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Abstract
The scour estimation downstream of the dam’s hydraulic structures is a serious issue and has long been considered an impor-
tant topic by hydraulic engineers. The literature shows that the computational methods are good alternatives for predicting 
the scour in hydraulic structures in which the conventional methods demonstrate shortcomings. In the present paper, various 
machine learning techniques have been used for the first time to predict the scour below the two symmetric crossing jets. 
Four types of artificial neural networks (ANNs), including feedforward back-propagation (FFBP), cascade-forward back-
propagation (CFBP), radial basis function (RBF), generalized regression neural network (GRNN) along with the adaptive 
neuro-fuzzy inference system (ANFIS), and support vector regression (SVR) were employed and evaluated. Two important 
scour hole characteristics, namely the maximum scour hole depth and its location relative to the scour hole origin, were 
predicted at three crossing angles. The soft computing models were also compared with the traditional empirical methods. 
The results indicated that the applied computing techniques perform satisfactorily and improve the results remarkably. They 
can estimate the scour more precisely than the regression models and can be considered robust alternative tools. A detailed 
sensitivity analysis was also performed on the FFBP that shows the crossing angle has a powerful effect on the predictions. 
The SVR improved the results to 47% and 31.71% for the scour hole depth and its location, respectively, in terms of the 
correlation coefficient.

Keywords  Machine learning methods · Regression equations · Scour below crossing jets

Introduction

The scour downstream of hydraulic structures such as the 
spillways and orifices can be catastrophic, endangering the 
dam’s stability and the side structures. This phenomenon has 
been an important research subject in hydraulic engineering. 
Most of the research performed in the past is on the single jet 
scour (Rajaratnam and Mazurek 2002; Pagliara et al. 2008; 
Kartal and Emiroglu 2022; Palermo et al. 2021; Chen et al. 
2022; Sá Machado et al. 2019; Bombardelli et al. 2018), who 

studied the scour and presented formulae for estimating the 
scour hole depth and dimensions.

Few studies have been carried out on the crossing jets 
scour. The crossing jets are formed when the middle ori-
fices of a dam or their outlet systems are open. The crossing 
jets are designed in the dams as a solution for dissipating 
the energy of the erosive jet; this process is accomplished 
through colliding the jets in the air. However, the scour at 
the plunge pools can still occur.

Pagliara et al. (2011) conducted an experimental study 
on the scour caused by two symmetric crossing jets. They 
presented specific equations for estimating the scour hole 
dimensions below the crossing jets. Due to the complex-
ity of the phenomenon, their formulae were proposed sepa-
rately at three different crossing angles of αc=30°, 75°, and 
120°. Pagliara and Palermo (2013) studied the scour caused 
by the collision of two symmetrical jets in aerated mode, 
and it was concluded that the air profoundly changes the 
scour morphology. Pagliara and Palermo (2017) analyzed 
the impact of vertical non-colliding jets at multiple angles 
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where the virtual colliding point was considered beneath 
the bed. They provided relationships to predict the main 
parameters of the scour, including the maximum scour 
depth. Naini et al. (2022) conducted laboratory research on 
the scour due to the symmetric crossing jets with a bed mate-
rial of d50=1.4mm. Because of the high complexity of the 
phenomenon, the proposed equations, which included the 
crossing angle as an independent variable, failed to predict 
the scour hole parameters accurately at arbitrary crossing 
angles. However, the formulae presented for each separate 
angle yielded satisfactory results. The other researchers in 
the literature who worked on multiple jets can be mentioned 
as Latifi et al. (2018), Uyumaz (1988), and Mehraein et al. 
(2012), which all denoted that using multiple jets reduces 
the scour compared with the single jet.

In the case of the crossing jets, estimating the scour could 
be more difficult due to the interaction of the flow with air 
and sediments, which makes it a highly complex phenom-
enon. Therefore, the conventional approaches like the tradi-
tional regression could not estimate the scour characteristics 
accurately owing to the associated limitations.

The application of machine learning methods such as the 
adaptive neuro-fuzzy inference system, ANNs, and support 
vector regression has been confirmed to be beneficial in 
hydraulic and water resources engineering problems such 
as erosion and scour prediction, mainly due to their learning 
capabilities.

Examples of artificial intelligence (AI) methods for esti-
mating the scour can be seen in the literature. Azmathullah 
et al. (2005) and Naini (2011) employed the ANNs for esti-
mating the scour hole dimensions below ski-jump spillways. 
They concluded that the ANNs are superior to the traditional 
regression equations. Mohammadpour (2017) estimated the 
local scour around piers using M5-Tree, gene expression 
programming (GEP), and ANNs; he concluded that the 
radial basis function (RBF) network yields better results 
than the other methods, including conventional equations.

Riahi-Madvar et al. (2019) applied five models, including 
the ANFIS, RBF, multilayer perceptron (MLP), and regres-
sion for predicting the scour geometry of grade-control 
structure; they observed that ANFIS and MLP present higher 
accuracy. Seyedian et al. (2022) developed soft computing 
models such as extreme learning machine (ELM), GEP, and 
SVM for the scour depth of grade-control structures; it was 
confirmed that GEP is more robust than the other methods.

Bonakdari et al. (2020) predicted the abutment scour 
depth using ELM. They used eleven input combinations to 
investigate the effect of each parameter on the scour depth. 
It was observed that a four-input combination yields a better 
accuracy, and the ELM outperforms the regression equa-
tions. Azimi et al. (2019) applied ANFIS with singular 
value decomposition (SVD) and genetic algorithm (GA) 
to predict the abutment scour depth; it was revealed that 

the ANFIS-GA/SVD has higher accuracy than the other 
approaches.

Shahbazbeygi et al. (2021) simulated the scour around 
cross-vane structure with generalized structures group 
method of data handling (GSGMDH); it was found that the 
GSGMDH scheme is more flexible and superior to the group 
method of data handling.

