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Abstract
The Edea region is situated in the Nyong Complex within the Northwestern edge of the Congo craton in Cameroon. The back 
scattered electron image and the mineral composition of monazite were determined using an electron microprobe analytical 
technique. The objective of this study was to constraint the geochemical and the textural composition on the behavior of 
metamorphic monazites on the EMP in issue to delineate the metamorphic evolution of the Nyong Complex. Metamorphic 
Th-rich monazite-(Ce) exhibiting a predominance of LREEs, with Ce as dominant REEs, were recorded in meta-igneous 
rocks and metasedimentary rocks. Irrespective of core and rim domains, monazite of sample ED4B and M4 have 85 to 
98 mol% monazite content and characterized by low cheralite content (< 7 mol%). Monazite from sample ED3D yields hut-
tonitic monazite (45–75 mol% monazite content) and monazite (75–98 mol%) fields; they are characterized by low cheralite 
(< 5 mol%), high monazite (75–98 mol%), relative high cheralite (6–12 mol%), and low monazite (65–80 mol%). Monazite 
compositions are linked by dominantly huttonitic and cheralite substitutions. The metamorphic evolution indicates that both 
meta-igneous rocks and metasedimentary rocks of the Nyong Complex are overprinted by two respective high-grade phases 
of metamorphism. The first phase of metamorphism in the meta-igneous rocks is underlined by globular monazite grains; 
the second phase is characterized by elongated and oriented monazite crystals following the mylonitic foliation S1. The first 
phase of metamorphism in metasedimentary rocks is marked by ovoid grains of monazite; the last phase is characterized by 
elongated and oriented monazites which mimic the S2 schistosity.

Keywords  Edea region · Nyong Complex · Th-rich monazite-(Ce) · Mylonitic foliation S1 · Huttonitic monazite · Huttonitic 
and cheralite substitutions

Introduction

The phosphate mineral monazite (LREE,Th,Y,Si,Ca)PO4 
was first reported as an igneous accessory phase in peralu-
minous granites, syenite, and granitic pegmatites, quartz 
veins, and carbonatites (Breithaupt 1829). It also occurs as 
an accessory mineral in metapelites with Ca-poor and Al-
rich bulk compositions at all metamorphic grades above the 
upper greenschist facies. This mineral occurs in low-pressure 
contact metamorphic rocks; in high-grade garnet cordierite 
K-feldspar gneisses; in granulites, migmatites, and char-
nockites; and in coesite-bearing ultra-high-pressure garnet 
gneisses (Overstreet 1967; Spear and Pyle 2002; Brandt et al. 
2011; Petrík et al. 2019). Monazite is not an approved high-
pressure phase and apparently crystallizes prior to and/or 
after to the peak pressures. It is also observed in connection 
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with hydrothermal and metasomatic ore deposits (Poitrasson 
et al. 1996; Seydoux-Guillaume et al. 2012).

Monazite has variable mineral chemical compositions. Its 
nominal composition is dominated by La, Ce, and Nd which 
together comprise 2.8–3.2 cations per 4 oxygen of the total 
cation proportions. The other REE (Pr, Sm, Eu, and Gd) 
occur in minor proportions (0.3–0.4 a.p.f.u). Because of a 
lack of great differences between the three different minerals 
that consist of monazite, these three minerals refer to as one 
mineral named monazite. The three minerals have differ-
ences in their chemical percentages, and these differences 
are reflected in their respective names. The three monazite 
types include monazite-(Ce) with the chemical composition 
(Ce,La,Nd,Th,Y)PO4; monazite-(La) has (La,Ce,Nd)PO4 as 
chemical formula, and monazite-(Nd) which has (Nd,La,Ce)
PO4 as chemical formula. The differences in the formula 
represent the greater percentages of certain elements in the 
mineral. For example, monazite-(La) is greatly enriched in 
lanthanum; monazite-(Ce) consists of Ce-enrichment; it rep-
resents the element with the greater percentage in the min-
eral, and refers to the most common of the three monazites. 
Furthermore, monazite is the name of a group of monoclinic 
phosphate and arsenate minerals that share traits of composi-
tion and crystal structure (Hobart 2018). A list of minerals 
in the monazite group is presented in Table 1.

According to Linthout (2007), the nomenclature for the 
system 2REEPO4–CaTh(PO4)2–2ThSiO4 has been revised, 
to be consistent with the Commission on New Miner-
als and Mineral Names (CNMMN) principles; and only 
three names are applied to members represented by the 
respective end-member compositions: monazite, cheralite, 
and huttonite. The name cheralite with chemical compo-
sition (Ce,Ca,Th)·(P,Si)O4 has priority over brabantite, 
CaTh(PO4)2 which is discredited.

Monazite plays an important role in determining the 
rare-earth element (REE) contents of the rocks, especially 
those that are high in silica. It is a monoclinic Ce-phosphate 
mineral with the ideal formula CePO4, where Ce can be 
replaced by the other light rare earth elements (LREE) in any 
proportion. The co-ordination number for REE is 9, which 

is the site in the lattice favored by LREE with bigger ionic 
radii. Generally, a few percent of La-Sm, Gd, and some tenth 
of a percent of Eu and heavier REE (less than 0.02 a.p.f.u) 
including Y (up to 0.1 a.p.f.u) are present (Franz et al. 1996; 
Heinrich et al. 1997; Förster 1998; Zhu and O’Nions 1999; 
Spear and Pyle 2002; Linthout 2007). The proportions of 
the individual REE can differ depending on the conditions 
of formation. Also, monazite often contains a few percent 
ThO2 (up to 20 wt%), less U (up to 2 wt%), Ca, and some 
Si. The Th occurs in igneous and metamorphic monazite 
with up to 0.25 a.p.f.u, but most metamorphic monazite 
has less than 0.05 Th a.p.f.u. Uranium and calcium balance 
the charge differences of the REE and actinides according 
to the following reactions: 2REE3+  = (Th,U)4+  + Ca2+ or 
REE3+  + P5+  = (Th,U)4+  + Si4+.

Chemically related minerals are (1) xenotime, YPO4, 
tetragonal, with a REE co-ordination number of 8, so 
that it prefers the HREE with smaller ionic radii; (2) 
cheralite, (Ce,Ca,Th)·(P,Si)O4, is a member of the mona-
zite CePO4-brabantite CaTh(PO4)2 series, isostructural 
with monazite (Hughes et  al. 1995); (3) rhabdophane, 
CePO4·H2O, or·nH2O, hexagonal; (4) brockite, (Ce,Th,Ca)
PO4·H2O or·nH2O, hexagonal, a member of the rhabdophane 
group.

It is well known that monazite grains are formed by vari-
ous geochemical processes including crystallization, meta-
morphic reactions, and hydrothermal interactions. In many 
instances, it is noted that metamorphic monazite overgrows 
preexisting cores of possible igneous origin. This can be 
differentiated based on monazite textural occurrence, zon-
ing patterns, and mineral chemistry (Montel et al. 2000; 
Williams and Jercinovic 2002; Foster and Parrish 2003; 
Pyle and Spear 2003; Dahl et al. 2005). The great density 
(4.6–5.7) of monazite makes easy for the crystals to be col-
lected into placer deposits. Monazite is a primary ore of 
many rare earth metals such as thorium, cerium, and lantha-
num. These metals are considered quite valuable and have 
various industrial uses. For example, thorium is a highly 
radioactive metal and could be used as a replacement for 
uranium in nuclear power generation.

