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Abstract
In this study, the groundwater contamination degree in the unconfined coastal aquifer Jerba under arid climate (Southeastern 
Tunisia) was investigated, and a new index, groundwater contamination index (GCI), was calculated and combined with the 
geostatistical analysis and the self-organizing maps (SOM). The groundwater samples used in this research were collected 
from 79 groundwater wells during the dry season (August–October 2014). Hydrochemical parameters (Cl−, Br−, Na+, Ca2

+ 
, Mg2+, K+, SO4

2−, NO3
−, NO2

−, HCO3
−, Li+, and F−) and indicator bacteria of fecal contamination (total coliforms, thermo-

tolerant coliforms, and Escherichia coli) were analyzed. The GCI was calculated based on selected indicator parameters notably 
NO3

− and Li+, measured seawater fraction based on chloride balance, and fecal bacteria tracers. Geostatistical modeling was 
used for assessing and mapping groundwater contamination degrees. Ordinary Kriging was adopted for spatial interpolation 
to study the spatial pattern of the groundwater hydrochemical variables over the island using GIS software ArcGIS 10.1. The 
SOM method was adopted to analyze the relationship between ions and identify processes controlling groundwater saliniza-
tion. According to the GCI, most of the unconfined aquifer (76%) comes under the significant pollution zone (high to moderate 
pollution), and the other areas (24%) are defined as areas with low degrees of pollution. The self-organizing maps (SOM) 
indicated that Cl−, Br−, and Na+ emanate mainly from seawater intrusion and Mg2+, Ca2+, and Li+ are mostly derived from 
rock-water interactions. Results show that the new index is robust and gives the best classification of groundwater quality.
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Introduction

In regions under arid and semiarid climate conditions worldwide, 
groundwater is a major source of water supply (Patel et al. 2020; 
Carol et al. 2021; Silva et al. 2021). The identification of key 
processes governing groundwater mineralization is based on geo-
chemical tracers such as nitrogenous elements (Souid et al. 2017; 
Solgi and Jalili 2021; Zhang et al. 2021); conservative elements 

(Cartwright et al. 2006; Alcala and Custodio 2008; McArthur 
et al. 2012; Souid et al. 2018); isotopic tracers: stable isotopes of 
water (Souid et al. 2020; Mahlangu et al. 2020); nitrogen isotopes 
(Kou et al. 2021; He et al. 2022a); isotopes of metal pollutants; 
radioactive tracers: radon, uranium (Milena-Pérez et al. 2020; 
Mathuthua et al. 2020), tritium (Nigro et al. 2017; Mahlangu 
et al. 2020), and carbon (Innocent et al. 2021); and biomarkers of 
fecal contamination: total and thermotolerant coliforms, E. coli, 
and salmonella (Han Tran et al. 2015; Souid et al. 2017).

Obtaining the highest possible compatibility between “ideal” 
and “possible” scenarios is one of the most difficult aspects of 
any environmental management system (Barilari et al. 2020). 
Groundwater quality and risk assessments include a variety of 
quantitative methods, such as mathematical groundwater flow 
modeling and the transportation and the evaluation of pollution 
plume. These strategies will be of limited utility to groundwater 
managers who need to achieve proactive and timely ground-
water protection across large aquifers (Somaratne et al. 2013). 
There are other qualitative procedures for assigning a label 
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based on land use (Zaporozec 2004) as well as intermediate 
methodologies known as index methods, which include aqui-
fer vulnerability assessment tools (e.g., DRASTIC, GALDIT, 
and GOD coupled to geophysical information system), and 
water quality index (Nsabimana et al. 2021). Methodological 
approaches that integrate numerous groundwater quality vari-
ables in a specific index to assess pollution degrees have found 
widespread uses in environmental science and engineering 
(Wagh et al. 2018; Herojeet et al. 2020).