Adib et al. (2020) applied ANNs, ANFIS, SVM, and GA 
to predict the scour depth in group piers; it was revealed 
that the MLP-GA and RBF-GA are the best models in terms 
of the error criteria. Ebtehaj et al. (2018) employed ELM, 
SVM, and ANN techniques to predict the scour depth at pile 
groups; they reported on the superiority of the ELM over the 
other methods. The most effective parameter on scour was 
found using multiple input combinations. Also, an equation 
based on the ELM was proposed for practical uses.

Parsaie et al. (2019) used the SVM, ANN, and ANFIS for 
estimating the scour of a pipeline in the river, and the SVM 
results were more accurate. Hassanzadeh et al. (2019) used 
an optimized ANFIS with multiple optimization methods 
to estimate the scour depth in the bridge pier; the results 
showed that the new methods are highly efficient in the 
predictions. Kaveh et al. (2021) presented a hybrid method 
combining the grasshopper optimization algorithm with the 
feedforward neural network for predicting the scour depth 
pattern around bridge piers; the results indicated that the 
proposed model has higher accuracy and improved the 
results. Sharafati et al. (2020a) predicted the scour depth 
downstream of weirs by integrating the ANFIS with various 
optimization algorithms; the results indicated that hybrid-
izing the ANFIS with invasive weed optimization offers the 
highest accuracy. Rashki Ghaleh Nou et al. (2019) simulated 
the scour depth around the submerged weirs using the self-
adaptive extreme learning machine (SAELM); the results 
were compared with the ANN and SVM; SAELM outper-
formed the other models. Sammen et al. (2020) predicted 
the scour depth below the ski-jump spillway by combining 
the ANN with three optimization algorithms; the results 
showed that the ANN hybridized with the Harris Hawks 
optimization is more efficient than the other methods. Sun 
et al. (2021) used a hybrid method combining the fruit fly 
optimization algorithm (FOA) with the SVR for estimat-
ing the scour features below ski-jump spillways. The results 
indicated that the FOA-SVR method remarkably improved 
the results and outperformed the regression models.

Other recent studies that contribute to the AI technique 
application in the hydraulic and water resources fields can 
be mentioned briefly (Band et al. 2021; Yaseen et al. 2019; 
Hu et al. 2021; Hoang et al. 2018; Samet et al. 2019; Shara-
fati et al. 2021; Hassanvand et al. 2018; Das et al. 2019; 
Yaseen 2020; Malik et al. 2020; Salih et al. 2019; Sharafati 
et al. 2020b; Campos and Pedrollo 2021; Nivesh et al. 2022; 
Tao et al. 2021).
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To the authors’ knowledge and by surveying the litera-
ture, predicting the scour features below the symmetric 
crossing jets with AI approaches has not been investigated 
yet. Therefore, the main objective of this research is to 
apply and evaluate the various soft computing models as an 
alternative approach to predict the principal features of the 
scour below the symmetric crossing jets, i.e., the maximum 
scour hole depth and its location relative to the origin. Four 
types of neural network schemes (FFBP, CFBP, RBF, and 
GRNN), with the ANFIS and SVR, were utilized. Before the 
modeling and comparative analysis of the various methods, 
a detailed sensitivity analysis was accomplished with the 
feedforward back-propagation (FFBP) network to assess the 
impact of each parameter and to find the most effective input 
combination. The non-dimensional and dimensional com-
binations of inputs were employed to identify the superior 
FFBP models. Then, the best non-dimensional input combi-
nation was chosen for the modeling in the other techniques.

The performance of the computing methods is evaluated 
on the training and testing datasets. One of the essential 
aims of this research is to develop superior computational 
models capable of estimating and interpolating the scour 
hole features at various arbitrary crossing angles between 
30°<αc<110°. This strategy has not been considered in the 
previous research by the regression models, mainly due to 
the high complexity of the scour phenomenon and regression 
method limitations. A comparison is made with the regres-
sion formulae obtained from the current research dataset and 
previous research to evaluate the developed models.

The current study shows that by considering the crossing 
angle as an independent parameter in the nonlinear regres-
sion equations, the regression models fail to estimate the 
maximum scour hole depth and its location precisely, unlike 
the AI techniques.

The efficiency of the methods is assessed by the quantita-
tive error criteria and graphical diagrams. For providing the 
required data, an experimental work was conducted, and data 
series were gathered.

Material and methods

Artificial neural networks

ANN was presented by McCulloch and Pitts (1943) as a 
mathematical concept. A neural network is made of nodes 
called neurons which are simple processing units. An arti-
ficial neural network is a mathematical model consisting of 
neurons distributed in one or more layers. The most common 
ANN has three layers: the input layer where data are fed, 
a hidden layer consisting of neurons that receive the out-
puts from the previous layer and produce their outputs to be 
entered into the next layer, and the output layer that makes 

the favorite output. Among the multiple kinds of ANNs, four 
networks, i.e., the FFBP,  CFBP, RBF, and  GRNN, were uti-
lized in the current research that are briefly described below.

Feedforward back‑propagation

A common FFBP has an input, a hidden, and an output layer. 
The weighted inputs from the input layer are received and 
processed by the hidden layer through activation functions of 
neurons. Then the outputs enter the neurons in the next layer 
(output layer). The layers that contain the activation functions 
are the hidden and output layers, respectively. Figure 1 shows 
a typical FFBP network with three inputs and two outputs.

The networks can be trained or calibrated using data, 
and this process modifies the weights between the consecu-
tive layers, which connect the neurons in multiple layers. 
The calibration continues until the output error between the 
estimated and experimental values becomes low and logical 
during the training.

The ANN models were developed via writing codes 
in MATLAB®. For training the FFBP and regulating 
the weights, the Bayesian regularization based on Lev-
enberg-Marquardt optimization was adopted with the 
back-propagation procedure. This algorithm produces 
more generalization in the results (MacKay 1992). For 
obtaining the best FFBP networks, several attempts were 
made through trial and error, where the error between the 
experimental and estimated scour values becomes mini-
mum. Namely, neurons in the hidden layer were added 
gradually, and the response was measured in the output. 
Also, different transfer functions such as the Tan-sigmoid 
and Log-sigmoid were examined for this goal. Finally, 
the optimal networks were selected for the assessments. 
For more information, readers can refer to Haykin (1994) 
and the MATLAB® user guide.

