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Abstract
Upper Cretaceous Sanandaj (UCS) units (K8–K12) in the northern Sanandaj-Sirjan Zone, west Iran, which consists of ~2,000 
meters of shale, sandstone, limestone, conglomerate, and pyroclastic rocks, with interbedded basalticandesitic lava. The 
Rb–Sr whole-rocks isochron for nine shale samples shows an age of 125 ± 39 Ma with an initial 87Sr/86Sr = 0.7106 ± 0.0032. 
The chemical compositions of the shale samples show average values of 71.8 wt.%  SiO2, 17.1 wt.%  Al2O3, 4.8 wt.%  Fe2O3, 
0.3 wt.% CaO, and 1.7 wt.%  Na2O. The  SiO2–Al2O3 +  Na2O +  K2O and Th/Sc–Zr/Sc diagrams for samples reflect low sedi-
ment maturity, and the shale components were deposited by the first sedimentary cycle. The REEs Chondrite-normalized 
patterns reveal higher LREEs contain (La/YbCN = 10.5), flat HREEs, negative Eu anomaly (Eu/Eu*SN = 0.26–0.89), and Nb 
anomaly (Nb/Nb*SN = 0.14–0.82). Also, the ratios of  Al2O3/TiO2 (18–22), La/LuCN (5.43–24.4), La/Sc (0.51–2.53), Th/Sc 
(0.42–0.68), and LREEs/HREEs (Nd/ErCN > 5), suggesting these rocks were dominantly derived from intermediate-acidic 
rocks in an active continental margin. Meanwhile, Ni/Co (5.6–9.9), V/(V + Ni) (0.64–0.90), and Mn* (− 3.6 to − 6.6) values 
reveal that shale layers were deposited in a sediment-starved basin under reducing conditions during the Late Cretaceous 
contemporaneous with volcanic activities. Upwelling of the anoxic water due to volcanic events has led to an oceanic anoxic 
event, the demise of micro-organisms, and the deposition of organic-rich black shale. The UCS shale geochemistry and the 
vertical stacking pattern of the K8-K12 units show that their tectonic settings have been changed from a trench to a fore-arc 
from bottom to top. These transitions are related to the continent-ward migration of the magmatic arc.
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Introduction

Black shales are fine-grained clastic sedimentary rocks 
enriched in organic matter (e.g., Trabucho-Alexandre et al. 
2012). They can form in various tectonic and depositional 
settings, especially in anoxic deep-water environments (e.g., 
Martinez 2003; Jenkyns 2010). The UCS shale is widely 
spread northwest of the Sanandaj-Sirjan Zone (SaSZ). Great 
igneous provinces were established in this area during the 
Cretaceous, suggesting that volcanic activity was responsible 
for black shale deposits (e.g., Ohkouchi et al. 2015). During 
this time, the NW-ward subduction of the Neo-Tethyan crust 
beneath Central Iran formed a subsiding extensional basin in 
the Northern SaSZ (N-SaSZ) (Azizi and Moinevaziri 2009).

The UCS succession (K8-K12 units) includes about 
2000 m of black shale (mainly), sandstone, conglomerate, 
limestone, pyroclastic, and basaltic–andesitic lava. To date, 
geochemical investigations have not been performed on the 
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Sanandaj shale. In this study, the whole-rock chemistry and 
Sr isotope ratios of the shale rocks, part of the UCS units, 
and the stacking pattern of their units have been investi-
gated. Shale rocks record the geological evolution of the 
region (e.g., McLennan et al. 1993) and provide valuable 
information for understanding the paleoclimate, source-area 
weathering, paleoredox conditions, source rocks, tectonic 
settings, and geodynamic evolution of the basin (McLen-
nan 1989). So, this investigation is significant for paleogeo-
graphic reconstructions of the Sanandaj-Sirjan Zone.