In the Mediterranean regions, salinization is the major 
concern for coastal aquifers because of climate change and 
overexploitation (Nisi et al. 2022). In addition to their relative 
scarcity, Tunisia’s groundwater resources, especially those of 
the shallow aquifers, are often of poor quality. Thus, about 
12% of groundwater resources are characterized by salinity 
lower than 3 g/l. The overexploitation results in the degra-
dation of the groundwater quality with an increase in the 
salinization and contamination risks. Overexploitation also 
leads to the lowering of the piezometric levels. In addition, 
the various forms of pollution that affect the unconfined aqui-
fers make the groundwater sometimes unfit for domestic use 
(Elloumi 2016). Moreover, Tunisian groundwater resources 
have been exploited excessively in recent years, causing the 
depletion of reserves of many aquifers. The volume extracted 
from aquifers is estimated at 480 Mm3/year, or 24% of total 
withdrawals of groundwater, which is hardly sustainable. 
According to the 2004 national inventory, there were 750 
sources of contamination with urban, industrial, and agri-
cultural origins that are likely to seriously affect groundwater 
supplies. The inventory notes more than 40 urban water treat-
ment plants that do not comply with the Tunisian standard of 
discharge into the aquatic environment. The food industry is 
the primary source of pollution, followed by the sectors of 
textile and clothing, rubber, and plastic (Besbes et al. 2014).

Jerba unconfined aquifer is a coastal aquifer under an arid 
climate. It is influenced by several factors: climate conditions, 
anthropic activities, and seawater intrusion. This aquifer was 
decreed as a safeguard area of groundwater resources (Decree 
No. 85–1108 of 29 August 1985-Tunisia). The previous hydro-
geological studies carried out on the shallow aquifer of Jerba 
Island focus on the geochemical processes of groundwater 
salinization based on geochemical and statistical modeling and 
the assessment of groundwater piezometry (Kharroubi et al. 
2012; Telahigue et al. 2018; Souid et al. 2017, Souid et al. 2020). 
Such studies demonstrate the deterioration of the groundwa-
ter geochemical quality. The lack of a sustainable groundwater 
exploitation management strategy has worsened the situation on 
the island. The novel contribution of this work is to propose an 
empirical index based on a contamination tracer to facilitate the 
understanding of the aquifer contamination processes.

The aim of the present research is to study the groundwater 
contamination degree of an arid coastal aquifer known by the 
scarcity of water resources and an aquifer system subjected to 

many natural and human pressures. The specific objectives 
were to identify the causes of groundwater pollution for a 
better monitoring and recognize the threats to groundwater 
supply, based on a contamination index (combining chemical 
and bacteriological tracers of contamination) and geostatistical 
approaches. Jerba Island’s unconfined aquifer in the southeast 
of Tunisia is used as a study case.

Methodology and data processing

Location of the study area

The area of research is in Tunisia’s southeast between latitude 
33°38′ and 33°56′N and longitude 10°43′ and 11°04′E. It occu-
pies an area of about 514 Km2 (Fig. 1). The annual average rain-
fall is 250 mm, and the annual average evaporation is 1082 mm 
(Souid et al.2020). Surface waters mainly consist of rainwater 
stocked in special tanks and used for drinking and domestic 
purposes. The island’s topography is flat, with an average alti-
tude of 50 m. The island is covered by quaternary sediments 
composed, as shown in the hydrogeological cross-section 
(Fig. 1), by a thick-bedded Mio-Plio-Quaternary sand and clay 
overlying bedrock downwards and upwards by the gypseous 
crusts attributed to Villafranchian. The shoreline of the island 
is draped by the marine facies of Holocene and Pleistocene. 
The Mio-Pliocene marl and clay act like an aquitard, while the 
Mio-Pliocene sand represents the basal aquifer (Teissier 1967; 
Jedoui 2000; Bouaziz et al. 2003; Yahyaoui 2012).

The underground of the island encloses a phreatic aquifer and 
a deep confined aquifer (Fig. 1), within the quaternary sediments 
separated vertically by a thick clay layer that represents the aqui-
tard stratum. The unconfined aquifer, which is mainly composed 
of lenticular sandy levels of Quaternary upper Pleistocene and 
Quaternary Holocene, is the most used aquifer level by the locals 
for both domestic and agricultural purposes (Kharroubi et al. 
2012; Yahyaoui 2012; Souid et al. 2017). The unconfined aqui-
fer in the island is mostly recharged by the vertical rainwater 
infiltration and surface water (irrigation water and wastewater) 
infiltration. The aquifer depth ranges between 3 and 50 m with 
a mean depth of 30 m. The unsaturated zone is mainly made up 
of Mio-Plio-Quaternary sandy loam, silt loam, and sand layers. 
Overexploitation has led to the continuous decline in the aqui-
fer’s piezometric level (Souid et al. 2017, 2020).