Fig. 1   FFBP structure
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Cascade‑forward back‑propagation

In the cascade-forward back-propagation scheme, the hid-
den and output layers get inputs from their previous layers, 
including the input layer. Like feedforward nets, a cascade-
forward network can learn any input-output relationship. For 
training the CFBP, the back-propagation learning method 
with Bayesian regularization was employed.

Radial basis function

The RBF fits a radial basis function neural network, which 
is a feedforward, supervised learning network with an input 
layer, a hidden layer called the radial basis function layer, 
and a linear output layer. The unique property of the RBF is 
its hidden layer. The inputs of the neurons in this layer are 
different than the FFBP. The radial basis function’s input 
is the difference between weights and inputs multiplied by 
the bias. There are no weights between the input and hid-
den layers. The most conventional radial basis function is a 
Gaussian function as follows:

φi(r) is the activation level of each hidden RBF neuron. 
In a radial basis function, (x − wi) is the distance from the 
center of the cluster. σ is the width of the function. The 
weights (wi) represent the center of the clusters. If a hidden 
neuron receives an input pattern, the distance is calculated. 
An input with zero value would produce an output equal to 
1; i.e., by reducing the distance between the x and wi, the 
output is increased.

The output of the RBF is estimated as the weighted sum 
of the output value:

In which ci is the output for each hidden neuron. The 
training of an RBF is performed in two stages. At first, the 
centers of the units (wi) are determined, which is a necessary 
process. This could be achieved with the k-means clustering 
approach. Then, the second task is determining the weights 
between the hidden (RBF) and output layers. In MATLAB, 
the spread constant value in the radial layer was changed 
for the training process in a trial and error approach to find 
the optimum model. For the current study, the RBF model 
receiving five inputs and producing two outputs (ym/Deq, 
lm/Deq) was developed.

One benefit of the RBF over the FFBP is that it is less 
time-consuming than the back-propagation networks. For 

(1)�i(r) = exp

[
−
‖‖x − wi

‖‖2
2�2

]

(2)d(x) =

H∑
i=1

ci�i(r)

more information, refer to Haykin (1994) and Jang et al. 
(1997).

Generalized regression neural network

The GRNN was first introduced by Specht (1991). A 
GRNN has an architecture similar to the RBF and has a 
radial basis hidden layer and a particular output linear 
layer. The GRNN is slightly different than the RBF in the 
output layer. A GRNN comprises four layers, the input 
layer, pattern layer, summation layer, and output layer. 
Figure 2 shows a typical GRNN with three inputs.

The input layer is defined according to the number of 
inputs. The first layer is connected to the next layer (pat-
tern layer). The pattern layer neurons consist of the tune-
able RBFs. The neurons of this layer process the samples, 
which, the normal distribution is at the center of each 
training data. The next layer is the summation layer. There 
are two types of neurons in the summation layer, S and D. 
The S unit estimates the sum of weighted signals coming 
from the pattern neurons; they are weighted with the cor-
responding output of the training data (yi). The signals 
going into the D unit of the summation are not weighted. 
The output is computed in the output layer as the S unit 
output divided by the D unit output as follows:

di is the distance between the training sample and the 
predicted point. Similar to the RBF, for finding the favorite 
models, the spread value is changed in the training phase 
of the GRNN. A GRNN scheme with five inputs and two 
outputs (ym/Deq, lm/Deq) was built. Further details on the 
GRNN can be found in Specht (1991).

(3)Y(x) =

∑n

i=1
yi exp

�
−d2

i
∕2�2

�
∑n

i=1
exp

�
−d2

i
∕2�2

�

Fig. 2   GRNN structure

1651   Page 4 of 16



Arab J Geosci (2022) 15:1651

1 3

Adaptive neuro‑fuzzy inference system

The ANFIS is a developed technique presented by Jang 
(1993) that can be used for modeling complicated phe-
nomena. The ANFIS as a hybrid model integrates a fuzzy 
system with back-propagation training capability of a neu-
ral network that can update the parameters of membership 
functions in a Sugeno type fuzzy inference system utilizing 
the training dataset. The ANFIS uses fuzzy If-Then rules 
for the simulation. The hybrid training algorithm that is a 
combination of the back-propagation gradient descent and 
least-squares methods is used. As can be seen from Fig. 3, 
ANFIS is a five-layered scheme with a Sugeno inference 
system. The steps below show how the ANFIS functions 
with two fuzzy If-Then rules (Jang et al. 1997):

If x is A1 and y is B1, then

If x is A2 and y is B2, then

In which pi, qi, and ri are adjustable parameters. The 
membership functions are represented as A1, A2 and B1, B2. 
x and y are the inputs. Ol, i is the output of each node in 
every layer.

Layer 1: a function in this layer’s nodes determines the 
membership grade and can be demonstrated as below:

In which μAi(x) is a bell function; ai, bi, and ci are change-
able parameters.

(4)f1 = p1x + q1y + r1

(5)f2 = p2x + q2y + r2

(6)O1,i = �Ai(x) =
1

1 + ||x − ci∕ai
||2bi

Layer 2: each node generates the output by multiplying 
the incoming inputs:

Layer 3: the nodes are constant, and each node produces 
the normalized outcome as below:

Layer 4: every node output is estimated using the for-
mula mentioned below:

Layer 5: a single node that computes the final output as 
below:

The Fuzzy Inference System was developed by subtrac-
tive clustering technique because the rules produced with 
this technique are minimized and developing the models 
with this method is fast. In this technique, the range of influ-
ence has to be determined.