In addition to LREE, natural monazites can integrate high 
quantities of thorium and small percentage of uranium (Par-
rish 1990). They can also integrate calcium and silicon; it 
is because of the intervention of these cations that uranium 
and thorium can integrate the lattice by substitutions (Gardes 
2006): huttonic, from the name of the mineral huttonite 
(ThSiO4) refers to the first substitution, and brabantic, from 
the name of the mineral brabantite (Ca0.5Th0.5PO4), refers to 
the second substitution. These two minerals form continuous 
solid-solutions with LREE(PO4) end-member (Peiffert and 
Cuney 1999; Montel et al. 2002) and have a monazite struc-
ture. Natural monazites vary in composition between these 
three end-members, and monazite is assumed to contain very 

Table 1   List of monazite mineral group (Hobart 2018)

Mineral Chemical composition

Brabantite CaTh(PO4)2

Cheralite (Ca, Ce,Th)(P,Si)O4

Gasparite-(Ce) (Ce,La,Nd)AsO4

Monazite-(Ce) CePO4

Monazite-(La) LaPO4

Monazite-(Nd) NdPO4

Monazite-(Sm) SmPO4

Rooseveltite BiAsO4
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little (negligible) or no initial Pb (Parrish 1990). Therefore, 
it is suitable for dating with EMPA. In other words, if Mnz 
contain initial Pb, it has to be corrected for initial Pb, which 
is not possible with electron probe microanalyzer (EMPA). 
Therefore, the mineral chemical and crystallographic char-
acteristics of monazite made it a perfect target for in situ 
geochronology besides the classical U–Pb isotope measure-
ments by TIMS, SIMS, and LA-MC-ICP-MS (Harrison et al. 
2002).

Metamorphic rocks of the Nyong Complex at the western 
end of Congo Craton contain accessory minerals such as 
rutile, epidote, and monazites. The aim of this work is to 
constraint the mineral chemistry of monazite which is the 
most widespread accessory REE-minerals in Edea region 
situated in the Nyong Complex. In this purpose, a method-
ology, implementing the analysis by electron microprobe 
analysis (EMPA), was used. The significance and the impli-
cation in studying the mineral chemistry of monazite of 
the metamorphic rocks of the Edea area is to delineate the 
tectono-metamorphic events for better understanding of the 
metamorphic/deformation history of the Nyong Complex. In 
the present study, the metamorphic monazite is easily and 
efficiently localized and mapped using the back scattered 
electron (BSE) feature on an electron microprobe. On the 
basis of textural relationships, this allows to delineate the 
tectono-metamorphic events of the Nyong Complex during 
the high- grade metamorphism and subsequent temperature, 
pressure, and age estimation.

Geological setting

Regional geology

In South Cameroon, the Precambrian basement includes 
three main geotectonic units: the North Equatorial Fold 
Belt or Oubanguide complexes (Owona et al. 2011) in the 
north represented by the Yaoundé Group (Nzenti et al. 1988; 
Ngnotué et al. 2012) and the Ntem and Nyong Complexes 
in the south which is the northwestern border of the Congo 
craton (Toteu et al. 1994; Shang et al. 2004, 2010; Tcha-
meni et al. 2004; Pouclet et al. 2007; Owona et al. 2021a; 
Soh Tamehe et al. 2022; Fig. 1). This Congo Craton also 
comprises the Mont Crystal, North Gabonese domain, and 
Chaillu massif in southern Gabon (Feybesse et al. 1998; 
Thiéblemont et al. 2018). The Oubanguide Complex or 
North Equatorial Fold Belt is the result of the Neoprote-
rozoic collision between the Congo, West African, and 
Saharan shields (Feybesse et al. 1998; Caxito et al. 2020). 
The Ntem Complex, also known as the Ntem-Chaillu Block 
(Thiéblemont et al. 2018), is one of the ancient domains 
of the NW Congo Craton. The Edea region (Fig. 1) found 

between latitudes 3°45′ and 3°50′ N and between longitudes 
10° 05′ and 10° 10′ E belongs to the Nyong Complex.

The Ntem Complex consists of the Archean Tonalite-
Trondhjemite-Granodiorite (TTG) dated at 2.9 Ga (Toteu 
et al. 1994), high-grade metamorphic hypersthene gneisses 
(charnockites, charno-enderbites, enderbites) and migma-
tites, as well as narrow and elongated greenstone-BIF. All 
intruded by extensive late K-rich granitoids (2.7–2.5 Ga; 
Tchameni et al. 2000; Shang et al. 2001, 2010) and contain 
large xenoliths of supracrustal rocks that are interpreted as 
remnants of greenstone belts and dated at 3.1 Ga (Tchameni 
et al. 2004). The deposition of the Ntem supracrustal forma-
tions is dated between 3.04 and 2.88 Ga (Tchameni et al. 
2004; Thiéblemont et al. 2018). U–Pb zircon ages indicate 
the emplacement of charnockites and TTG between ca 3266 
and ca. 2850 Ma (Toteu et al. 1994; Takam et al. 2009; Tcha-
meni et al. 2010; Li et al. 2016; Akame et al. 2020a), while 
the associated mafic rocks crystallized at ca. 2.86 Ga (Li 
et al. 2016; Akame et al. 2020a). The late magmatic event 
in the Ntem Complex is represented by late high-K granitic 
intrusion dated at ca. 2666–2628 Ma (Tchameni et al. 2000). 
The Ntem Complex was affected by high thermal conditions 
of granulite and amphibolite metamorphic facies (737 ± 50 
℃; Tchameni et al. 2010): a first metamorphic event at ca. 
2900 Ma and a second metamorphic event of Paleoprotero-
zoic age (~ 2050 Ma: Toteu et al. 1994). However, the recent 
works by Akame et al. (2020a) in Sangmelima area indicate 
2843 ± 7 Ma (LA–ICP–MS U–Pb zircon) as the age of the 
migmatization of TTG-gneiss and 2744 ± 31 Ma (garnet-
whole rock Sm–Nd) as the age of the second anatexis event 
coeval with D2 deformation (Akame et al. 2020a). The Ntem 
Complex was affected by two Archean deformation phases 
(D1, D2) and late D3 Paleoproterozoic event ca 2.1–2.0 Ga 
(Feybesse et al. 1998; Tchameni et al. 2000; Owona et al. 
2011; 2020). D1 is marked by a N080°E to N120°E and 
NNW-trend subvertical foliation formed during the high-
grade metamorphic condition (Akame et al. 2020b). D2 
deformation is represent by F2 isoclinal folds and C2 ductile 
shear zones. The Archean structural trends were reworked 
by N045°E to N-S brittle shear zones during the Paleoprote-
rozoic orogeny (Maurizot et al. 1986; Feybesse et al. 1998; 
Owona et al. 2011; Akame et al. 2020b).

The Nyong Complex comprises metasedimentary and 
metavolcanic rocks, syn-tectonic to late tectonic granitoids 
and syenites (Pouclet et al. 2007; Ndema Mbongué et al. 
2014). The rocks are further divided into four main groups: 
(i) metavolcanic sedimentary rocks, probably remnants of 
greenstone belts, with orthopyroxene-bearing gneiss, gar-
net-rich amphibole-pyroxenite and related gneiss, banded 
iron formation, and mafic–ultramafic meta-volcanic rocks. 
The metavolcanic rocks were derived from the fractional 
crystallization of the same parental magma. Zircon U–Pb 
data revealed that the rhyodacite rocks initially formed 
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at 2671 ± 51 Ma and underwent later metamorphism at 
2065 ± 55 Ma (Mvodo et al. 2022); (ii) migmatitic grey 
gneiss of tonalite–trondhjemite–granodiorite (TTG) com-
position; (iii) syn-tectonic to late-tectonic charnockite, 
granodioritic, augen gneiss, granite, and syenite; (iv) post 
tectonic meta-dolerite (Maurizot et al. 1986; Penaye et al. 
2004; Owona et al. 2012; Chombong et al. 2017). Intru-
sions of metadiorites, granodiorites, and syenites cut rocks 
of the Nyong Complex, along with post-tectonic dolerites 
(Toteu et al. 1994; Lerouge et al. 2006; Nsifa Nkonguin 
et al. 2013). Three groups of ages are recorded into this 
Complex (Toteu et al. 1994; 2001; Lerouge et al. 2006): 
(1) Archaean ages (2500–2900 Ma), (2) Palaeoproterozoic 
(2050 Ma), and (3) Neoproterozoic (626 ± 26 Ma) ages. 