Physicochemical and bacteriological 
analyses

A total of 79 groundwater points were sampled, after purg-
ing for 5 min to verify that the groundwater samples were 
reflective of the in situ conditions, during the summer season 
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(August–October 2014). Samples for the enumeration of fecal 
contamination tracers were stored in a sterile glass container 
(200 ml). For physicochemical analyses, groundwater sam-
ples were kept in polyethylene bottles (500 ml). During the 

groundwater sampling, EC, salinity, and pH were measured on 
the field using a Consort 933 multi-parameter. Cations (Na+, 
K+, Ca2+, Mg2+, Li+) and anions (Cl−, Br−, NO3

−, NO2
−, 

SO4
2−, HCO3

−, F−) were analyzed using chromatography (ionic 

Fig. 1   a Geological map of the of the Jerba Island; b hydrogeological cross-section
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liquid chromatograph Metrohm 850). Prior to analysis, the fil-
tration of water samples through cellulose membrane (pore 
size: 0.45 um) was carried out. Samples were kept cool and 
transported to the laboratory of the Higher Institute of Water 
Sciences and Techniques, University of Gabes, Tunisia. To 
assess the quality control measures of chemical analyses, ionic 
balance errors (within 10%) were calculated.

The membrane filtration standard (ISO 9308–1 2000) was 
adopted to enumerate total (TC) and thermotolerant coliforms 
(Thc). The seeding of these bacteria was carried out on the bacte-
rial culture medium Tergitol TTC Agar during 42 h of incuba-
tion. The incubation temperature is 37 °C for TC and 40 °C for 
Thc. The enumeration results were expressed by CFU 100 ml−1 
unit. Total coliform colonies were transplanted on a tryptophan 
reagent to identify Escherichia coli bacteria. The identification 
of E. coli in aqueous media was confirmed after an incubation 
time of 24 h at a temperature of 44 °C. E. coli bacteria cause 
indole production, which can be determined by adding Kovac’s 
reagent. Bacteriological analyses were performed at Tunisia’s 
Public Health Ministry’s Regional Hygiene Laboratory in Jerba.

Geostatistical analysis

A histogram and standard QQPlot tools were used to verify the 
normality of the distribution pattern in the geochemical dataset. 
Normal QQPlot is a graphical normality assessment method to 
indicate univariate normality (Johnston et al. 2001), investigate 
the distribution of data, and look for outliers. For that, The Sha-
piro–Wilk and Kolmogorov–Smirnov tests were performed to 
assess the normality of the dataset. The normality tests are used 
in addition to the graphical normality evaluation (Elliott and 
Woodward 2007). These statistical tests compare the scores in the 
samples to a Gaussian distribution of scores, which presents a nor-
mally distributed set, with the same mean and standard deviation. 
If the “P” value of the tests is more than 5%, the null hypothesis 
is accepted and “sample distribution is Gaussian.” If the test is 
significant (“P” value of the tests is less than 5%), the distribution 
is non-Gaussian (Ghasemi and Saleh Zahediasl 2012). The Kol-
mogorov–Smirnov test is an empirical distribution function that 
compares the test distribution’s theoretical cumulative distribution 
function to the data empirical distribution function (Oztuna et al. 
2006). The Shapiro–Wilk test is more efficient than the Kolmogo-
rov–Smirnov test since it is based on the correlation between the 
data and the matching normal scores (Peat and Barton 2005).

Semivariograms are used to quantify the spatial auto-
correlation (dependence) between sampled points. The 
semivariogram is based on the simple geographic dogma: 
samples that are close to each other are more similar on the 
geochemical behavior than the more distant samples. This 
principle is called autocorrelation (statistical and spatial 
relationships between samples). Experimental semivari-
ogram and experimental covariance were calculated based 
on Eqs. (1) and 2, respectively:

where n(h) is the pair number of the studied data within 
a specified range of equidistance and direction. When the 
variables Z(xi) and Z(xi+h) are auto-correlated, the estimated 
value Z∗

(

x0
)

  (the result of Eq. 4) is small, and thus, the 
pair of points is spatially uncorrelated. Based on the analy-
sis of the empirical variogram (experimental variogram), 
a suitable mathematical variogram model (e.g., Gaussian, 
spherical, exponential) is then adjusted, usually by weighted 
least squares, and variogram parameters (range, nugget, and 
sill) are then used in the Kriging approach (Zare-Mehrjardi 
et al. 2010).

