24 44 29 17 39 28 16 24 18
23 25 21 16 8 33 5 48 5 22 16 30 21 46 15 34 33 30
24 11 31 35 27 21 7 46 6 25 33 27 31 42 19 40 29 33
25 41 43 29 25 8 19 32 19 15 34 35 43 19 29 43 43 28
26 48 35 25 31 18 47 5 47 14 27 38 35 18 45 33 31 21
27 35 48 32 29 4 20 34 20 35 37 16 47 16 33 25 19 29
28 17 47 48 50 5 40 12 41 39 50 13 48 12 46 47 37 32
29 43 37 50 48 15 14 39 14 44 48 8 37 36 34 13 26 34
30 20 29 24 24 23 15 36 15 34 25 17 29 38 23 29 18 24
31 18 40 41 37 12 33 18 35 11 42 41 41 20 35 44 32 43
32 49 38 40 44 14 41 14 36 45 38 7 38 24 39 23 40 40
33 38 42 39 36 10 23 29 25 26 41 25 42 27 36 41 23 37
34 2 36 21 12 16 6 49 7 31 23 23 36 48 24 31 27 25
35 26 16 14 10 38 34 19 37 6 13 44 16 43 30 46 34 36
36 22 39 42 32 13 8 42 8 17 43 36 39 47 47 39 38 41
37 10 46 43 35 6 9 43 9 19 46 32 46 29 40 48 36 47
38 40 34 36 45 19 35 20 38 50 36 3 34 31 41 36 49 49
39 47 24 33 38 28 46 6 46 20 32 33 25 28 42 21 20 26
40 39 6 38 40 47 45 8 45 13 29 39 7 50 43 22 50 46
41 7 27 13 4 24 10 44 10 7 15 45 27 49 22 38 41 27
42 50 8 22 33 43 51 1 51 5 20 47 9 21 37 10 17 39
43 23 44 37 34 9 21 35 21 36 40 18 44 30 44 28 45 42
44 12 11 23 20 44 22 30 22 1 21 51 11 51 25 32 42 38
45 6 22 15 13 29 36 23 30 8 18 46 22 35 31 45 47 35
46 27 19 34 41 34 37 15 39 46 31 6 20 34 32 26 48 48
47 51 23 31 42 30 48 4 48 21 30 31 23 41 49 15 51 44
48 3 49 44 46 3 42 9 42 16 47 37 49 15 50 51 46 45
49 44 51 51 51 1 28 25 31 28 51 26 51 9 51 49 44 51
50 45 28 45 47 25 16 41 16 51 39 1 28 37 21 50 39 50
51 19 45 46 43 7 43 10 43 3 45 49 45 14 48 24 13 19
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Fig. 4  Watershed prioritized 
maps using a CF (WSA), b CF 
(RF), and c CF (PCC)
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As observed in Table 7 and Eq. 16, the highest CF value 
is 405.67, and it is for watershed 51, the second-highest 
value is 375.3, and it is for watershed 49. The watershed 
map constructed is shown in Fig. 4c.

Results and discussion

The present paper calculates and derives the basic morpho-
metric parameters using RS and GIS techniques. Various 
parameters are mentioned in Tables 2 and 3, and the ranks 
are assigned based on the relation of parameters with soil 
erodibility, which is shown in Table 4. In the present study, 
the prioritization of the watershed was decided based on 
CF values calculated through WSA, ReliefF, and the Pear-
son correlation coefficient method. Validation and com-
parison of CF values have been done using MLP and SVM 
models.

Watershed priority based on CF values

The watershed CF values are calculated using WSA, ReliefF, 
and the correlation coefficient method. For prioritization, the 
lowest value of CF is given the priority rank 1, the next lower 
value is given the priority rank of 2, and so on for all the 51 
microwatersheds; CF values are calculated through the three 
methods mentioned above. Furthermore, the prioritized water-
sheds are categorized into five categories, i.e., very high, high, 

moderate, low, and very low. Finally, the categories of water-
shed maps are utilized for the decision-making system.