Recent geochronological studies of detrital zircons from 
BIFs constrained the maximum depositional age of the 
Nyong Complex at 2422 ± 50 Ma (Soh Tamehe et al. 2021) 
or 2466 ± 62 Ma (Djoukouo Soh et al. 2021), while Owona 
et al. (2021a, 2021b) bracketed the deposition of the Nyong 
Complex between 2.4 and 2.2 Ga. Metasiliciclastic rocks 
and BIFs were deposited between ca. 2.1 and 2.0 Ga (Soh 
Tamehe et al. 2022) in a foreland basin developed along 
the northwestern continental margin of the East Gabonian 
Block. High-grade metamorphism is widespread within the 
Nyong Complex, coeval with tectonic emplacement of plu-
tonic rocks (Toteu et al. 1994; Lerouge et al. 2006; Owona 
et al. 2020), whereas the aforementioned Archaean to Paleo-
proterozoic metasedimentary and metaigneous rocks have 

Fig. 1   a Geologic map of South-West Cameroon as modified from 
Maurizot et al. (1986) showing the lithologic units of Ntem Complex 
or Congo craton in Cameroon and the studied area (green box); b 

sketch map of Africa showing African Cratons and the position of the 
Ntem Complex in the Congo craton (red box)
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also recorded Neoproterozoic imprints at ca. 600 Ma (Toteu 
et al. 1994; 2006; Chombong et al. 2017; Nzepang Tankwa 
et al. 2021; Owona et al. 2021a), interpreted as the Pan-
African disturbance event.

The metasedimentary and metaplutonic rocks of the 
Nyong Complex have undergone a granulite facies metamor-
phism at 2100–2000 Ma and 2055 ± 5 Ma (SHRIMP U–Pb 
ages on zircons from metasedimentary and metaplutonic 
rocks; Lerouge et al. 2006), respectively, associated with the 
intrusion of charnockitic rocks (Toteu et al. 1994; Lerouge 
et al. 2006). The emplacement of these plutonic rocks within 
the Nyong Group is associated with Eburnean high-grade 
metamorphism which continued probably to 1985 ± 8 Ma 
(Lerouge et al. 2006). Toteu et al. (1994), and Lerouge 
et al. (2006) recorded non-Archean events by Eburnean 
zircon growth and titanite ages. Thus, the Nyong Complex 
recorded Paleoproterozoic and Pan-African reworking of the 
Archean Ntem Complex. Moreover, well-preserved to vari-
ably retrogressed eclogite facies metamorphic rocks dated at 
2093 ± 45 Ma (SHRIMP U–Pb dating on zircon grains from 
eclogites) have been reported in the Nyong Complex (Loose 
and Schenk 2018; Bouyo Houketchang et al. 2019) suggest-
ing that the subduction played during Paleoproterozoic as 
revealed by the SHRIMP zircon U–Pb eclogite facies meta-
morphism age of 2093 ± 45 Ma (Loose and Schenk 2018).

Structurally, the Nyong Complex shows a polyphase tec-
tonic evolution (Ndema Mbongué et al. 2019a). It displays 
flat-lying foliations with N–S to NNE–SSW axial fold linea-
tions and E–W to NW–SE stretching lineations that indicate 
an eastward-directed movement (Maurizot et al. 1986). The 
metasedimentary rocks display a composite, sub-vertical 
foliation (S1/2), marked by alternating ferromagnesian and 
leucocratic layers (Feybesse et al. 1998) and the meta-gran-
itoids contain the S2 foliation. The entire Nyong Complex 
is dissected by NE-striking blastomylonitic shear zones 
(Owona et al. 2011). The relative large variety of igneous 
rocks and their structural and often high-grade metamorphic 
overprint require a clear assessment of their protolith and 
metamorphic ages to solidly tie their origin and reworking to 
the multi-stage orogenic evolution of western Central Africa 
(Loose and Schenk 2018; Bouyo Houketchang et al. 2019).

Geology of Edea area

The Edea area is located in the western part of the Nyong 
Complex in the northern margin of the Congo Craton. Few 
works have been done in the Edea area (Toteu et al. 1994; 
Lerouge et al. 2006; Ndema Mbongué et al. 2014; 2019a; 
2019b; Moussango Ibohn et al. 2022). Lithologically, the 
study area is made up of a diversity of rock types that imply 
a diversity of the rock source. Some of these rocks include 
orthopyroxene garnet gneiss, charnockite, migmatite, 
and metagranodiorite showing features of mylonitization 

(Kouankap Nono et al. 2018), metadiorite, garnet charnock-
itic gneiss, pyroxene gneiss, biotite gneiss, amphibolite, pyri-
bolite, pyrigarnite, charnockitic gneiss, micaschist, garnet-
kyanite gneiss, and Pan-African syenite. Ndema Mbongué 
et al. (2014), Ndema Mbongué (2016), and Ndema Mbongué 
et al. (2019b) classified the rocks of the study area into three 
main units: (i) a unit of meta-igneous rocks, (ii) a metasedi-
mentary rock unit, and (ii) the rocks resulting from the melt. 
The metaigneous rocks were derived from (i) intermediate to 
mafic tholeiitic rocks compatible with the extensive orogenic 
domain and (ii) calc-alkaline protolith which is in accord-
ance with the typical domain of collisional orogeny (Ndema 
Mbongué et al. 2014). The metasedimentary rocks have the 
composition of shale, and a continental environment can be 
envisaged for these metasedimentary rocks. Iron formations 
have been reported in the Edea North Area: Bienkop (Ilouga 
et al. 2017), Kopongo (Mbang Bonda et al. 2017), and Pout 
Njouma (Ndema Mbongué and Aroke 2020); they include of 
BIF, magnetite gneiss, magnetite amphibole gneiss, massive 
magnetite, and magnetite quartzite (itabirite).

The Edea area is affected by a Paleoproterozoic granu-
litic metamorphism and a Pan-African metamorphism of the 
amphibolite facies (Ndema Mbongué 2016). This area expe-
rienced a polyphase deformation resulting to a succession 
of several phases of deformation (Ndema Mbongué et al. 
2019a): (i) an early stage (pre-D1) phase corresponds to the 
relicts of an early schistosity preserved as inclusion trails 
in garnet and pyroxene crystals, immediately followed by 
(ii) two main stages (D1 and D2). D1 evolved in tangential 
movements; it is typically ductile and characterized by a 
regional-scale S1 mylonitic foliation associated with F1 folds 
and a subhorizontal stretching lineation L1. The deformation 
style of the D2 phase is heterogeneous affecting the previous 
D1 fabric by transposition, and evolved in a trans-current 
tectonic regime. The late-D2 deformation phase is under-
lined by brittle structures. Syn-tectonic and pre-tectonic 
granitoids in this area recorded a heterogeneous polyphase 
tectonic deformation influenced by the Sanaga fault (Mous-
sango Ibohn et al. 2022).