If the random variable pair xi  and xi+h can take on the 
values Z(xi) and Z(xi+h)  for i = 1,… , n with equal probabili-
ties, pi =

1

n
 , then the covariance can be expressed in terms 

of means Z(xi) and Z(xi+h) as:

For a model that provides accurate unsampled point esti-
mations, the standardized mean (SM) error should be close 
to 0, the root-mean-square error (RMSE) and average stand-
ard error (ASE) should be as small as possible (comparing 
obtained values for each tested model), and the RMSS should 
be close to 1 (Johnston et al. 2001). The smallest RMSE indi-
cates the most accurate predictions. The RMSE was derived 
according to Eq. (3) (Zare-Mehrjardi et al. 2010):

Z (xi) is the measured observation at the position xi, Z* (xi) is the 
estimated observation at the position xi, and N is the sample number.

Ordinary Kriging was adopted to assess the spatial pattern 
of the studied groundwater hydrochemical variables over the 
island. The GIS software ArcGIS 10.1 was used for spatial 
interpolation in this work. Kriging may be considered the 
most efficient method for prediction (interpolation) at unsam-
pled areas. This geostatistical approach permits the study of 
spatial autocorrelation between the investigated variables. 
One of the most significant advantages of the Kriging method 
is that it provides for the estimation of the error interpolation 
values of the regionalized variable when there are unsampled 
sites, providing a measure of the estimation accuracy and reli-
ability of the variable’s spatial distribution (Burgess and Web-
ster 1980). The general equation of the Kriging estimator is:
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1
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For each groundwater sample, the hydrochemical data were 
inserted into a digital database and GIS, using ArcGIS v10.1.

For spatial distribution maps, a histogram and a normal 
QQPlot analysis were performed. It was observed that the data 
are approximately normally distributed. Table 1 shows the 
results of the normality tests. It is clear that all variables, for 
both tests, have a P value less than 0.05, which indicates a non-
Gaussian distribution of data, except for the GCI parameter. 
Log transformation was applied for the parameters that have a 
non-normal distribution to obtain a normal distribution.

Prediction model performances were assessed by cross-val-
idation. Table 2 presents the selected model characteristics for 
the studied groundwater quality parameters. The mathematical 
models of semivariograms (Gaussian, exponential, circular, or 
spherical models) were tested for salinity, GCI, and seawater 
fraction. The models provide information about the spatial 
distribution including the Kriging interpolation input param-
eters (Boudibi et al. 2021a; Hatvani et al. 2021). The adequate 
model for interpolation is selected referring to the calculated 
error values (Table 2). The SM error is close to 0 for all studied 
parameters, the RMSE and ASE are low comparing to obtained 
values for each tested model, and RMSS is closer to the RMSE. 
The cross-validation results clearly indicated that circular and 
spherical semivariogram models are the fitted models to the 
spatial interpolation of the dataset.

Calculated groundwater contamination 
index (GCI)

A contamination index is a useful tool that can be applied 
to assess groundwater pollution. Various indices have been 
used by researchers to assess groundwater contamination 
(Adimalla et al. 2020; Herojeet et al. 2020; Serra et al. 
2021). The groundwater contamination index provides a 

single value which summarizes the big dataset of quantity 
parameters and represents data in a simple way. GCI is an 
effective approach for assessing and mapping the degree of 
groundwater pollution (Kumar 2014). In this work, a new 
index is formulated and proposed to evaluate the intensity 
of groundwater pollution in the Jerba shallow aquifer. The 
different steps involved in the research process are shown by 
the flow chart (Fig. 2).

The calculated contamination index was derived from the 
combination of chemical and bacteriological parameters. The 
combination of chemical and bacteriological tracers helps to 
highlight pollution from natural and anthropogenic sources 
(Fig. 3). The selection of the parameters integrated in the 
calculation of the index was based on the indicators most 
involved in the geochemical signature of the groundwater. 
This means that a specific tracer has been chosen for each 
contamination process to assess the contamination degree of 
the aquifer. In this study, lithium and nitrate concentrations, 
seawater fraction, and fecal indicator bacteria (TC and ThC 
coliforms and Escherichia coli) were used as tracer param-
eters to measure the pollution degree. Weights are assigned to 
each parameter chosen for the proposed index depending on 
a number of factors, including health risk and importance in 
assessing groundwater quality (Herojeet et al. 2020). Pollution 
degrees ranged into six classes according to the concentration 
of each parameter (Table 3). For each parameter, the values 
were grouped by importance to three clusters:

–	 Low pollution degree cluster: this class includes the low val-
ues. For this class, the pollution degree is considered low.