As observed in Table 7, the lowest CF values based on 
WSA are 1.34, hence, it is assigned rank 1, and the same 
ranking is assigned, which will be useful for prioritizing 
the watersheds (Table 7). The CF values calculated and 
the prioritized watersheds based on WSA, ReliefF, and 
Pearson correlation coefficient are shown. For CF values 
obtained through ReliefF, all the 51 microwatersheds of 
the Rel River catchment are classified into five priority 
categories such as (i) very high (− 1.355 to ≤ 1.789), (ii) 
high (1.789 to ≤ 4.933), (iii) medium (4.933 to ≤ 8.078), 
(iv) low (8.078 to ≤ 11.223), and (v) very low (> 11.223) 
as given in Table 8. It is observed through Table 8 that 
the 8 microwatersheds belong to very high category (WS 
no. 1, 3, 4, 5, 7, 8, 9, and 11), 8 microwatersheds under a 
high category (WS no. 2, 6, 10, 12, 14, 15, 17, and 19), 
14 microwatersheds under medium (WS no. 16, 18, 20, 
21, 23, 26, 30, 34, 35, 39, 41, 42, 44, and 45), 12 micro-
watersheds under a low category (WS no. 22, 24, 25, 27, 
31, 32, 33, 38, 40, 46, 47, and 51), and 9 microwatershed 
under the very low category (WS no. 13, 28, 29, 36, 37, 
43, 48, 49, and 50). The CF values obtained from Eqs. 11, 
13, and 16 watershed are constructed, shown in Fig. 4a–c.

ML model predictions

Two ML algorithms, MLP and SVM, have been utilized to 
predict the CF values for the prioritization of watersheds. The 
training and Tenfold cross-validation are performed on all the 

Table 6  Weightage of 
parameters based on WSA, 
ReliefF, and Pearson correlation 
coefficient

Sr. No Parameters Weightage WSA Weightage ReliefF Weightage Pearson 
correlation coefficient

1 Rb 0.0554 0.00532 0.3689
2 Dd 0.0876 0.02866 0.8069
3 Fu 0.1144 0.05694 0.9197
4 Rt 0.111822 0.04566 0.8659
5 Lo −0.08424 0.02452 −0.7855
6 Rf 0.025944 −0.03597 0.1328
7 Bs −0.01748 −0.03246 −0.071
8 Re 0.028237 −0.03282 0.1487
9 Cc −0.00423 −0.0182 −0.0267
10 If 0.112984 0.05803 0.9373
11 Rc 0.007042 −0.0198 0.0484
12 C 0.089087 0.02878 0.8161
13 Rh 0.047331 0.01382 0.2701
14 Rn 0.115931 0.05113 0.9104
15 STI 0.090761 0.02103 0.7203
16 SPI 0.105501 0.02622 0.7744
17 TWI 0.113691 0.03788 0.8488
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Table 7  Final priority ranking 
based on CF (WSA), CF (RF), 
and CF (CC)

Watershed no CF (WSA) Rank (WSA) CF (RF) Rank (RF) CF (PCC) Rank (PCC)

1 1.528264 2 0.27492 6 6.7236 3
2 16.01509 13 3.86089 14 122.861 13
3 4.903464 6 0.91985 8 40.4664 7
4 3.938099 4 −0.89169 4 16.962 4
5 1.335835 1 −1.35562 1 1.6663 1
6 18.4453 16 3.9834 15 147.303 17
7 5.845198 7 0.06385 5 34.9447 6
8 4.310874 5 −0.92929 3 26.2914 5
9 11.61175 11 0.61581 7 77.8723 11
10 17.83164 15 2.26766 10 136.1282 15
11 1.943757 3 −1.03453 2 3.8269 2
12 10.66848 9 2.01432 9 77.2943 9
13 36.81942 37 11.72068 45 299.5558 40
14 10.70105 10 2.52398 12 77.4664 10
15 15.71252 12 4.34046 16 124.3031 14
16 22.29458 19 6.8578 25 174.8333 20
17 9.879781 8 2.45127 11 70.8866 8
18 29.97648 28 7.48339 27 232.9969 28
19 16.69544 14 3.32148 13 112.5607 12
20 33.24179 31 8.05952 30 261.6969 34
21 18.98612 17 5.2402 17 142.7939 16
22 31.16441 29 9.42732 35 234.603 29
23 20.29711 18 5.57612 21 154.4773 18
24 29.3392 27 8.96685 32 231.492 27
25 35.69458 36 9.17599 33 282.7589 36
26 34.10074 35 7.56216 28 261.2875 33
27 33.69377 32 8.90357 31 270.836 35
28 45.27464 49 12.40651 47 358.6792 49
29 37.55711 38 11.83673 46 296.0889 38
30 24.4378 22 6.78556 24 190.649 24
31 39.75809 43 10.70476 41 312.3009 44
32 40.25462 46 10.58357 39 311.6823 43
33 38.47929 41 10.62681 40 303.8441 42
34 24.55777 24 6.6908 23 195.7769 25
35 24.50611 23 5.31351 18 179.0141 23
36 40.02803 45 12.51027 48 316.2031 46
37 41.60316 48 12.74387 49 333.7207 48
38 41.5177 47 11.12328 42 319.6869 47
39 31.92323 30 7.92383 29 240.4292 30
40 33.82409 33 9.44803 36 244.6926 31
41 22.54344 20 5.53433 20 174.0157 19
42 24.59601 25 5.48176 19 175.2774 21
43 39.93747 44 11.28255 43 315.9518 45
44 24.13611 21 6.89754 26 176.7408 22
45 26.92503 26 5.98962 22 202.8793 26
46 33.90714 34 9.38026 34 254.4021 32
47 38.02727 40 9.71542 37 283.0729 37
48 47.48223 50 12.77914 50 375.3013 50
49 51.12991 51 14.36773 51 405.6693 51
50 38.61711 42 11.60586 44 299.0939 39
51 38.00189 39 9.95714 38 300.9122 41
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Table 8  Priority category based 
on CF (RF) values