Analytical methods

Detailed observations and sampling were essentially car-
ried out by mapping. In this study, 30 thin sections of meta-
igneous and metasedimentary rocks were studied. The 
analyses of Th, U, Pb, Ca, Si, LREE, and Y for calibrations 
of the mineral chemistry were carried out at Chair of Min-
eralogy, University of Erlangen-Nürnberg, on a JEOL JXA 
8200 at 20 kV, 100 nA, and a beam size of 5 μm (Schulz 
et al. 2007a). Based on counting statistics, the errors (1σ) 
are 1.0%, 0.20%, and 1.30% for Pb, Th, and U, respectively. 
The following lines have been chosen: Lα1 lines for La, Y, 
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and Ce; Lβ1 for Pr, Sm, Nd, and Gd; and Kα1 for P, Si, and 
Ca. As standards for REE analyses (Jarosewich and Boatner 
1991; Donovan et al. 2003), orthophosphates of the Smith-
sonian Institution were used. Calibration of PbO was carried 
out on a vanadinite standard, while U was calibrated on an 
appropriate glass standard with 5 wt% UO2. Interference of 
YLγ on the PbMα line was corrected by linear extrapola-
tion after measuring several Pb-free yttrium glass standards 
proposed by Montel et al. (1996). The interference of ThMγ 
on UMβ is corrected using a Th-glass standard. The interfer-
ence of a Gd-line on UMβ needs correction when Gd2O3 in 
monazite is > 5 wt%. These parameters matched the analyti-
cal problems discussed in Jercinovic and Williams (2005) in 
the best way (Schulz et al. 2007a). Other possible sources of 
error, as standardization, matrix effect correction, YLγ-on-
PbMα correction, and instrumental drift were not taken into 
account. Microprobe analyses of selected monazites gotten 
by electron microprobe analysis (EMPA) are given in Sup-
plementary Table S2 to Table S4.

In the study area, monazites are present both in meta-igne-
ous rocks (garnet-charnockitic gneisses, biotite-gneisses) 
samples and in metasedimentary unit (garnet-micaschists). 
Two samples (sample ED4B and sample ED3D) of garnet-
charnockitic gneisses and one sample of metasediments 
(sample M4) of garnet-micaschists were selected for EMPA 
on monazite in terms of major and minor elements. These 
samples were chosen because they are more enriched in 
monazite crystals than other samples. Selected samples of 
monazite textural relationships and internal structures that 
reflect chemical variations are provided in Figs. 3 and 4. 
Monazite mineral chemistry (Supplementary Table S2 to 
Table S4) is described within the context provided by the 
imaging back-scattered electrons (BSE: 20 kV and 100 nA).

Results

Petrography

The lithology of Edea area consists of meta-igneous (pyrox-
ene-gneisses, garnet-charnockitic gneisses and biotite-
gneisses) and metasedimentary (garnet-micaschists) rocks. 
Mineral abbreviation recommendations by the IUGS Sub-
commission on the Systematics of Metamorphic Rocks are 
according to Siivola and Schmid (2007).

Pyroxene‑gneisses

Pyroxene-gneisses (Fig.  2a) are one of the dominant 
rock types and occur as dome and block. They are fine to 
medium-grained and consist of dark-gray colored rocks dis-
playing alternating millimeter to decimeter ferromagnesian 
and quartzo-feldspathic layers. They display granoblastic 

and corona microstructures (Fig.  2b) and composed of 
quartz (20–25%), plagioclase (15%) displaying transforma-
tion in sericite and surrounded by quartz grains recrystalli-
sation; almond-shaped orthopyroxene (20–30%) displaying 
corona microstructure; hornblende (4%); biotite (10–13%); 
and ovoid garnet (6–10%) crystals displaying symplectitic 
association of Hbl + Bt + Qtz + Pl. Accessory minerals are 
rutile (2%).

Garnet‑charnockitic gneisses and biotite‑gneisses

Garnet-charnokitic gneisses (Fig. 2c) are medium-grained 
made up of quartz (20–30%), plagioclase (< 5%) displaying 
Qtz + Bt + Grt ± Opx association, almond-shaped orthopy-
roxene crystals (15–20%) displaying corona microstructure 
composed of Qtz + Pl + Opx ± Bt, biotite (10–15%), and gar-
net porphyroblasts (20–25%) surrounded by Qtz + Pl + Bt-
rich rim and sometimes in atoll (Fig. 2d) consisting of a 
dissolved core with Bt + Qtz + Pl-rich inclusions. Mona-
zite (2%; Fig. 2e) and oxides (rutile, 2%) are accessories 
minerals.

Biotite-gneisses (Fig. 2f) outcrop as dome; they include 
fine grained minerals with alternate quartzo-feldspathic and 
ferromagnesian segregations, and granoblastic microstruc-
tures (Fig. 2g). These rocks consist of quartz (25–30%), 
plagioclase (20–15%) displaying transformation in sericite, 
biotite (35–40%), and epidote (7%). Accessory phases (5%) 
consist of monazite and oxides (rutile).

Garnet‑micaschists

Garnet-micaschists (Fig. 2h) outcrop as flagstones. They are 
fine to medium-grained with alternate quartzo-feldspathic 
and ferromagnesian layers. Granoblastic microstructures 
(Fig. 3a) prevail in this rock type but flaser and mylonitic 
ones are frequently observed. Garnet-micaschists are com-
posed of biotite (10–15%), muscovite (15%), garnet por-
phyroblasts (25–29%), quartz (15–17%), and plagioclase 
(20–22%) surrounded by Bt + Qtz and displaying transfor-
mation in sericite; accessory minerals (2%) are monazite 
and opaque minerals.

Textural characterization

Selected samples of monazite textural relationships and 
internal structures that reflect chemical variations are pro-
vided in Fig. 3 for meta-igneous rock samples and Fig. 4 for 
metasediments.

Monazites from meta‑igneous rocks

In meta-igneous rock samples, the analyzed monazite crys-
tals are of two main types: (i) elongated and oriented crystals 
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(Figs. 3b, c and 3d, e), following the mylonitic foliation or 
schistosity (Sm or S1) showing that these crystals are syn-
Sm and characterizing the last phase of metamorphism 
(Ndema Mbongué et al. 2019a), and (ii) globular or ovoid 
crystals (Fig. 3f, g, h) constitute the earlier formed crystals 
which characterize the first phase of metamorphism. In BSE 
imaging (Fig. 3b–h), the monazite crystals are grey, bigger 
(200–325 µm in sample ED4B and 50–275 µm in sample 

ED3D), and cracked. Some monazite grains display zon-
ing and distinct dark grey and light grey domains (Fig. 3c, 
e, f, g) with a Th-enriched rim on textural older core. This 
observation implies that monazite crystallized from the melt 
liquid. In Fig. 3 b, d, and e, the analyzed monazite grains do 
not display any zonation. Some monazite crystals display a 
radiogenic halo (Fig. 3b, d, h) due to the radioactivity dis-
integration U-Th-Pb.

Fig. 2   Photographs and micro-
photographs of meta-igneous 
and metasedimentary rocks 
from the studied area. a Aspect 
of pyroxene-gneisses outcrop; b 
granoblastic and corona micro-
structures showing almond-
shaped of Px surrounded by 
Qtz + Pl-rich rim pyroxene-
gneisses; c garnet charnockitic 
gneisses field photograph; 
d atoll garnet consisting of 
Qtz + Pl dissolved core in the 
garnet charnockitic gneisses; 
e microphotograph of garnet 
charnockitic gneiss showing 
monazite crystal; f outcrop of 
biotite-gneisses; g granoblas-
tic microstructures showing 
Bt + Pl + Qtz + Ep association 
in biotite-gneisses; h garnet-
micaschists outcrop
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Monazites from metasedimentary rocks

The analyzed monazite grains (Fig. 4) from metasedimentary 
rocks (sample M4) display elongated (91 to 100 µm) and ori-
ented crystals which mimic the S2 schistosity (Fig. 4a to e; 
Ndema Mbongué et al. 2019a) characterizing the last phase 
of metamorphism, and ovoid grains (Fig. 4) which charac-
terize the last phase of metamorphism. The orientation of 

the monazite crystals following the S2 schistosity, euhedral 
and sub-euhedral shape, and the homogeneity of the crystals 
suggests their metamorphic origin (Braun et al. 1998; Gon-
calves et al. 2004; Gagné et al. 2009). Monazite crystals of 
metasediments are grey and cracked, and very well recrystal-
lized. The BSE images of some monazite grains exhibit very 
clear zoning in Th along the monazite rims (Fig. 4a to d); 
these zonations are usually due to the variation in chemical 

Fig. 3   Microphotograph of 
garnet-micaschist and back-
scattered electron (BSE) images 
for analyzed monazite grains of 
meta-igneous rocks. a Grano-
blastic microstructure showing 
garnet porphyroblasts in the 
garnet-micaschists; b, c, d, e 
elongated and oriented crystal 
following the Sm-schistosity; 
f, g, h globular or ovoid shape 
crystals. Figures 3 c, e, f, and g 
display a zonation rim in Th
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compositions. Monazite grains in Fig. 4 e and f do not dis-
play any zonation.