–	 Medium pollution degree cluster: this group is composed 
of medium values. The pollution level of this cluster is 
medium.

–	 High pollution degree cluster: high values of each param-
eter are included in this cluster.

Table 1   Normality test results

GD, Gaussian distribution (P > 0.05); NGD, non-Gaussian distribution (P < 0.05)

Tests of normality

Kolmogorov–Smirnov with Lilliefors 
Significance Correction

Shapiro–Wilk

Statistic df P value Interpretation Statistic df P value Interpretation

Salinity 0.118 79 0.008 NGD 0.958 79 0.011 NGD
Seawater fraction 0.118 79 0.009 NGD 0.929 79 0.000 NGD
GCI 0.115 79 0.061 GD 0.967 79 0.126 GD

Table 2   Experimental 
semivariograms and fitted 
models of GCI, salinity, and 
seawater fraction

Parameter Semivariogram RMSE ASE SM RMSS Range Nugget Partial sill

GCI Circular 3.07 2.93 0.01 1.04 8.6 × 103 0.001 1.23
Salinity Spherical 1.48 1.32 0.01 1.1 6.63 × 103 0.5 4.36
Seawater fraction Circular 4.68 3.98 0.01 1.16 9.09 × 103 8.44 37.27
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To calculate the GCI, three steps were required. In the 
first step, each parameter (lithium, nitrate, seawater fraction, 
total and thermotolerant coliforms and E. Coli) was assigned 
a relative weight (class) ranging from 1 to 6 based on its 

contents. The lowest values received the lowest weight (1), 
while the highest values received the highest weight (6). In 
the following step, the weight for each parameter was calcu-
lated to determine its relative contribution to the process of 

Fig. 2   Flow chart showing the 
different steps involved in the 
research process

Fig. 3   Parameters used to calcu-
late groundwater contamination 
index (GCI)
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groundwater contamination. At the end of the process, the 
contamination index is calculated by adding the pollution 
degree classes assigned to each parameter. The groundwater 
contamination index was calculated as the weighted sum of 
all contamination class degrees (Eq. 5):

where Ci is the single contamination class degree of each 
tracer parameter.

Results and discussion

Hydrogeochemistry

Basic statistics of the studied parameters (Table 4) show 
that the standard deviation values are low for all variables 
(parameters) compared to the means. The dataset distribu-
tion assessment based on skewness and kurtosis demon-
strates that the fluoride distribution is right-skewed (negative 
skewness). The rest of the hydrogeochemical parameters are 
right-skewed (positive skewness). The statistical distribu-
tion form is platykurtic (kurtosis < 0) for pH, EC, salinity, 
HCO3

−, Cl−, Br−, SO4
2−, Na+, and Ca2+ and leptokurtic 

(kurtosis > 0) for F−, NO3
−, NO2

−, K+, Mg2+, and Li+.
Salinity rates range from 8.8 in the shoreline to 0.5 g/l 

in the inner regions of the island. The hydrochemical fin-
gerprint of Mio-Pliocene–Quaternary Jerba aquifer is char-
acterized by Na-Cl groundwater facies type (Fig. 4). For a 
coastal aquifer in an arid climate, the high levels of Cl− (the 
average concentration is about 1738.56 mg/l) and Na+ ions 
(with a mean concentration of 1107.96 mg/l) were due to 
the seawater impact on groundwater hydrogeochemical sig-
nature. Referring to the average concentrations, chloride is 
considered as the most abundant ionic species in the chemi-
cal composition of analyzed groundwater samples. Chemical 
contamination tracers like NO3

−, NO2
−, F−, and K+ are plen-

tiful in the aquifer. The highest concentration was measured 

(5)GCI =

n
∑

i=1

C
i

for nitrate with average values of 75.97 mg/l. Li+ concentra-
tions of groundwater points ranged between 1 and 14 mg/l.