Geological setting

The Sanandaj-Sirjan Zone (SaSZ), the most active zone in 
the Iranian plate (Stöcklin and Nabavi 1972), extends about 
1500 km from the northwest (Sanandaj) to the southeast 
(Sirjan) with a width of 150–250 km (Stöcklin and Nabavi 
1972; Mehdipour Ghazi and Moazzen 2015). It comprises 

the critical events in the formation and evolution of the Neo-
tethys basin (Hassanzadeh and Wernicke 2016). This basin 
opened in the Late Paleozoic and closed from the Late Cre-
taceous to the mid-Tertiary, due to convergence and conti-
nental collision between the Arabian and Iranian plates (e.g., 
Shahabpour 2005; Agard et al. 2005, 2011).

The SaSZ was an active Andean-type margin (Berberian 
and King 1981; Şengör 1990; Ao et al. 2016). More than 
2000 m of Upper Cretaceous deposits, known as Sanandaj 
shale, are distributed in the north SaSZ. The Sanandaj shale 
facies show shallowing upward from distal turbidites to shal-
low marine carbonate facies. This unit is flanked on one 
side by the Urumieh–Dokhtar magmatic arc, UDMA, and 
on the other side by the deformed strata, including mélange 
and blueschists, of a coeval subduction complex (Fig. 1A).

Alavi (1994; 2004; 2007) suggested that the northeast-
ern boundary of the SaSZ with UDMA is the suture zone 
between the Afro-Arabian and Iranian plates. Based on his 
opinion, the SaSZ represents a thrust fault zone that has 
transported various rocks during the collision events. These 

Fig. 1  (A) Main geotectonic units in the Iranian plate (after Alavi 
1994) and the location of Sanandaj (1), Hamadan (2), Esfahan (3), 
Abadeh (4), and Sirjan (5) areas. (B) Geological map of the study 

area, showing the location of sampling points. (C) Stratigraphic col-
umn of UCS near the Sanandaj city (after Zahedi and Hajian 1985)
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rocks include Cretaceous-Tertiary terrigenous, carbonate, 
and volcaniclastic strata. Several researchers (e.g., Berbe-
rian and King 1981; Şengör 1990; Mohajjel and Fergus-
son 2000; Hessami et al. 2001; Talebian and Jackson 2004) 
considered the boundary between the SaSZ and the Zagros 
Fold-Thrust Zone as the suture zone between these plates. 
Cherven (1986) proposed that Sanandaj shale is a pre-colli-
sion Cretaceous fore-arc deposit.

Stratigraphy

The N-SaSZ mainly includes Upper Jurassic-Cretaceous 
rocks in Kurdistan province (Fig. 1B, C). Paleozoic rock out-
crops are rare in the northwestern part of the SaSZ, whereas 
they are common in the southeastern segment of this zone 
(e.g., Azizi and Stern 2019). The Jurassic SaSZ rocks 
include phyllite and volcanic rocks with a low-to-moderate 
metamorphic imprint, except close to large-scale Mesozoic 
granitoid bodies (Azizi and Jahangiri 2008; Dargahi et al. 
2010; Azizi and Asahara 2013; Azizi and Stern 2019). The 
mafic to felsic igneous Jurassic rocks are widespread and 
exposed, from the northwest to the southeast, in the San-
andaj, Hamadan, Esfahan, Abadeh, and Sirjan areas. Several 
geologists believed that these rocks are related to the north-
westward Neotethys oceanic crust subduction beneath the 
Central Iranian plateau (Hassanzadeh and Wernicke 2016; 
Azizi et al. 2019).

Barremian-Aptian limestones, including orbitolina (K7), 
unconformably overlies the Jurassic complex and underlies, 
with the same contact by the UCS units in N-SaSZ (Stöcklin 
1968). The UCS has undergone a low-grade metamorphic 
phase and consists of 5 units (Zahedi and Hajian 1985). The 
units include (a) K8; known as the Sanandaj shale; dark gray, 
yellow shale, silty shale with minor sandstone, and biomic-
rite, including Cenomanian pelagic microfossils, (b) K9; 
volcanic rocks with interbedded basaltic-andesitic lava and 
pyroclastic rocks, (c) K10; thin-bedded pelagic limestone 
with Globotruncana, (d) K11; graded bedding conglomerate, 
sandstone, siltstone, and (e) K12; thin-bedded limestone with 
inoceramus and ammonite fragments. The UCS is uncon-
formably overlain by widespread, polygenic, nonmarine 
conglomerates of Paleocene age, (PEc; Figs. 1C and 2A-I).