Mineral chemistry

Monazite composition

The composition of the analyzed monazite is presented in 
Supplementary Table S2 and Table S3 for the monazite 
of meta-igneous rocks (samples ED3D and ED4B respec-
tively), and Supplementary Table  S4 for the analyzed 

monazite grains of metasediments (sample M4). A total 
of 124 spots have been analyzed: 78 spots in the monazite 
from meta-igneous rock samples (sample ED3D: 39 spots, 
sample ED4B: 39 spots) and 46 spots in the monazite of 
metasediments (sample M4). The chemical composition of 
monazite is not variable in the samples. The REE-bearing 
phase has been used to characterize the studied monazite 
from huttonitic monazite or cheralite (brabantite); there-
fore, in the plot of monazite + xenotime versus brabantite 
(Fig. 5a), majority of the analyzed spots, irrespective of 
core and rim for the analyzed grains of samples ED4B and 

Fig. 4   Back-scattered elec-
tron (BSE) images of selected 
analyzed monazite crystals of 
metasedimentary rocks. a, b, 
c, d, e Elongated and oriented 
crystal following the S2 schis-
tosity; f globular or ovoid shape 
crystals. Note a zonation rim in 
Th in Figs. 4a–d

a b

c d 

e f
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M4, fall in the monazite field, with 85 to 98 mol% monazite 
content (Fig. 5a). The analyzed spots of sample ED3D fall 
in the field of huttonitic monazite (45 to 75 mol% monazite 
content) and monazite (75 to 98 mol% monazite content; 
Fig. 5a).

Distinct compositional differences, in terms of brabantite 
(or cheralite) content, are observed across the samples. Mon-
azites in samples ED4B and M4 are chemically similar and 
characterized by low cheralite (Cher) or brabantite (Brb) 
content (< 7 mol%) compared to the other spots that con-
tain 8 to 16 mol% cheralite. Monazites from sample ED3D 
can be grouped into two dominant varieties (Fig. 5a) char-
acterized by low cheralite (< 5 mol%) and high monazite 
(75–98 mol%) and relative high cheralite (6–12 mol%) and 
low monazite (65–80 mol%). The xenotime solid solution 

component in the analyzed monazites is low (sample ED3D 
(XXen: 0.3–5.2 mol%), sample ED4B (XXen: 0.3–2.0 mol%), 
and sample M4 (XXen: 1.7–6.2 mol%, av. = 2.53 mol%)) 
and includes Y (< 0.012 a.p.f.u for meta-igneous mona-
zites and < 0.04 a.p.f.u for metasediment monazites), and 
Gd (< 1.39 a.p.f.u in meta-igneous monazites and < 0.025 
a.p.f.u in metasediment monazites, Supplementary Table S2 
to Table S4).

The mineral chemical data of monazite grains were plot-
ted on a monazite–huttonite–brabantite ternary diagram 
(Fig. 5b). In this graph, the compositional of most of the 
analyzed monazite grains is dominantly linked with hutto-
nitic substitution. All the analyzed monazite grains referred 
to monazite-(Ce) and exhibit a predominance of the LREE 
(Fig. 5c, d, e), with Ce (Fig. 5c) usually the dominant REE 

Fig. 5   Composition of mona-
zites in meta-igneous rocks and 
metasediments from Edea area. 
The key should be applied for 
the whole text. a Composition 
of the analyzed monazite in the 
REE-bearing phase classifica-
tion diagram monazite + xeno-
time (%) vs. cheralite (%); b 
plot of monazite composition in 
the huttonite-cheralite-monazite 
ternary system. Mole fraction 
is calculated after Perumal-
samy et al. (2016). c Y-La-
Ce, d LREE-HREE-MREE; 
e LREE-HREE + Y-MREE 
plots of the REE composi-
tions for the analyzed monazite 
grains. LREE = ∑(La-Sm), 
MREE = Eu, HREE = Gd, 
HREE + Y = Gd + Y. The 
composition of monazite is 
normalized to 4 oxygens a.p.f.u. 
Note that the REE composition 
in monazite is note variable

b 

c 
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(Ce = 0.26–0.46 a.p.f.u, Ce2O3 = 18.59 to 31.34%, av.: 
23.19% in sample ED3D; for sample ED4B, Ce = 0.414–0.53 
a.p.f.u, Ce2O3 = 23.35 to 32.6%, av.: 30.26%; and in sam-
ple M4, Ce = 0.38–0.45 a.p.f.u, Ce2O3 = 21.62 to 30.44%, 
av.: 29.23%). La2O3 (8–15.6%, av. = 10.43% in sample 
ED3D: 14.013–18.1%, av. = 17.20% for sample ED4B; 
10.72–16.39%; av. = 15.70% in sample M4) contents are 
higher compared to poor SrO contents in sample ED3D 
(SrO = 0.11–0.15%), in sample ED4B (SrO = 0.113–0.152%) 
and in sample M4 (SrO = 0.13 to 0.18%).

Monazite is characterized by high ThO2 contents that 
vary between 0.84 and 31.36% with an average of 18.79% 
in sample ED3D (Supplementary Table S2), 3.17 to 9.00% 
(av. = 7.70% in sample ED4B; Supplementary Table S3), 
4.28 to 8.32% (av. = 5.48% for sample M4; Supplementary 

Table  S4), and broadly correlating with UO2 which 
ranges from 0.3 to 0.95%, 0.097 to 1.45%, and 0.42 to 
0.75%, respectively, for samples ED3D, ED4B, and M4. 
As a result, Th/U is high: 2.17–40.13 for sample ED3D, 
5.7–36.23 in sample ED4B, and 8.44–12.6 in samples M4. 
This high Th/U is due to elevated Th contents (Supple-
mentary Table S2, Table S3) in comparison with many 
published monazites (Dawood and Abd El-Naby 2007; 
Harley and Nandakumar 2014; Perumalsamy et al. 2016; 
Akame et  al. 2021). Y2O3 is correspondingly low and 
inversely correlated with ThO2 (Supplementary Table S2 
to Table S4). The full range in CeN/YN is mostly in the 
range of 93.44–3845.95 for sample ED3D, 0.18–9069.27 
for sample ED4B, and 3.55–43.07 for sample M4 (Fig. 6a, 
b). LaN/SmN is highly variable, from 2.38 to 8.01 in sample 

Fig. 6   Chemical diagnostics 
of Edea monazite in relation 
to ThO2 contents. a (Ce/Y)N 
vs. ThO2 plot meta-igneous 
monazite grains; b (Ce/Y)N vs. 
ThO2 plot for metasediments 
monazite grains; c) normalized 
(La/Sm)N vs. ThO2 diagram 
of meta-igneous monazites; d 
normalized (La/Sm)N vs. ThO2 
diagram of metasediment mona-
zites; e (La/Nd)N vs. ThO2 plot 
of meta-igneous monazites; f 
(La/Nd)N vs. ThO2 plot of meta-
sediment monazites. Chondrite 
values used for normalization 
of meta-igneous monazite and 
metasediment monazite grains 
are from Anders and Grevesse 
(1989) and from Taylor and 
McLennan (1985), respectively. 
g CaO vs. ThO2 plot for all the 
analyzed monazite
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ED3D, 1.027 to 360.80 in sample ED4B, and less than 2 
in sample M4 (Fig. 6c, 6d), and they yield normal La/Nd 
ratios variable and slightly greater than 4 (Supplementary 
Table S2 to Table S4; Fig. 6e, f).