The correlation between salinity and chemical elements 
was assessed using Pearson correlation (for normal distribu-
tion) to establish the relationship between ions and aquifer 
abnormal salinization. A P value of < 0.01 is considered to 
be significant. The correlation matrix (Table 5) measures 
the strength of the correlation among groundwater miner-
alization, Ca2+, Mg2+, K+, Li+, Cl−, and Br−. These findings 
demonstrate the importance of these ions in the groundwa-
ter salinization processes of Jerba unconfined aquifer. The 
feature maps generated by the application of unsupervised 
machine learning technique, i.e., SOM, confirm the obtained 
results (Fig. 5). The maps (grid) of the studied variables 
(salinity, Ca2+, Mg2+, K+, Li+, Cl−, and Br−) of the data-
set display the trends of statistical correlation between ions 
and mineralization. The similar neuron patterns in the grids 
(the coloring of the map) indicate the positive correlation 
between studied parameters. The Kohonen map clustering 
method proves the significant correlations among salinity, 
halogens (Cl− and Br−), alkaline earth metals (Ca2+ and 
Mg2+), and alkali metals (Na+, K+ and Li+).

The selected groundwater contamination index 
parameters

Lithium

The maximum content of Li+ ion amounts to 15.69 mg/l. 
The abundance of this alkaline metal is assigned to ground-
water-aquifer rock interactions related to cation-exchange 
reactions caused by seawater mixing. With reference to 
the hydrogeological study by Souid et al. (2018) on this 
coastal aquifer, lithium can be used as a salinization, result-
ing from the seawater invasion process, chemical proxy. As 
a result of the ion exchange mechanism, the content of this 
alkaline metal significantly increases corresponding to the 
seawater fraction. The use of this chemical element as a 
salinization ion tracer justifies its selection for the calcula-
tion of the index.

Table 3   Classes of the parameters used to calculate GCI

Pollution degree Low Medium High

Class CLi CNO3 Csf CTC CthC CEc

1 2 3 4 5 6
Lithium concentration (mg/l)  > 2 2–4 4–6 6–8 8–10  > 10
Nitrate concentration (mg/l)  > 10 10–20 20–30 30–40 40–50  > 50
Seawater fraction  > 0 0–5 5–10 10–15 15–20  > 20
Total coliforms (UFC)  < 100 100–1000 1000–10,000 10,000–100,000  > 100,000 –
Thermotolerant coliforms (UFC) Absent  < 10 10–100 100–1000 1000–10,000  > 10,000
E. coli Absent Present Present Present Present Present
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Seawater fraction (fsea)

In this study, the seawater fraction is calculated based on 
Cl− content (Eq. 6). Considered as a conservative tracer, 
chloride is unaffected by water/rock reactions.

where CCl,sample is the measured chloride content of the 
sample, CCl,sea is the chloride content of the Mediterranean 
sea sample, and CCl,fresh represents the chloride content of 
the freshwater (the lowest analyzed salinity in groundwater 
samples).

Calculated seawater percentage varies between a max-
imum value of 18.73% and a minimum value of − 0.83% 

(6)fsea =
CCl,sample − CCl,fresh

CCl,sea − CCl,fresh

(Fig. 6). The estimated seawater fraction spatial distribution 
map was used to define the spatial expansion of seawater 
intrusion in the island (Fig. 7). The low seawater percentages 
are within the central and the eastern parts of the study area.

The groundwater salinity increase is due to intensive 
exploitation caused by overpumping, which leads to sea-
water intrusion into coastal aquifers, promoting vertical 
exchanges between the shallow aquifer and deep confined 
aquifer characterized by brackish groundwater. Based 
on GIS interpolation approaches, we estimated the geo-
graphical extent of groundwater salinization. Figure 7 
shows that the spatial distribution of groundwater salin-
ity is mapped to the piezometric level. Areas character-
ized by high piezometric levels, considered as recharging 
areas, have low salinity values. On the other hand, areas 
of low piezometric levels show high salinity values. The 
map clearly shows that around the shoreline, in which the 
groundwater level is as low as 0 m below ground level 
(mbgl), the trend indicates that depletion has occurred at 
a very fast rate.