The non-dimensional parameters were employed to pre-
dict the scour hole features. The MATLAB was used for the 
modeling, and two ANFIS models were developed for the 
maximum scour depth and its location. ANFIS structures 
with Gaussian membership functions were produced in a 
trial and error method. Hence, multiple values for the range 
of influence were determined to reach the highest accuracy 
in the training and testing data sets. Details of this technique 
can be found in Jang (1993).

(7)O2,i = wi = �Ai(x)�Bi(y)

(8)O3,i = wi =
wi

w1 + w2

(9)O4,i = wifi = wi

(
pix + qiy + ri

)

(10)O5,i =
�
i

wifi =

∑
i wifi∑
i wi

Fig. 3   ANFIS structure
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Support vector regression

The support vector machine is categorized as a data process-
ing method. The SVM is used for classification and regression. 
When it is used for regression, it is usually called SVR. Nonlin-
ear and complex problems can be modeled by this method with 
a suitable kernel function. And it has been widely utilized in the 
fields of hydraulic and water resources engineering.

It deals with minimizing the structural risk, which acts 
better than the neural network risk minimization.

The goal is detecting a function with a maximum ε devia-
tion from the experimental targets. The function f(x) is as 
follows (Smola and Scholkopf 2004):

In which ω is the weight and b is a coefficient, both calculated 
from the data. (ω, x) is the dot point in Χ. The value of ω has to 
be minimized in terms of the norm (‖ω ‖2 = (ω, x)) to ensure the 
flatness of the function (Vapnik 1995), which is an optimization 
process as below:

For modeling the SVM, the kernel type, such as the radial 
basis function, polynomial, multilayer perceptron, etc., and the 
regularization parameter (C), must be defined. Two SVR models 
were trained and built for the maximum scour depth and its loca-
tion. This study used the RBF and polynomial as the proper ker-
nels for the two SVR models producing the lowest output errors. 
In the present study, the simplex optimization algorithm was 
utilized to gain the optimum hyper-parameters of each kernel-
based function. Accordingly, the RBF parameters were defined 
by γ and σ; the polynomial parameters were defined by γ, r, and 
the polynomial degree. For details on the SVM, refer to Vapnik 
(1995) and Smola and Scholkopf (2004).

Experimental setup and dimensional 
analysis

For building and validating the soft computing models, 
experimental data were used. The experiments were car-
ried out at the hydraulic laboratory of Semnan University 

(11)f (x) = (�, x) + b, � ϵ X , b ϵ ℝ

(12)minimize
1

2
‖� ‖2 Subject to

�
yi −

�
�, xi

�
− b ≤ ��

�, xi
�
+ b − yi ≤ �

in a 16-m-long, 1-m-wide, and 0.8-m-deep rectangular 
channel. The crossing angle of the jets was considered 
three values of αc= 30°, 70°, and 110°, and the vertical 
angle of the crossing jets was constant αv= 45°. A total 
of 108 experiments were carried out. Table 1 shows the 
range and statistics of the parameters.

A gate at the end of the canal was used to adjust the 
tailwater level. A metal base was built to hold the jet 
pipes during the experiments. The colliding angle of the 
jets could be changed by the holder clamps. An elec-
tro pump with a maximum discharge of 0.01 m3/s and 
two circular pipes with an inner diameter of D=0.022 
m were used. The diameter of the equivalent single jet 
(Deq) was chosen according to the criterion defined by 
Pagliara et al. (2011), having a cross-sectional area equal 
to the total cross-sections of the two crossing jets pipes 
calculated as Deq =

√
2D2 and was obtained equivalent to 

Deq=0.0311 m. The water discharge in the two jet pipes 
was equally regulated. The flow discharge in the main 
pipe was measured by an electromagnetic flowmeter. 
Figure 4 shows a view of the colliding jets and the scour.

Several parameters are involved in creating the scour 
below the crossing jets; the relationship can be as follows:

where ϕ is one of the scour hole characteristics, such as the 
maximum scour hole depth (ym) or the location of the maximum 
scour depth relative to the scour hole origin (lm); V is the velocity 
of the water jets equal to V = Q∕

(
�D2

eq
∕4

)
 ; Q is the total dis-

charge in the main pipe; Deq is the equivalent single jet diameter; 
ds is the particle size of the bed material; ρ is the water density; 
ρs is the sediment density; μ is the dynamic viscosity of water; 
g is the acceleration due to gravity; S is the vertical distance 
between the central point of the colliding jets and the water sur-
face; h0 is the tailwater depth; αc is the angle of the crossing jets. 
By employing the Π theorem of Buckingham, the non-dimen-
sional parameters are obtained as follows:

Combining the dimensionless parameters of π1 = ρs/ρ, 
π2 = ds/Deq,  and π3 = V2/gDeq,  the dimensionless 

(13)� = f
(
V , ds,Deq, �, �s,�, g, S, h0, �c

)

(14)
⎡⎢⎢⎣
�1 =

�s

�
,�2 =

ds

Deq

,�3 =
V2

gDeq

,�4 =
�VDeq

�
,

�5 =
h0

Deq

,�6 =
S

Deq

,�7 =
�

Deq

,�8 = �c

⎤⎥⎥⎦

Table 1   Ranges of experimental 
raw data used

Variable Q (m3/s)  h0 (m) S (m) αc (rad) d90 (m) ym (m) lm (m)

Minimum 0.0013 0.03 0.05 0.524 0.0021 0.029 0.12
Maximum 0.00175 0.09 0.1 1.920 0.00315 0.142 0.35
Average 0.00152 0.060345 0.075287 1.221 0.002631 0.0973 0.21671
Standard deviation 0.00019 0.02449 0.02500 0.57002 0.000525 0.02526 0.04833
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parameter V∕
√

gds
((
�s − �

)
∕�

) is obtained. Which is called 
densimetric Froude number and is shown as Fd90. 
According to the above explanations, the following equa-
tion can be presented:

It should be noted that d90/Deq was solely considered 
an independent parameter in the analyses. The rela-
tionship (15) was employed for building dimensionless 
neural networks. Several long-term tests were carried 
out to determine the scour equilibrium stage and it was 
assessed that a 1-h test duration for each experiment 
would suffice.