The P2O5 contents are higher with a total range 
of 18.44–29.45% (av. = 24.44%) and 22.22–30.03% 
(av. = 27.98%) for meta-igneous samples (samples ED3D, 
ED4B, respectively) and 26.07–31.26% (av. = 31.26%) for 
the metasediments compared to UO2, PbO, and Al2O3 that 
show depleted concentrations. CaO (mean = 1.33%, 0.76%, 
1.22%, respectively, in samples ED3D, ED4B, and M4) 
displays low values in all the analyzed samples (Fig. 6g) 
indicating that monazite is not stable with the calc-sili-
cate phases (Finger et al. 1998). Silicon (Si) contents are 
almost uniform across the samples and vary from 0.008 
to 0.64 a.p.f.u in sample ED3D, 0.03 to 0.073 a.p.f.u in 
sample ED4B and 0.011 to 0.035 a.p.f.u in metasediments.

REE, U, Th, and Y distribution in monazite

With respect to formula units, the following order among 
the REE can be established: Ce > La > Nd > Pr > Sm > Eu 
> Gd for meta-igneous monazites and Ce > La > Nd > Pr 
> Sm > Gd > Eu for metasedimentary rocks. In the chon-
drite and PAAS-normalized plots (Fig. 7a, b), the monazite 
grains from the study area show similar enriched patterns 
represented by LREE (LaN/SmN = 1.03–360.80) in meta-
igneous monazites (Fig. 7a) and (LaN/SmN = 1.25–1.95) 
in metasedimentary monazites (Fig. 7b) indicating vari-
able fractionation of the LREE, with only Gd from the 
HREE. These patterns (Fig. 7a, b) show a marked positive 
Eu anomaly for both meta-igneous (Eu/Eu* = 0.56–4.04; 
mean = 2.77) and metasediment (Eu/Eu* = 1.56–2.54) mon-
azites, a positive Nd anomaly for meta-igneous monazites 
(Nd/Nd* = 0.42–8.26; mean = 1.63), and null to slightly 

Fig. 7   Chemical composition of 
Edea monazites. a Chondrite-
normalized REE patterns for 
meta-igneous monazite grains; 
b PAAS -normalized REE 
patterns for metasediment 
monazites grains; c chondrite 
normalized spider diagram for 
meta-igneous monazite grains; 
d PAAS normalized spider 
diagram for metasediment 
monazites; e Th-Y binary plot 
for the analyzed monazite grains 
from Edea area; f plot of ThO2/
UO2 vs. (La/Y)N of monazite 
from meta-igneous rocks; g Plot 
of ThO2/UO2 vs. (La/Y)N of 
monazite from metasediments
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positive Nd anomaly for metasediment monazites (Nd/
Nd* = 1.06–1.31). These features are related to the associ-
ated minerals.

Chondrites (for samples ED3D, ED4B) and PAAS (for 
sample M4) normalized REEs, U, Th, Pb, and Y spider 
diagrams (Fig. 7 c and d) reveal enrichment of LREEs over 
HREEs and distinct peak for Th (Fig. 7c) for the monazite 
from meta-igneous rock samples (samples ED3D, ED4B), 
and distinct peak for U (Fig. 7d for the analyzed monazite 
grains of metasedimentary rock samples irrespective of core 
and rim domain. LREE fractionation decreases systematically 
with increasing ThO2 and depleted in U. The Y and Th con-
centrations are depleted in a scatter-plot (Fig. 7e), indicat-
ing that monazite is depleted in Y relative to Th; monazite 
is also depleted in Y from the core relative to the rim and 
mostly enriched in Th as well. Distinctive samples exhibit 
very weak variation in Y contents that correlates inversely 
with Th (Fig. 7e); this is due to cheralite (brabantite) type 
of substitution in monazite: 2REE3+  = (Th,U)4+  + Ca2+ or 
2REE = Th + Ca (Förster 1998; Nagy and Draganits 1999; 
Linthout 2007).

The normalized (La/Y)N ratio is plotted against ThO2/
UO2 (Fig. 7f, g). On these diagrams, monazite from meta-
igneous rock samples cluster around the chondrite values of 
LaN/YN ranging from o to 5000, with variable ThO2/UO2 
ratios (0–40). The metasediment monazite samples define 
a wide variability with LaN/YN ratios varying from 0 to 50 
and ThO2/UO2 ratios from 0 to 8. However, in all the three 
samples, Y concentrations and HREE contents are lower 
in the monazite grains. Also, the plots (Fig. 7f, g) show 
that monazite grains are more HREE-depleted relative to 
chondrite for samples ED4B, ED3D (Fig. 7c) and relative 
to PAAS for sample M4 (Fig. 7d), and monazites from both 

rocks unit exhibit elevated (La/Y)N ratio (Supplementary 
Table S2, Table S2S2).

Chemical variation in the composition of monazite

In back scattered electron (BSE) images, the analyzed mona-
zites are characterized by the variation in gray shades that 
reveal either concentric type of patchy type zoning pattern, 
with high Th, Y, and low Ce zones occurring as isolated 
patches within low Th, Y, and high Ce. In the zoning-type 
(Fig. 3b, c) observed in sample ED4B, dark gray shaded 
core domain is mantled by light gray shaded rim domain. 
The dark gray core domains have ThO2 in the range of 
16.62–19.22% in sample ED3D, 7.29 to 8.42% in sample 
ED4B, and 9.18–11.28% in sample M4. UO2 clusters in 
the range of 0.52–0.66% in sample ED3D, 0.23 to 1.46% in 
sample ED4B, and 0.41–0.55% in sample M4. The range in 
Th/U ratio is 29.88–33.72 for sample ED3D, 5.92–34.60 in 
sample ED4B, and 10.40–11.53 in sample M4. CeN/YN is 
highly variable in the core and yields 551.70–979.72 in sam-
ple ED3D, 0.18 to 2549.01 in sample ED4B, and 3.55–27.16 
in sample M4 (Fig. 8a, b). LaN/SmN displays constant val-
ues in the core (6.30–7.23 in sample ED3D and 1.40–1.56 
in sample M4; except in sample ED4B that it varies from 
1.03 to 360.80, with spot 183-C showing the highest value 
(360.80; Fig. 8c, d), with a mean of huttonite/brabantite ratio 
near 4.15, 1.78, and 0.38 in samples ED3D, ED4B, and M4, 
respectively. Dark gray core and light gray rim have a flat 
LREE pattern irrespective of ThO2 (Fig. 8a, c), whereas 
ED4B-cores and ED4B-rim (Fig. 8a) with the lowest ThO2 
are enriched in Ce relative to Y. This may reflect their earlier 
crystallization from LREE-enriched melt.

Fig. 8   Core to rim monazite 
chemical diagnostics in relation 
to ThO2 contents. a, b CeN/YN 
vs. ThO2 plot for the textural 
compositional variation of mon-
azite from meta-igneous rock 
(ED3D and ED4B) and mona-
zite from metasediments (M4), 
respectively. ED4B-core and 
ED4B-rim conform to a trend to 
higher CeN/YN with increasing 
ThO2. c, d Plots of monazite 
(LaN/Sm)N vs. ThO2 for the 
textural compositional variation 
of monazite from meta-igneous 
rock (ED3D and ED4B) and 
monazite from metasediments 
(M4), respectively

a b 

c d 
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In patchy zoning, observed in samples ED4B (Fig. 3f), 
ED3D (Fig. 3g) and M4 (Fig. 4e, c), light gray patches of 
different shapes are hosted in dark gray matrix that com-
prises the dominant variant. Light gray BSE rim domains 
have high ThO2 (24.80% for sample ED3D; 7.45–9.00% in 
sample ED4B and less than 1.82% in sample M4), CeN/YN 
greater than 680 in sample ED3D and strongly variable in 
sample ED4B (134.06–4549.90, and variable from 19.45 to 
43.07 for sample M4 (Fig. 8a, b). Y2O3 is less than 0.383% 
for all the core. UO2 shows low contents in sample ED3D 
(0.80%) and in sample M4 (0.42–0.68%); it is very variable 
in sample ED4B (0.23–1451%), leading to elevated Th/U 
yielding 31.63, 5.70–35.74, and 10.80–12.60, respectively, 
for samples (ED3D, ED4B, and M4). These high-Th rims 
are relatively depleted in Y and HREE compared with the 
lower ThO2 of the core domain. LaN/SmN is consistently 
low (6.38, 9.64–14.04, 1.43–1.82, respectively, in samples 
ED3D, ED4B, and M4 Fig. 8c, d), and the average huttonite/
brabantite ratio is elevated in sample ED3D (27.38) and near 
2 in sample ED4B and 0.48 for sample M4.