Nitrate

Nitrate is naturally present in water, coming from the nat-
ural cycle of organic nitrogen degradation. The high levels 
of nitrate in groundwater are due to agricultural activities 
(irrigation and organic fertilizer like manure), livestock, 
or industrial and domestic sewage (Li et al. 2019; He et al. 
2022a, 2022b). In fact, 95% of the nitrogen flow is in the 
form of nitrates, the organic and ammonia forms remain-
ing insignificant in agricultural inputs (Koné et al. 2009; 

Table 4   Statistical 
characteristics of the 
hydrochemical parameters

Min, minimum; Max, maximum; S.D., standard deviation

Parameters Min Max Mean Variance S.D Kurtosis Skewness

pH 6.90 8.19 7.52 0.07 0.27  − 0.13 0.16
Salinity (mg/l) 514 8882 3799.43 4,327,173.71 2080.19  − 0.63 0.49
CE (mS/cm) 1.04 15.26 6.86 12.53 3.54  − 0.71 0.41
TDS (mg/l) 665 9760 4387.14 5,125,075.63 2263.66  − 0.71 0.41
HCO3

−(mg/l) 136.89 664.42 401.84 16,561.06 128.69  − 0.69 0.37
F−(mg/l) 3.95 6.83 6.01 0.27 0.52 4.70  − 1.67
Cl−(mg/l) 136.57 4319.83 1738.56 1,161,230.60 1077.60  − 0.54 0.58
Br−(mg/l) 8.75 12.32 10.35 0.68 0.83  − 0.80 0.19
NO3

−(mg/l) 39.32 196.89 75.97 1487.00 38.56 0.65 1.16
NO2

−(mg/l) 14.02 80.85 23.99 129.05 11.36 7.08 2.13
SO4

2−(mg/l) 56.31 1178.56 569.44 63,284.62 251.56  − 0.02 0.24
Na+ (mg/l) 223.42 2601.97 1107.96 332,198.75 576.37  − 0.64 0.47
K+ (mg/l) 12.05 154.65 56.23 862.54 29.37 0.41 0.76
Ca2+ (mg/l) 68.98 754.56 301.48 23,567.01 153.52  − 0.20 0.61
Mg2+ (mg/l) 20.63 437.97 149.58 7378.86 85.90 0.41 0.75
Li+ (mg/l) 1.12 15.70 5.68 9.03 3.00 0.37 0.74
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Fig. 4   Groundwater facies based on (Ca + Mg)-Na + K) vs. 
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Table 5   Correlation matrix

Sa
lin

ity

H
CO

3-

F- C
l-

Br
-

N
O

3-

N
O

2-

SO
42
-

Li
+

N
a+ K+ C
a2

+

M
g2

+

Salinity 1.00

HCO3
- 0.29 1.00

F- 0.11 0.14 1.00

Cl- 0.99 0.26 0.12 1.00

Br- 0.79 0.39 0.14 0.79 1.00

NO3
- 0.46 0.14 -0.12 0.47 0.36 1.00

NO2
- 0.44 0.28 -0.06 0.43 0.40 0.91 1.00

SO4
2- 0.64 0.01 -0.04 0.54 0.40 0.15 0.21 1.00

Li+ 0.98 0.38 0.13 0.96 0.79 0.39 0.40 0.60 1.00

Na+ 0.99 0.37 0.13 0.98 0.80 0.46 0.45 0.59 0.97 1.00

K+ 0.98 0.38 0.13 0.96 0.79 0.39 0.40 0.60 1.00 0.97 1.00

Ca2+ 0.98 0.36 0.13 0.96 0.79 0.39 0.40 0.64 0.99 0.98 0.99 1.00

Fig. 5   SOM maps for Cl−, Br−, 
Na+, Ca2+, Mg2+, and Li+
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Ma et al. 2009; Boudibi et al. 2021a). The Jerba shallow 
aquifer shows high levels of NO3

−. The measured con-
centration of nitrate in sampled wells ranges from 39.32 
to 196.89 mg/l. By comparing the nitrate levels with the 
standards set by the World Health Organization (WHO), 
which sets a threshold of 50 mg/l for NO3

−, we note that 
60.75% of the groundwater samples are beyond the stand-
ards and therefore unfit for human consumption. Refer-
ring to Fig. 8, NO3

− concentration showed clear spatial 
variability. The absence of a sewer system in rural and 
suburban areas of the island contributes to the increase of 
nitrate concentration. In Jerba Island, rural domestic sew-
age is primarily composed of toilet effluent and greywater 
(water used in washing, bathing, and kitchen).

Coliforms (total and thermotolerant) and E. coli

Bacteriological analysis revealed that 94.9% of ground-
water samples had TC densities greater than 10 CFU 100/
ml. Except for three wells that were deeper than 50 mbgl, 
all samples were tested positive for Thc and E. coli. The 
wastewater discharge in rural regions of the island gener-
ates a high bacteriological load. Fecal pollution is insti-
tuted by means of septic tanks, which contribute to input 
fecal germs directly in the aquifer and via surface pollu-
tion leaching. In addition, agricultural practices by using 
manure as natural fertilizer participate in the propagation of 
bacteriological contaminants. Domestic waste released into 
abandoned wells also participates in aquifer contamination.