The dataset was separated into two subsets; the train-
ing set, which contains 80% of the samples, was selected 
randomly for calibrating the AI techniques. The remain-
ing 20% as the testing samples were considered to vali-
date the models.

Nonlinear regression equations

According to the experimental data from the present study and 
Eq. (15) obtained from the previous section, the dimensionless 
nonlinear regression equations were derived based on the train-
ing dataset (80% data), which estimate the maximum depth of 
scour hole and its location relative to the origin. These equations 
are shown in Table 2. As can be seen from Table 2, αc is included 
as an independent variable in Eqs. (16) and (17) to provide 
the estimations at the other arbitrary crossing angles between 
αc = 30° and 110°. The proposed equations from the previous 
study by Pagliara et al. (2011) were also utilized to evaluate and 
validate the current research models. These equations have been 

(15)
�

Deq

= f

[
Fd90,

h0

Deq

,
S

Deq

, �c,
d90

Deq

]

presented for the scour hole depth at three different crossing 
angles separately, which can be seen in Table 2.

It should be noted that Pagliara et al. (2011) equations 
for αc > 30° pertain to the crossing angles of 75° and 120°, 
and due to a slight difference between them and those of the 
current study (70° and 110°), their results were compared 
with the developed schemes. The above relationships were 
validated by employing the same 20% data considered to be 
the testing data set.

Statistical measures

In the current work, four statistical measures were used to 
compare the results and evaluate the AI methods and the 
regression models. The Nash-Sutcliffe efficiency (NSE) 
varies between −∞ and 1. If NSE approaches 1, the model 
is perfect. When NSE is negative, the observed mean value 
is a better prediction than the model. The correlation coef-
ficient (CC), root mean square error (RMSE), and mean 
absolute error (MAE), which are defined by the following 
formulae:
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Fig. 4   A schematic view of the 
a plan, b longitudinal section of 
the scour, and c colliding jets at 
𝛼𝑐 = 30°
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where Pi is the predicted ith parameter, Oi is the observed 
ith parameter, and O is the mean of observed values.

Results and discussion

At the first stage, a sensitivity analysis was performed to 
assess the most influential parameters and define the best 
input combination for the models. For this aim, the most 
commonly used and the most straightforward network, 
namely the FFBP, was utilized. The input parameters 
were fed into the network in dimensional and dimen-
sionless scenarios. At the second stage, the most accurate 
dimensionless FFBP model identified in the sensitivity 
analysis with the best input combination was selected 
and compared with the other corresponding computing 
approaches (CFBP, RBF, GRNN, ANFIS, and SVR), and 
the empirical equations from this research and the previ-
ous study.

Sensitivity analysis

In this section, the sensitivity analysis results are presented 
and discussed in the dimensionless and dimensional cases, 
respectively. The input data were employed in the FFBP 
model in five steps, and the outputs were evaluated in terms 
of the CC, NSE, RMSE, and MAE statistics. The bar graphs 
are also used to facilitate the evaluation.

Non‑dimensional case

As can be seen from Table 3 and Fig. 5, the impact of the 
non-dimensional input variables is assessed by employing 
them in various combinations.

In step 1, utilizing two parameters of Fd90 and h0/Deq led 
to a model with low accuracy. As can be seen from Table 3, 
for the scour hole depth prediction, the CC and NSE val-
ues are lower than 0.5 for both the training and testing sets 
(training: CC=0.4684, NSE=0.2154; and testing: =0.3735, 
NSE=0.1191), and the errors (RMSE, MAE) are higher than 
the other steps. For the location of the maximum scour depth 
(lm/Deq), a similar result can be seen.

As S/Deq is added to the model input in the next step, a 
slight improvement can be seen in the FFBP. For example, 
for the scour depth (ym/Deq), the CC increases from 0.4684 
to 0.5121 (4.4%) in the training phase and 2.7% in the test-
ing phase; the NSE increases from 0.2154 to 0.2448 in the 
training phase and grows from 0.1191 to 0.1419 in the test-
ing phase. Also, the RMSE and MAE decrease in step 2. For 
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the ym/Deq, the MAE reduces from 0.6906 to 0.6886 in the 
testing phase.

In step 3, by eliminating the distance of the crossing 
point from tailwater level (S/Deq) from the input com-
bination and adding the crossing angle (αc) instead, a 
considerable improvement can be seen in the results. 

Namely, the prediction of the scour hole depth (ym/Deq) 
has a growth of 28% and 38% for the CC in the train-
ing and testing datasets. The NSE increases, reaching 
0.6318 and 0.5881 in the training and testing sets. The 
RMSE decreases to 0.4877 and 0.5388 in the training and 
testing phases, respectively. Furthermore, in step 3, the 

Table 3   Quantitative analysis of the dimensionless input combinations on the FFBP

Training Testing

Model (FFBP) Input combination 
(non-dimensional)

Scour parameter CC NSE RMSE MAE CC NSE RMSE MAE

1 Fd90, 
h0

Deq

ym/Deq 0.4684 0.2154 0.7118 0.5775 0.3735 0.1191 0.7879 0.6906
lm/Deq 0.6022 0.3598 1.2831 0.9846 0.3708 0.0226 1.2998 0.9501