Discussion

Origin of monazite and metamorphic grade 
assessment

Monazites in the Edea area have been recorded in meta-igne-
ous and metasedimentary rocks. These rocks contain garnet, 
amphibole, pyroxene, feldspar, biotite as main minerals, and 
monazite as accessory, suggesting that the sources of rare 
earth elements are major and accessory minerals. This result 
is in accordance with the studies by Kiesl et al. (1983), Bea 
(2015), and Ndema Mbongué et al. (2019b) indicating that 
the sources of rare earth elements and phosphorus in meta-
morphic rocks are major minerals or former accessory REE-
minerals of the original rock, although migration of rare 
earth elements may also occur (Sawka et al. 1986).

Most of the studied monazites are generally elongated with 
the grain size varying from 50 to 325 µm for meta-igneous 
monazite grains and 91 to 100 µm for metasediment mona-
zites. They display cracks which attest for the fluid-rock inter-
actions (Braun et al. 1998). The internal structure that reflect 
chemical variations of the analyzed monazite is characterized 
by sharp and curve boundaries, suggesting a complex his-
tory with multiple episodes of dissolution and reprecipitation 
(Braun and Bröcker 2004; Ndema Mbongué 2016).

In the Si/Ce–Ca/Ce–Y/LREE ternary diagram (Wu et al. 
2019), the majority of analyzed monazites plot in the field 
of metamorphic monazite (Fig. 9a), irrespective of core 
and rim domains, excepted some few grains from meta-
igneous rocks (sample ED3D) and metasediments (sample 
M4) which fall within the field of igneous and metamorphic 

monazite. In addition, most of the analyzed monazites dis-
play low Th contents (Th = 0.008–0.301 a.p.f.u in sam-
ple ED3D; Th = 0.031–0.085 a.p.f.u for sample ED4B, 
Th = 0.041 0.072 a.p.f.u in sample M4) and low average Th/
Ce ratios (Th/Ce = 0.526 in sample ED3D; Th/Ce = 0.158 
for sample ED4B, Th/Ce = 0.118 in sample M4), and they 
plot into the field of igneous and metamorphic monazite in 
the Th/Ce versus ThO2 plot (Fig. 9b), except some spots of 
samples ED3D that plot near to the field of hydrothermal or 
carbonatite monazite (Fig. 9b). Therefore, we suggest that 
the studied monazites are metamorphic monazites. Similar 
results were obtained for the monazite grains from Sang-
melima area within the Congo Craton in Cameroon (Akame 
et al. 2021) and for the Diamantina monazite from Brazil 
(Didier et al. 2017; Gonçalves et al. 2018; Wu et al. 2019).

Due to their chemical constituents and their size 
(200–325 µm in sample ED4B, 50–275 µm in sample ED3D 
and 91 to 100 µm for sample M4), they characterize mona-
zites from the high-grade metamorphic rocks (Schultz 2021) 
because monazites of high-grade metamorphic rocks are 
big (100 µm) compared to monazites in granites yielding 
between 20 and 50 µm (Franz et al. 1996; Montel et al. 1996; 
Malz 2001). With the increasing of metamorphic grade, the 
monazite grains tend to become bigger and more regular. 
La2O3 and Sm2O3 contents decrease, whilst Y2O3 concen-
trations increase with the increasing of metamorphic grade 
(Franz et al. 1996). Also, the HREE concentrations and the 
Y contents in monazite increase strongly with increasing 
metamorphic grade (Schultz 2021). The analyzed monazite 
grains have low XYPO4 (≤ 0.02 mol; Supplementary Table S2 
to Table S4; Fig. 9c) that fall below the limits of the garnet 
isograds as defined by Pyle et al. (2001) as XYPO4 in mona-
zite increases slightly with metamorphic grade. This result 
is different to one obtained by Akame et al. (2021).

The overall chemical composition of monazite from the 
Nyong Complex indicates higher Ce2O3 than other LREE, 
suggesting their classification as monazite-(Ce). They also 
display LREE-enrichment (e.g., La2O3, Ce2O3, Nd2O3) 
compared to HREE (e.g., Gd2O3) confirming that monazite 
crystal structure prefers to accommodate LREE than HREE 
since the concentration of HREE in monazite is < 0.02 per 
formula per 4 oxygens. Chondrite and PAAS-normalized 
REE patterns of the studied monazites show a marked posi-
tive Eu anomaly for both meta-igneous and metasediment 
monazites, a positive Nd anomaly for meta-igneous mona-
zites (Nd/Nd* = 1.63) and null to slightly positive Nd anom-
aly for metasediment monazites (Nd/Nd* = 1.06–1.31). No 
Nd anomaly in REE data of pegmatites and granites are also 
reported by Förster (1998), Townsend et al. (2000), and Bro-
ska et al. (2005). The positive Eu in the analyzed monazites 
suggests plagioclase fractionation.

All monazite grains are characterized by high ThO2 con-
tents (av. = 8% for sample ED4B; 18% in sample ED3D, and 
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5.5% in sample M4) and lower values of UO2 (0.09–1.45%, 
0.17–3%, and 0.42–0.7%, respectively) meaning that they 
refer to Th-rich monazites (Coates 1935; Dawood and Abd 
El-Naby 2007; Jaroslav 2010; Schultz 2021). Th-rich mon-
azites are also reported from metamorphic rocks (Biljana 
et al. 2014) from low-T hydrothermal and metasomatic envi-
ronments where they formed from the breakdown of primary 
REE-bearing phases (Poitrasson et al. 1996; 2000) and from 
placer deposits (Rupasinghe et al. 1983). Therefore, the stud-
ied monazite should be termed as Th-rich monazites-(Ce) 
because the average total content of ThO2 in monazite is 
elevated in all the rock samples.

The high contents of ThO2 can be correlated with the 
leucocratic minerals suggesting according to Gagné et al. 
(2009) that monazites have crystallized during the melt. La/
Sm ratio is negatively weakly correlated with ThO2 across 
core and rim in sample ED3D (Fig. 9d). La/Sm and ThO2 
content do not show any variation between core and rim in 
sample ED4B and sample M4. This can attest after Bhadra 
(2016) to armoring of the monazite grains of samples ED4B, 
ED3D, and M4 within the thick cordierite moat. Clustering 
of core composition of monazite from the textural domains 

(Fig. 9d) suggests common heritage while lower La/Sm and 
highest ThO2 can be related to late-phase melt crystallization 
processes (Bhadra 2016).

The average contents of P2O5 are not very different 
between the rock types; they consist of 28% and 24.36% 
in meta-igneous rocks (samples ED4B and ED3D respec-
tively), and 30.25% for metasedimentary rock units (sample 
M4) with very low values of SiO2 (0.78–1.80%, 0.21–9.08%, 
and 0.28–0.93%, respectively, in samples ED4B, ED3D, and 
M4. This indicates that a small quantity of Si occupies the 
tetrahedral site in the monazite structure. According to Bil-
jana et al. (2014), the phosphorous necessary for monazite 
formation is supplied by a fluid phase. As shown by Krenn 
and Finger (2007), phosphorous can be mobile in low-T met-
amorphic fluids, which facilitates the in situ replacement of 
allanite by monazite.