Petrography

Description and interpretation

The UCS units in the study area comprise volcanic and sedi-
mentary rocks. The volcanic rocks are green andesite and 
andesitic basalt with a porphyritic texture. The phenocryst 

minerals are plagioclase (main mineral), k-feldspar, clino-
pyroxene, hornblende, and biotite. They are mainly altered 
to epidote, calcite, and sericite (Fig. 3A−C). The volcanic 
rocks have the typical characteristics of an island arc (Azizi 
and Asahara 2013).

The sedimentary rocks of the UCS consist of carbonate 
(pelagic and calciturbidite) and siliciclastic facies. The silici-
clastic facies contain black shale, graywacke, and intraforma-
tional conglomerate. The shale facies is dark-colored laminated 
mudstone (Fig. 2A−D), containing Upper Cretaceous plank-
tonic foraminifera, organic matter, silt-size quartz, biotite, clay, 
pyrite, and calcite (Fig. 3D, E). This facies also has several 
types of Nerites ichnofossils (Uchman et al. 2005), including 
Paleodictyon isp., Helminthorhaphe isp., Spirorhaphe isp., and 
Cosmorhaphe isp. (Fig. 2E, F). These characterizations and 
the absence of benthic fossils in their components reflect that 
shale facies was deposited in a deep marine under reducing 
conditions (Rodríguez-Tovar et al. 2010).

Graywacke facies has an erosional base with intraforma-
tional pebbles and fines upward to shale facies. The facies 
include poorly sorted angular to subangular volcanic and 
quartz grains in a fine-grained matrix which was deposited 
in the fore-arc basin by turbidity currents (Fig. 3F, G).

The intraformational conglomerates are lens-shaped 
bodies in the shale unit and contain abundant shale clasts 
derived from the syn-sedimentary intrabasinal tectonic high 
(Fig. 2J). These conglomerates are interpreted as gravita-
tional deposits emplaced on a dipping submarine slope. Gha-
semi and Talbot (2006) proposed that these conglomerates 
are associated with the increased Neotethys subduction rates 
beneath the SaSZ.

The pelagic carbonate facies include gray thin-bedded, 
bioturbated planktonic foraminifera-packstone to mudstone. 
These characteristics and the abundance of pyrite in the sam-
ples indicate that accumulation occurred under reducing 
conditions (Fig. 3H). The calciturbidite facies are thin-to-
medium-bedded, interbedded with shale, representing the 
sharp basal contact, and become fining upward grain-sup-
ported to mud-supported textures. They contain planktonic 
foraminifera and benthic open-marine bioclasts, including 
echinoid and rudist fragments. The benthic bioclasts origi-
nated from the platform margin and were deposited as debris 
in the basin (Fig. 3I).

Analytical technique

After studying thin sections, nine shale samples were col-
lected from the K8 unit for chemical and isotopic analy-
ses (Table 1 and 2). The samples were powdered and then 
washed with  H2O2 and 0.5 N HCl to remove organic matter 
and limestone components, respectively. The remaining frac-
tions were used for the geochemical analysis.
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Geochemical analyses were carried out at Nagoya Uni-
versity, Japan. For major element analysis, a mixture of 
0.50 g of sample powder and 5.0 g of lithium tetraborate 
was prepared and melted at 1200 ℃ for 12–17 min using 
a high-frequency bead sampler (Rigaku) to make a glass 
bead. Major element compositions for the samples were 
measured using a WD-XRF spectrometer, Rigaku ZSX Pri-
mus II, on the fused beads (Table 3).

For analyses of trace element compositions and Sr isotope 
ratios, approximately 100 mg of each pulverized sample was 
decomposed with 3 ml of HF (38%) and 0.5–1 ml of  HClO4 
(70%) in a covered polytetrafluoroethylene (PTFE) beaker 
at 120–140 ℃. Then, the dissolved samples were dried at 
140–160 ℃ on the hot plate with infrared lamps. After that, the 
samples were dissolved in 10 ml of 2–6 M HCl. The resulting 
solutions were split into two portions: one for the quantitative 
analysis of trace elements and the other for Sr isotope analysis.