Zone CF(RF) value Watershed number

Very high −1.355 to 1.789 1, 3, 4, 5, 7, 8, 9, and 11
High 1.789 to 4.933 2, 6, 10, 12, 14, 15, 17, and 19
Moderate 4.933 to 8.078 16, 18, 20, 21, 23, 26, 30, 34, 35, 39, 41, 42, 44, and 45
Low 8.078 to 11.223 22, 24, 25, 27, 31, 32, 33, 38, 40, 46, 47, and 51
Very low >11.223 13, 28, 29, 36, 37, 43, 48, 49, and 50

Fig. 5  a–f Tenfold cross valida-
tion prediction results using 
SVM and ANN

(a)                                                                          (b)
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51 microwatersheds, and the derived parameters are normal-
ized in the range [− 1 to + 1] to minimize the biasing error. 
Results of the prediction are shown in Fig. 5a–f. The CF 
(WSA) values predicted through SVM and MLP are shown in 
Fig. 5a, b. It is observed that SVM accurately predicts the CF 
values with a very less average error of 0.04 whereas there 
is a slight deviation in prediction results with MLP with an 

average error of 0.90 for all the watershed values considered. 
Similarly when CF (RF) is predicted, then, an average error 
of 0.02 and 0.28 is observed from SVM and MLP, respec-
tively, as shown in Fig. 5c, d. Further, the average error of 
0.36 and 7.65 is observed when CF (PCC) is predicted, as 
shown in Fig. 5e, f. The results can infer that the best CF 
values for watershed prioritization should be obtained from 
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ReliefF Eq. 13 as there are very few mean errors observed 
from both SVM and MLP. Moreover, to evaluate the suit-
ability of ML algorithms, three performance metrics: mean 
absolute error, correlation coefficient, and root mean square 
error, are calculated, and the results are discussed below.

Correlation coefficient

The correlation coefficient (R) is calculated to find the relation-
ship between the dependent and independent variables. When 
R is observed as + 1, it indicates a perfect correlation between 
the two variables, while − 1 indicates a negative correlation 
between two variables. The � shows the total number of obser-
vations, 

∑
a shows the mean value of all the first variables in 

the data set, and 
∑

b represents the mean value of all the sec-
ond variables in the data set. It is mathematically calculated by

Mean absolute error
Mean absolute error (MAE) has been used to analyze the 
performance of the ML model. The difference between the 
predicted value and the actual value is calculated by

Here, ◉i shows the predicted value by the machine learn-
ing model, and ◉ shows the actual value from experiments.

Root mean square error

Root mean square error (RMSE) represents the standard devi-
ation of the residuals. RMSE is commonly used in hydrology, 
forecasting, and regression analysis to verify experimental 
results.

where i is variable, n represents data points, ◉i represent 
actual observations, and ◉ represents predicted observation.

Tables 9 and 10 show the results of SVM Tenfold and MLP 
Tenfold for CF (WSA), CF (RF), and CF (CC) values. The 
prediction of ML models is compared with three performance 
metrics correlation coefficient, MAE, and RMSE values. Ini-
tially, the performance of the ML model is evaluated through a 
correlation coefficient. It is observed that there is no significant 
deviation in performance metrics from both the SVM and MLP 

(17)R =
�
∑

ab −
∑

a
∑

b
√
�
∑

a2 −
∑

a2[�
∑

b2 −
�∑

b
�2

(18)MAE =
1

n

n∑

i=1

||⊙i −⊙||

(19)RMSE =
1

n

√√√√
n∑

i=1

(
⊙i −⊙

)2

models. The correlation coefficient was observed as 1, which 
signifies a very good correlation between the calculated and 
predicted values.