2 Fd90, 
h0

Deq

, S

Deq

ym/Deq 0.5121 0.2448 0.6984 0.5583 0.4007 0.1419 0.7777 0.6886

lm/Deq 0.6177 0.3810 1.2617 0.9689 0.3743 0.0041 1.3120 0.9473
3 Fd90, 

h0

Deq

, αc ym/Deq 0.7953 0.6318 0.4877 0.4101 0.7812 0.5881 0.5388 0.4580

lm/Deq 0.8141 0.6622 0.9321 0.6962 0.7937 0.6197 0.8108 0.6589
4 Fd90, 

h0

Deq

, αc, S

Deq

ym/Deq 0.9299 0.8609 0.2997 0.2181 0.8714 0.7409 0.4273 0.3170

lm/Deq 0.8711 0.7588 0.7877 0.5752 0.8603 0.7321 0.6804 0.5679
5 Fd90, 

h0

Deq

, αc, S

Deq

, d90
Deq

ym/Deq 0.9706 0.9413 0.1948 0.1472 0.9790 0.9556 0.1769 0.1385

lm/Deq 0.9401 0.8831 0.5482 0.4170 0.9400 0.8278 0.5456 0.4884

Fig. 5   a–d Sensitivity analysis of the dimensionless parameters on the FFBP
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prediction power for the location of the maximum scour 
depth (lm/Deq) improves to about 20% and 42% for the 
CC, and the NSE value reaches 0.6622 and 0.6197 in the 
training and testing phases, respectively. Also, a reduc-
tion is observed in the errors; the MAE reduces from 
0.9689 to 0.6962 in the training phase and from 0.9473 
to 0.6589 in the testing phase, respectively.

In step 4, the parameter S/Deq is added again to the com-
bination alongside the αc, causing the FFBP to obtain better 

accuracy, which increases the CC above 86%, about 13% 
and 10% improvement for ym/Deq in the training and testing 
phases, respectively. Estimating the parameter lm/Deq is also 
with about 6% and 7% improvement for the CC in the train-
ing and testing phases, respectively. The NSE for ym/Deq and 
lm/Deq approaches 0.8609 and 0.7588 in the training set and 
0.7409 and 0.7321 in the testing set, respectively.

In step 5, entering the sediment diameter as d90/Deq 
ended up with the most accurate dimensionless scenario. 

Table 4   Quantitative analysis of the dimensional input combinations on the FFBP

Training Testing

Model (FFBP) Input combination 
(dimensional)

Scour parameter CC NSE RMSE MAE CC NSE RMSE MAE

1 Q, h0 ym (m) 0.5310 0.2822 0.0212 0.0173 0.4778 0.2249 0.0230 0.0201
lm (m) 0.6311 0.3951 0.0388 0.0296 0.4961 0.1506 0.0377 0.0293

2 Q, h0, S ym (m) 0.5580 0.2976 0.0209 0.0167 0.4809 0.2066 0.0233 0.0208
lm (m) 0.6363 0.3943 0.0388 0.0305 0.5336 0.2317 0.0358 0.0295

3 Q, h0, αc ym (m) 0.8446 0.7096 0.0135 0.0121 0.8609 0.7131 0.0140 0.0125
lm (m) 0.8388 0.7032 0.0272 0.0215 0.9044 0.8078 0.0179 0.0142

4 Q, h0, αc, S ym (m) 0.9719 0.9416 0.0060 0.0048 0.9632 0.9209 0.0073 0.0057
lm (m) 0.9006 0.8107 0.0217 0.0160 0.9646 0.8990 0.0130 0.0097

5 Q, h0, αc, S, d90 ym (m) 0.9729 0.9447 0.0059 0.0047 0.9625 0.9120 0.0077 0.0063
lm (m) 0.9055 0.8156 0.0214 0.0142 0.9681 0.9130 0.0121 0.0102

Fig. 6   a–d Sensitivity analysis of the dimensional parameters on the FFBP
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In the case of the scour hole depth, the CC increases to 
0.9706 and 0.9790 for the training and testing phases, 
respectively, i.e., about 4% and 10.8%. The NSE reaches 
its maximum value (NSE=0.9413 and 0.9556). The value 
of the RMSE and MAE also decreased for both the train-
ing and testing states compared to step 4.

Dimensional case

In the case of the dimensional scenario, the trends are almost 
similar to the dimensionless case. From Table 4 and Fig. 6, 
this can be observed that by adding the input parameters 
one by one, the output error decreases, and better accuracy 
is achieved.

In step 1, using two parameters of Q and h0 yielded the 
weakest model, but compared with the corresponding step 
1 in the dimensionless form, it has given better results. For 
instance, considering the testing dataset, the prediction 
power has improved over its dimensionless one by about 
10% and 12% in the CC for the ym and lm, respectively; the 
NSE also has higher values (0.2822 and 0.2249). In step 
2, the S parameter has had a marginal impact similar to its 
dimensionless form and has not changed the accuracy con-
siderably. By eliminating the S and entering the crossing 
angle (αc) in the combination (step 3), a sudden increase in 
the model accuracy is apparent. Accordingly, the CC for ym 
improves to 29% and 38% in the training and testing phases, 
and for lm increases to 20% and 37% in the training and test-
ing phases, respectively. The NSE value reaches above 0.7 
(e.g., in the testing phase, NSE=0.7131 and 0.8078). The 
errors (RMSE, MAE) also show lower values in the training 
and testing sets. In step 4, the S parameter has a good influ-
ence on the prediction results; the precision level for the CC 
in all the models reaches above 90%; for the testing set, it is 
above 96% in both the ym and lm. The NSE reaches above 0.9 
and 0.8 for the ym and lm, respectively. This combination has 

higher precision than its corresponding dimensionless case, 
in the testing phase for ym (RMSE=0.0073, MAE=0.0057) 
and for lm (RMSE=0.0130, MAE=0.0097). As can be seen, 
the effect of sediment diameter d90 on the model in step 5 is 
marginal, and makes no difference in the results; the CC and 
NSE values are very close to those in step 4.

From the analysis of the various non-dimensional and 
dimensional parameters, it is revealed that the crossing angle 
(αc) has the highest impact on the predictions as far as the 
scour maximum depth and its location are concerned. How-
ever, for accurate and reliable estimation, it would be better 
to use all the independent variables.