Fig. 2  (A–D) Photographs of the Sanandaj shale unit, K8 (view to the 
southwest). (E, F) Field photographs of Nerites ichnofacies. (G) Photo-
graph showing the andesitic volcanic rocks, K9 (view to the northeast). 
(H) Close-up view of the volcanic breccia, K9. (I) Field photograph 
of the K10 composed of pelagic limestone interlayered with shale. (J) 

Close-up view of intraformational conglomerate, K11. (K) Photograph 
of thick-bedded to massive polygenic, nonmarine conglomerate. (L) 
Close-up view of the Paleocene polygenic conglomerate
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Trace element compositions were determined by induc-
tively coupled plasma–mass spectrometry (ICP–MS), 
Agilent 7700 × . The isotope ratios of Sr were measured 
using thermal ionization mass spectrometers (TIMS), 
VG Sector 54–30, and were corrected for fractiona-
tion based on 86Sr/88Sr = 0.1194. NIST–SRM987 was 
adopted as a standard for 87Sr/86Sr, and the average and 
1SE (± 1 sigma error) for the isotope ratio standard are 
87Sr/86Sr = 0.710244 ± 0.000009 (n = 11).

Results and discussion

Rb–Sr whole‑rock isochron

Sr isotope ratios and abundance of Rb and Sr for the shale 
samples are listed in Table 4. The rubidium-strontium isotope 
system is used to estimate the depositional age of the shale 

samples. The 87Sr/86Sr ratios vary from 0.7115 to 0.7186 with 
average of = 0.7102 ± 0.0016. The Rb–Sr plots show a linear 
trend. We assumed the linear trend as the Rb–Sr whole-rock 
isochron and calculated the age and initial ratio: 125 ± 39 Ma 
with an initial ratio of 87Sr/86Sr = 0.7106 ± 0.0032 for all the 
nine samples (Fig. 4A), and 129 ± 31 Ma with an initial ratio of 
87Sr/86Sr = 0.7104 ± 0.0014 for seven samples within a range of 
87Sr/86Sr = 0.01% difference from the isochron line (Fig. 4B).

Zahedi and Hajian (1985), based on biostratigraphy and 
stratigraphic position of Sanandaj shale, suggested the ages 
of the deposition/Sanandaj shale is Upper Cretaceous. In 
contrast, its depositional age obtained from the Rb–Sr iso-
tope (Compston and Pidgeon 1962) is Lower Cretaceous. 
This difference demonstrates that Sanandaj shale samples 
comprise a mixture of grains with variable isotopic composi-
tions inherited from their source regions and authigenic min-
erals. Therefore, based on whole-rock Rb–Sr isochron age 
does not show the depositional age of the Sanandaj shale.

Fig. 3  (A, B) Micrograph of porphyritic andesite, showing large 
crystals of clinopyroxene (Px), plagioclase, and amphibole (A) XPL 
and (B) PPL. (C) Coarse grain plagioclase (Pl) with locally altered 
to sericite (Ser), XPL. (D) Micrograph of the gray shale (Sh) show-
ing the occurrence of detrital quartz, mica, pyrite, and iron oxide, 
XPL. (E) Micrograph of the gray shale, including pyrite (Py), PPL. 

(F, G) Lithicwacke (Wa), including quartz, feldspar, chert, and car-
bonate rock fragment. The figures show the erosional boundaries (Eb) 
between lithicwacke and shale (Sh) facies, (F) XPL, and (G) PPL. 
(H, I) Micrographs of deep open-marine facies including Globotron-
cana packstone (P) and calciturbidite facies contain echinoid (Ec), 
rudist (R), and pelagic (P) fauna, XPL
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Table 1  Results of major and 
trace elements compositions 
for the shale samples from the 
K8 unit

Sample SH- 1 2 3 4 5 6 7 8 9 Average

Major oxides (wt. %)
   SiO2 71/2 79/5 74/5 67/9 72/0 69/7 69/3 74/3 67/5 71/8
   SiO2