Figure 6a, b shows the SVM Tenfold and MLP Tenfold 
results to compare the prediction of CF values using MAE and 
RMSE. From Fig. 6, it is clear that the minimum MAE is 0.0236 
for CF (RF) using the SVM Tenfold model compared to the 
minimum MAE of 0.2856 for CF (RF) using the MLP Ten-
fold model. Furthermore, the minimum RMSE is 0.032 for CF 
(RF) using the SVM Tenfold model compared to the minimum 
RMSE of 0.440 for CF (RF) using the MLP Tenfold model. The 
maximum MAE is 0.3684 for CF (CC) using an SVM Tenfold 
compared to the maximum MAE of 7.6514 for CF (CC) using 
MLP Tenfold. Also, the maximum RMSE observed is 0.4361 
for CF (CC) using SVM Tenfold, compared to the maximum 
RMSE of 12.26 for CF (RF) using the MLP Tenfold model. 
Results show that the SVM Tenfold gives better prediction capa-
bility as compared to MLP Tenfold for the prediction of CF 
values with CF (RF), followed by CF (WSA) and CF (PCC), 
respectively.

Figure 7a–c shows the variation in MAE and RMSE for 
the CF (RF), CF (WSA), and CF (PCC) predicted using 
the SVM Tenfold and MLP Tenfold models. The minimum 
MAE observed is 0.0236 with CF (RF), whereas the mini-
mum MAE is 0.3684 for CF (PCC) from SVM Tenfold. 
The maximum MAE is 0.2856 with CF (RF) compared to 
7.6514 with CF (CC) from MLP Tenfold. Furthermore, 
the minimum RMSE for predicting CF (RF) is 0.032 com-
pared to 0.4361 in CF (CC) using SVM Tenfold. The maxi-
mum RMSE for predicting CF (RF) is 0.4402 compared 
to 12.2689 in CF (CC) using MLP Tenfold. It is observed 
that CF values calculated from ReliefF exhibit a higher 
correlation coefficient as well as very low MAE and RMSE 
values with both SVM and ANN models (Tables 9 and 10); 
therefore, CF values calculated from ReliefF are used for 
constructing watershed prioritization. The final watershed 
priority category map of 51 microwatersheds is shown in 

Table 9  Statistical evaluation of SVM Tenfold model

Parameters Ideal values CF (WSA) CF (RF) CF (CC)

Correlation coefficient 1 1 1 1
MAE 0 0.0472 0.0236 0.3684
RMSE 0 0.0565 0.032 0.4361

Table 10  Statistical evaluation of MLP Tenfold model

Parameters Ideal values CF (WSA) CF (RF) CF (CC)

Correlation coefficient 1 0.9946 0.9949 0.9938
MAE 0 0.9021 0.2856 7.6514
RMSE 0 1.4233 0.4402 12.2689
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Fig. 8. It is observed that the percentage area of microwa-
tersheds under the very high category is 13.45%, for a high 
category, it is 15.72%, for medium category is 30.24%, low 
category is 18.81%, and for very low category, it is 21.78%. 

This information is beneficial in implementing water man-
agement strategies regarding soil and water conservation 
measures. The result also shows its vulnerability to erosion 
and runoff potential. This watershed is mainly situated in 

Fig. 6  Tenfold cross validation 
prediction results using a SVM 
and b ANN
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Fig. 7  MAE and RMSE varia-
tions with SVM and MLP for a 
CF (RF) and b CF (WSA) and 
CF (CC)
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the upstream part of the catchment or basin and high slopes 
and elongated basins.

Conclusion

In the methodology proposed, the utility of feature 
ranking is initially explored in detail for estimating the 
weightage of various morphological and topological 
parameters. Afterward, the CF values for various water-
sheds are calculated from WSA, ReliefF, and Pearson cor-
relation coefficient, obtained from the assigned weightage 
of various morphological and topological parameters. To 
determine the best CF values, ML algorithms are explored 
in detail. Finally, the performance of models is estimated 
after comparing the three parameters, i.e., mean absolute 
error, correlation coefficient, and root mean square error. 
The findings are mentioned below:

1. The SVM model gives better results for predicting vari-
ous watersheds as compared to MLP model.

2. The comparison of MAE and RMSE for predicting CF 
(RF), CF (WSA), and CF (CC) reveals that CF (RF) is 
the best model for the prediction of CF values as com-
pared to other calculations; hence, it is utilized for pri-
oritization of watersheds.

3. It is suggested that watersheds 1, 3, 4, 5, 7, 8, 9, and 
11 have a very high vulnerability to soil erosion, fol-
lowed by the rest of the watersheds in the study region. 
Hence, appropriate soil and water conservation meas-
ures should be adopted to protect against degradation.

Based on a study conducted, the integrated framework 
of RS, GIS, feature ranking, and machine learning seems 
to be an efficient water resource management technique 
for watershed ranking and prioritization. Tenfold cross-
validation and feature ranking is a novel approach for 
accurately predicting CF for watershed ranking and 
prioritization. The proposed methodology should be 
extended to investigate the influence of more RS and 
GIS techniques as well as exploration of more morpho-
metric and topological parameters and analyze its effect 
on constructing various watersheds for soil and water 
conservation. It should be noted that the performance of 
ML models for prediction is dependent on the calculated 
or extracted parameters.
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