Comparison of different soft computing methods

The sensitivity analysis results showed that the FFBP model 
in step 5 with a five-input combination is the most accurate 
scheme in the non-dimensional impact analysis. Therefore, 
this dimensionless model is illustrated as FFBP* and would 
be compared with the other corresponding soft computing 
schemes (CFBP, RBF, GRNN, ANFIS, and SVR) having 
the same input combination. The results are also compared 
with the corresponding regression equations ((16), (17) and 
Pagliara et al. (2011)’s formulae). The properties of each 
computational model can be seen in Table 5. Table 6 shows 
the results in terms of the statistical measures.

Comparing the results for predicting the scour hole 
depth, the superiority of the SVR can be seen in the test-
ing phase. The SVR estimates the scour hole depth (ym/Deq) 
with higher CC =0.9848 and NSE=0.9659 and lower 
errors (RMSE=0.1549, MAE=0.1167), compared with 
the other methods, including the regression ones; it also 
shows a good performance in the training phase with the 
CC=0.998, NSE=0.9960, and RMSE=0.0505. In the case 
of the maximum scour hole location (lm/Deq), the SVR also 
works better than the other schemes in the testing dataset 
with higher NSE (0.8348) and lower errors (RMSE=0.5344, 

Table 5   Parameters of the 
machine learning models

Parameters

Model Architecture transfer function

FFBP 5-6-2 Tansig-linear
CFBP 5-5-2 Tansig-linear
RBF 5-59-2 Spread=0.055
GRNN 5-87-2 Spread=0.55
ANFIS ym/Deq lm/Deq

NO. of mem functions Range of influence NO. of mem functions Range of influence
87 0.5 87 0.5

SVR ym/Deq lm/Deq

γ σ γ r deg
107513.48 25.36 0.0411 0.9694 3
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MAE=0.4201), but it works weakly in the training phase 
(CC=0.9050 and RMSE=0.6849).

The FFBP* also estimates the scour hole depth (ym/Deq) 
with high accuracy with the CC =0.9790, NSE=0.9556, and 
RMSE=0.1769 in the testing phase. In the training phase, 
ym/Deq prediction is with the NSE=0.9413 and RMSE 
=0.1948. Also, this is the case for the lm/Deq parameter in 
the testing phase; for instance, the estimation power for this 
parameter in the FFBP* is satisfactory compared with the 
other schemes (CC=0.94, NSE=0.8278, and RMSE=0.5456).

In the case of the ANFIS, it emerges very powerful in 
the training phase with the CC=0.9999, NSE=0.9999, and 
lowest RMSE and MAE values for both ym/Deq and lm/Deq 
features. It also performs well in the testing dataset with 
CC=0.9779, NSE=0.9481, and MAE=0.1587 for ym/Deq and 
CC=0.9315, NSE=0.8075, and MAE=0.4633 for lm/Deq, 
respectively.

Alternatively, in the case of the CFBP network, it 
shows proper scour estimation in both the calibrating and 
testing phases (CC>0.9); however, it performed relatively 
poorly in the testing phase compared with the models 
mentioned above (SVR, FFBP*, and ANFIS). But it 
yielded better results than the RBF and GRNN with the 
CC= 0.9651, NSE=0.9302, and MAE=0.1886 for ym/Deq, 
and CC=0.9336, MAE=0.5380 for lm/Deq, respectively, 
in the testing dataset. In the training phase, it predicts 
the maximum scour depth and its location with lower 
NSE (0.9052 and 0.8283) and higher errors than the RBF 
scheme.

Considering the RBF scheme, it fails to estimate the 
scour features precisely and performs poorly in the test-
ing phase (CC<0.84, NSE<0.65). It can be seen that the 
RBF predicts ym/Deq in the training phase more accu-
rately (CC=0.9832, NSE=0.9667, and MAE=0.1053) 
than in its testing phase (CC = 0.8305, NSE=0.64, and 
MAE=0.4224), showing a difference of about 15% in 
terms of the CC. Also, this is the case for lm/Deq; it has 
about 18% better performance in the training dataset with 
the CC.

The GRNN also shows this drawback in the testing phase 
(CC<0.67, NSE<0.44); for example, in the case of ym/Deq, 
it has adapted itself well to the training dataset with the 
NSE=0.8716 and MAE=0.2331; but has acted weak in the 
testing phase with the NSE=0.4310 and MAE=0.5299. And 
shows a drop to about 29% for the CC. For lm/Deq predic-
tion, the difference between the training and testing phases 
is about 34% with the CC. The GRNN and regression model 
precision levels for the lm/Deq parameter in the testing phase 
are approximately the same.

It can be said that the RBF and GRNN models represent 
a weak generalization as they cannot estimate the unknown 
scour hole samples in the testing dataset at a satisfactory 
level.

The regression models demonstrate a poor performance 
compared to the machine learning methods, especially the 
FFBP*, SVM, and ANFIS schemes. The CC for ym/Deq and 
lm/Deq in the calibrating (training) phase is 0.6482 and 0.694, 
respectively, with NSE<0.5, with higher errors than the AI 

Table 6   The performance results for different soft computing schemes and regression models

Training Testing

Model (FFBP) Input combination Scour parameter CC NSE RMSE MAE CC NSE RMSE MAE

FFBP* (Fd90, 
h0

Deq

, αc, S

Deq

, d90
Deq

) ym/Deq 0.9706 0.9413 0.1948 0.1472 0.9790 0.9556 0.1769 0.1385
lm/Deq 0.9401 0.8831 0.5482 0.4170 0.9400 0.8278 0.5456 0.4884

CFBP ym/Deq 0.9522 0.9052 0.2475 0.2000 0.9651 0.9302 0.2218 0.1886
lm/Deq 0.9132 0.8283 0.6645 0.4733 0.9336 0.7729 0.6266 0.5380

RBF ym/Deq 0.9832 0.9667 0.1467 0.1053 0.8305 0.6400 0.5037 0.4224
lm/Deq 0.9841 0.9684 0.2850 0.2145 0.7062 0.2116 1.1674 0.9476

GRNN ym/Deq 0.9572 0.8716 0.2879 0.2331 0.6617 0.4310 0.6333 0.5299
lm/Deq 0.9439 0.8529 0.6150 0.4755 0.6036 0.3038 1.0970 0.8418