The groundwater pollution risk map based on GCI

The GCI values ​​range from 15 to 32 during the dry season. 
This index is classified into three categories, which include 
GCI < 20 (low degree of groundwater contamination), 
20 < GCI < 25 (moderate to high degree of groundwater 

contamination), and GCI > 25 (high degree of contamina-
tion index). The groundwater pollution risk map (Fig. 9) 
shows that the high index values belong to the south and 
northeast regions, while the low index values are located 
in the western part of the island. The contaminated parts of 
the aquifer are affected by several sources of pollution and 
overexploited. The spatial distribution maps of GCI calcu-
lated for 54 wells confirm the contamination of the coastal 
areas, especially the northern and western parts of the island 
that are considered as areas of low topography and piezom-
etry. The decrease of the piezometric level in the aquifer 
generates the inversion of the hydraulic gradient. This fact 
promotes the transfer of seawater and contaminated waters to 
the aquifer. The overexploitation of the Mio-Pliocene–Qua-
ternary Jerba aquifer has resulted in a number of drawdown 
cones, a lower aquifer, and depressions that allow seawater 
to enter the aquifer (Souid et al. 2018). Souid et al. (2018, 
2020) used the traditional geochemical investigation and a 
simple assessment of the contamination of the Jerba island, 
but the comparison the GCI elaborated in this study and the 
other methods (Kharroubi et al. 2012; Telahigue et al. 2018) 
showed that it is robust and gives the best classification of 
groundwater quality which is very faithful to the reality of 
the Island. It includes several parameters that represent the 
pressures exerted on the aquifer by different components 
(seawater intrusion, nitrate pollution, and fecal contamina-
tion). The calculated GCI values will identify the extent of 
contamination by combining the different sources of pollu-
tion existing on the island. In addition, the usefulness of this 
index is to assess the groundwater contamination degree and 
the identification of the major contamination mechanism, by 
area, depending on the weights assigned to each parameter.

Jerba shallow aquifer is a coastal aquifer under an arid 
climate, which is influenced by several contamination pro-
cesses. However, punctual sources of pollution like septic 
tanks and abandoned wells used as uncontrolled garbage 

Fig. 6   Measured seawater 
fraction
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dumps are considered as direct sources of groundwater pol-
lution. Previous studies carried out by Souid et al. (2017) 
have shown severe fecal pollution of the aquifer due to the 
septic tanks. Agricultural practices also led to an increase in 
nitrate contents and fecal bacteria by the infiltration of irri-
gation water loaded with fertilizers and germs. The exploited 
groundwater quantities of unconfined aquifer on Jerba Island 
reached 3.65 Mm3/year with available resources not exceed-
ing 3.47 Mm3/year. This deficit balance between available 
resources and exploitation with a low rate of groundwater 
recharge, due to the aridity of the climate, aggravates the 
situation and promotes seawater intrusion processes.

Conclusion

This study presents an approach for the hydrogeological pol-
lution assessment of arid coastal shallow aquifers. Results of 
the groundwater contamination index (GCI) in this research 
demonstrated that groundwater pollution at several sites of 
the island is very intense. The GCI was calculated by admit-
ting class intervals for lithium and nitrate contents, calcu-
lated marine intrusion fraction, and fecal tracers. Assess-
ment of results based on the spatial distribution of pollution 
degree illustrates that the proposed index reveals that 75.91% 
of the aquifer comes under a significant pollution zone (the 
coastal regions of the island). The groundwater pollution 
risk map shows the areas that are most affected by pollution 
and have high levels of nitrate, lithium, fecal germs, and a 
high marine intrusion rate. Areas characterized by high GCI 
are subject to the combined effect of anthropogenic activities 
and sweater intrusion. The overexploitation of the aquifer 
leads to a groundwater balance deficit between exploitation 
and available resources. These results confirm the impact of 
two major processes involved in aquifer pollution: seawater 
intrusion, a process that affects coastal areas and is activated 
by overpumping, and the anthropogenic impact favored by 
septic tanks and wells used as dumping grounds.
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