The studied monazite has also integrated calcium because 
the compositions of the natural monazites vary in LREE, Th, 
Y, Ca, and Si (Franz et al. 1996). The decrease of Ca, HREE, 
Si, U, and Y and the increase of LREE indicate that chemi-
cal variation (core to rim variation) in the analyzed mona-
zite grains is controlled by huttonite coupled-substitutions 

Fig. 9   Discrimination dia-
gram of monazites. a Ternary 
diagram Si/Ce–Ca/Ce–Y/LREE 
showing the distribution of met-
amorphic monazites from Edea 
in the classification scheme of 
Wu et al. (2019); b monazite 
compositions plotted on Th vs. 
Th/Ce discrimination diagram. 
Igneous and metamorphic, 
hydrothermal and carbonatite 
monazite fields following clas-
sification scheme of Wu et al. 
(2019). c Monazite composi-
tions in mole fractions of XGdPO4 
and XYPO4 calculated according 
to Pyle et al. (2001). XYPO4 in 
monazite increases with meta-
morphic grade. d La/Sm-ThO2 
variation diagram in the studied 
monazite grains. e Composition 
of monazite in 4(U + Th + Si) 
vs. 4(REE + Y + P) diagram 
normalized to 4 oxygens 
a.p.f.u, with ideal cheralite 
Ca(Th,U)REE–2 and (Ca, Th,U)
Si(REE-1P-1) substitution vec-
tors; f variation of Si + Y + REE 
versus Ca + P. Note a nega-
tive correlation between 
Si + Y + REE and Ca + P for all 
the samples

a 

b 

c d

f e
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(LREE3+  + P5+  = (Th,U)4+  + Si4+; Van Emden et  al. 
1997; Zhu and O’Nions 1999; Harlov et  al. 2007) and 
direct trivalent-ion substitution, rather than the cheralite 
substitution (2LREE3+  = (Th,U)4+  + Ca2+. Ca and Si are 
incorporated via these two reactions to balance the charge 
differences of the REE and actinides. Calcium occurs in 
the A site of the crystal structure of monazite, substitut-
ing for the slightly larger Ce ion, often concomitantly with 
the replacement of Ce by Th. Edea monazites are highly 
variable in U + Th + Si and REE chemistry, plotted in the 
4(U + Th + Si) vs. 4(REE + Y + P) diagram (Fig. 9e); mon-
azite compositions from all analyzed samples lie between 
the monazite–cheralite and monazite–huttonite trend lines 
irrespective of core and rim domains, indicating that the 
majority of Th + U can be accommodated by the two sub-
stitution mechanisms (Dawood and Abd El-Naby 2007). 
Therefore, we suggest that the Edea monazites are linked 
by dominantly huttonitic (LREE3+  + P5+  = (Th,U)4+  + Si4) 
and cheralite (2LREE3+  = (Th,U)4+  + Ca2+ substitu-
tions (Fig. 9e). These substitutions are very common in 
the studied monazite (Dawood and Abd El-Naby 2007; 
Harley and Nandakumar 2014; Perumalsamy et al. 2016; 
Bhadra 2016; Akame et  al. 2021). The Edea monazite 
(75 to 95 mol% monazite; Fig. 5a), with dominantly hut-
tonitic and cheralite substitutions (Fig. 5b) and variation 
in LREEs, MREEs (Eu), Th, U, and Pb (Fig. 7c, d) across 
the samples, suggests either a restricted source or identi-
cal thermal-metamorphic processes in the source regions of 
monazite in metamorphic rocks (Perumalsamy et al. 2016). 
The compositions of core and rim domains of monazites in 
the Ca + P vs. Si + Y + REE graph (Fig. 9f) which relates 
association of monazite and apatite through fluid substitution 
(Ca2+  + P5+  + fluid = Si4+  + (Y + REE)3+  + fluid) indicate 
negative correlation for all samples. This suggests coeval 
growth of monazite and apatite (Bhadra 2016).

Monazite grains are characterized by low Y2O3 contents 
(≤ 0.55% for meta-igneous monazites, ≤ 1.86% for metasedi-
ments samples) and low Y contents (≤ 0.012 a.p.f.u in meta-
igneous monazites and ≤ 0.037 a.p.f.u in metasediment mon-
azites) which is in accordance with low-Y monazite (Nagy 
and Draganits 1999; Schulz et al. 2007b; Holder et al. 2015).

Implications of the monazite chemistry 
on the metamorphic evolution of the Nyong 
Complex

Monazite microstructures of the Edea area are accompa-
nied by the variable monazite mineral-chemical composi-
tions; if this is combined with the in situ Th-U–Pb dating, 
it will provide a great potential to understand the monazite 
genesis and gives irreplaceable petrochronological con-
straints for the reconstruction of Nyong Complex. Textural 
relation of monazite grains and mineralogical observations 

indicate that the studied rocks retain evidence of their poly-
metamorphic history. The metamorphic evolution indicates 
that meta-igneous and metasediments of the study area are 
overprinted by two respective phases of metamorphism: in 
the meta-igneous rocks the first phase of metamorphism is 
underlined by globular or ovoid monazite grains and the sec-
ond phase is characterized by elongated (50 to 325 µm) and 
oriented monazite crystals following the mylonitic foliation 
or schistosity (Sm or S1). The first phase of metamorphism 
in metasedimentary rocks is marked by ovoid grains of 
monazite while the last phase is characterized by elongated 
(91 to 100 µm) and oriented monazites which mimic the S2 
schistosity. Both meta-igneous and metasediment monazites 
characterize monazites from the high grade metamorphic 
rocks confirming the widespread high-grade metamorphism 
in the Nyong Complex (Toteu et al. 1994; Lerouge et al. 
2006; Owona et al. 2020).

The available literature indicates that the meta-igneous 
and metasedimentary rocks from the Nyong Group have suf-
fered high-grade metamorphic at 2.05 Ga during Paleoprote-
rozoic/Trans-Amazonian orogeny suggesting the existence of 
a major event with magmatism and charnockitization (Owona 
et al. 2021a; 2022; Soh Tamehe et al. 2022; Mvodo et al. 
2022). The P–T conditions of the high-grade metamorphic 
of the Nyong Complex is estimated at ca 850 °C and 25 kb, 
while the retrograde conditions yielded ca 750 °C and 12 kb, 
suggesting a strong pressure drop of about 13 kb at nearly 
constant temperature during retrograde history and conse-
quently to a rapid uplift (Bouyo Houketchang et al. 2019).

Conclusion

The main findings of this study with the implication of the 
monazite chemistry on the metamorphic evolution of the 
Nyong Group are listed below:

•	 The Edea monazite grains referred to Th-rich monazites-
(Ce) and exhibit a predominance of the LREE with Ce 
usually the dominant REE; they display zoning and dis-
tinct dark grey and light grey domains with a Th- enriched 
rim on textural older core. The compositions of core and 
rim domains of monazites reveal strong negative correla-
tion suggesting coeval growth of monazite and apatite.

•	 Monazite compositions lie between the monazite–
cheralite and monazite–huttonite trend lines suggesting 
they are linked by dominantly huttonitic and cheralite 
substitutions.

•	 The metamorphic evolution indicates that meta-igneous 
and metasediments of the Nyong Group are overprinted 
by two respective high grade phases of metamorphism: in 
the meta-igneous rocks, the first phase of metamorphism 
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is underlined by globular or ovoid monazite grains, and 
the second phase is characterized by elongated and ori-
ented monazite crystals following the mylonitic foliation 
or schistosity (Sm or S1). The first phase of metamorphism 
in metasediment is also marked by ovoid grains of mona-
zite, while the last phase is characterized by elongated and 
oriented monazites which mimic the S2 schistosity.
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