ANFIS ym/Deq 0.9999 0.9999 1.31e-07 8.06e-08 0.9779 0.9481 0.1912 0.1587
lm/Deq 0.9999 0.9999 2.83e-07 1.92e-07 0.9315 0.8075 0.5769 0.4633

SVR ym/Deq 0.9980 0.9960 0.0505 0.0377 0.9848 0.9659 0.1549 0.1167
lm/Deq 0.9050 0.8176 0.6849 0.4990 0.9231 0.8348 0.5344 0.4201

Regression model
Eqs. (16), (17)

ym/Deq 0.6482 0.4188 0.6121 0.4929 0.5129 0.2540 0.7252 0.6270
lm/Deq 0.6940 0.4818 1.1540 0.8751 0.6060 0.3273 1.0779 0.8628

Pagliara et al. 
(2011) Eq. [(3a)+ 
(3b)+

(3c)]

(Fd90, 
h0

Deq

 , S

Deq

) ym/Deq 0.7615 −0.5787 1.0097 0.7819 0.6939 −0.8440 1.1400 0.8796

lm/Deq – – – – – – – –

1651   Page 12 of 16



Arab J Geosci (2022) 15:1651

1 3

models. In the testing phase, the CC for the maximum scour 
hole depth and its location reaches 0.5129 and 0.606, respec-
tively, with NSE<0.33. These traditional equations show a 
high difference from the SVR in the CC to about 47% for 
ym/Deq and 34% for lm/Deq. It is concluded that the regression 
models fail to estimate the scour hole characteristics precisely 
at the various arbitrary crossing angles. Pagliara et al. (2011) 
formulae also show poor prediction compared with the devel-
oped models of this study, including the regression equation 
(16). While the CC for the scour hole depth reaches 0.7615 
and 0.6939 in the training and testing phases, respectively, 
the NSE values are negative (−0.5787 and −0.8440), and 
their errors are high (e.g., RMSE=1.0097 and 1.1400 in the 

training and testing phases, respectively). For more evalua-
tion of the performance results of the various applied models, 
the scatter plots between the experimental and predicted val-
ues in the testing dataset are also utilized. The scatter plots of 
ym/Deq and lm/Deq parameters are shown in Fig. 7.

As can be seen from Fig. 7, for ym/Deq and lm/Deq, it is 
revealed that the points are closer to the ideal fit line and less 
scattered in the FFBP*, ANFIS, and SVR models showing 
their higher accuracy. As per Fig. 7, these models predict the 
scour hole depth better than its location. By contrast, in the 
other approaches (RBF, GRNN, and regression formulae), the 
points are more scattered than the ideal line, which denotes 
their lower efficiency in the scour features estimation. It is 

Fig. 7   Scatter plots of experimental versus computed values of 𝑦m/𝐷𝑒𝑞 and 𝑙m/𝐷𝑒𝑞 with different techniques
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also apparent that Pagliara et al. (2011) equations overesti-
mate the scour hole depth values (ym/Deq).

The predicting performance of the models in the test-
ing dataset can also be seen in the graphs in Figs. 8 and 
9 for ym/Deq and lm/Deq, respectively. As can be seen from 
Fig. 8, the FFBP*, ANFIS, and SVR are superior to the other 
schemes being closer to the experimental values. However, 
the SVR has acted slightly better. The deficiency of the 
GRNN and regression models is evident, estimating the val-
ues farther than the experimental data.

The results of this research indicate how the applied 
AI methods improve further the scour estimations below 
the crossing jets. One of the advantages of the SVR over 
the other conventional computing techniques is that it is 
less time-consuming, less sensitive, and more practical 
in the engineering fields (Goyal and Ojha 2011).

Conclusions

In the present research, a new approach is presented in 
the form of the ANNs (FFBP, CFBP, RBF, and GRNN), 
ANFIS, and SVR to predict the principal characteristics 

of the scour hole below the symmetric crossing jets. The 
maximum scour depth with its location relative to the origin 
was investigated. Most of the previous studies have been 
carried out on single jets, with a few dealing with cross-
ing jets. The problem with the regression models is that 
they fail to predict the scour features precisely due to the 
complicated phenomenon. Hence, this research addressed 
this issue using soft computing techniques and compared 
the results with the conventional regression equations. The 
results demonstrate that the applied AI methods outperform 
the regression models.

The sensitivity analysis results on the FFBP network 
show that in both scenarios, the crossing angle (αc) is the 
most influential parameter. In the non-dimensional case, 
using an input combination containing all of the input 
parameters (5 inputs) leads to the most accurate model and 
is needed for a satisfying estimation. On the other hand, in 
the dimensional case, it is concluded that using four inputs 
(Q, h0, αc, S) suffices for a good prediction.

It is found that considering the crossing angle as an 
independent parameter in the regression model can-
not provide powerful models capable of predicting the 
scour at multiple arbitrary crossing angles. By contrast, 

Fig. 8   Graph of experimental 
and computed values of maxi-
mum scour depth with machine 
learning and empirical methods

Fig. 9   Graph of experimental 
and computed values of maxi-
mum scour depth location with 
machine learning and empirical 
methods
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the SVR, FFBP*, and ANFIS remarkably improved the 
results and estimated the unknown values of the scour 
hole depth and its location more accurately. The SVR 
was superior to the other schemes in the testing phase. 
By employing the SVR, the difference between its per-
formance with that of the derived regression models 
reached 47% and 31.71% for ym/Deq and lm/Deq param-
eters, respectively, in terms of the CC. Also, their NSE 
reached 0.9659 and 0.8348. It is concluded that the 
developed AI schemes can be successfully employed 
as robust and efficient alternative methods for predict-
ing the scour below two symmetric crossing jets. This 
research was conducted in laboratory conditions, and the 
results may be limited to the experimental scales. How-
ever, the developed models may be helpful for the design 
of plunge pools under similar conditions.
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