* 62/2 58/8 59/7 61/1 59/6 59/5 62.0 64/2 62/4 60/9
   TiO2 0/71 0/79 0/95 0/90 0/83 0/90 0/80 0/56 0/87 0/81
   Al2O3 16/1 14/6 18/5 19/1 16/1 17/3 17/9 14/2 19/9 17/1
   Fe2O3 4/66 1/67 2/13 5/01 5/55 5/33 6/16 5/19 7/44 4/79
  MnO 0/09 0/00 0/00 0/00 0/01 0/00 0/01 0/05 0/01 0/02
  MgO 2/26 0/76 0/84 1/88 1/19 1/83 1/55 1/58 1/28 1/46
  CaO 0/76 0/17 0/21 0/28 0/20 0/18 0/43 0/23 0/26 0/30
   Na2O 1/80 1/67 2/04 1/12 1/86 1/84 1/92 1/16 1/89 1/70
   K2O 2/45 2/68 3/45 3/82 2/56 3/08 3/47 2/62 3/47 3/07
   P2O5 0/03 0/02 0/04 0/08 0/07 0/04 0/08 0/04 0/06 0/05
  LOI 4/33 3/65 3/51 4/94 4/50 3/76 4/99 3/89 4/99 4/29

Trace elements (ppm)
  Sc 14/4 10/0 8/5 12/8 8/8 22/7 5/9 11/5 12/9 12/0
  V 102 94 111 117 109 168 94 92 129 113
  Cr 71 59 52 81 67 111 51 53 83 70
  Co 3/6 1/4 5/5 4/4 3/0 7/0 3/1 5/2 3/9 4/1
  Ni 29 10 31 29 22 51 23 51 32 31
  Cu 2/9 2/8 11/5 23/7 5/2 57/2 2/8 49/1 31/9 20/8
  Zn 48 29 46 103 53 220 55 97 123 86
  Ga 19/6 16/3 21/5 22/0 17/5 32/2 13/0 18/1 23/5 21/6
  Rb 36 59 46 55 47 71 35 65 73 54
  Sr 84 49 133 79 46 84 27 40 92 70
  Y 16/4 6/0 6/7 7/1 3/7 17/5 3/3 9/3 7/1 8/6
  Zr 57/0 40/3 47/4 42/8 19/5 78/2 19/1 71/3 47/5 47/0
  Nb 7/4 8/7 24/8 9/3 8/0 6/3 5/5 8/5 4/9 9/3
  Ba 640 326 566 362 494 707 178 629 535 493
  Hf 0/5 0/5 1/4 0/5 0/8 0/4 0/5 0/6 0/3 0/6
  Ta 1/9 1/3 1/3 1/1 0/9 1/8 0/9 2/1 1/5 1/4
  Pb 1/3 2/2 5/1 8/4 3/5 28/0 2/1 5/9 11/8 7/6
  Th 7/5 6/5 5/7 7/2 3/7 10/9 3/8 5/6 7/1 6/5
  U 1/1 0/9 0/9 1/1 0/8 1/4 0/6 1/2 1/3 1/0

REEs (ppm)
  La 25/4 19/8 18/1 17/1 4/5 16/3 15/0 15/6 20/8 17/0
  Ce 50/8 44/4 41/8 37/4 9/6 31/8 30/2 24/6 44/1 35/0
  Pr 5/7 5/0 4/6 4/1 1/2 4/6 3/4 2/8 4/7 4/0
  Nd 20/8 18/7 16/5 14/9 4/9 18/2 11/6 9/2 17/6 14/7
  Sm 3/7 3/2 2/2 2/4 0/9 3/9 1/5 1/4 3/0 2/5
  Eu 1/0 0/6 0/2 0/4 0/1 0/7 0/2 0/1 0/4 0/4
  Gd 3/3 2/1 1/1 1/5 0/6 3/5 0/9 1/3 1/6 1/8
  Tb 0/5 0/2 0/2 0/2 0/1 0/5 0/1 0/2 0/2 0/2
  Dy 3/1 1/2 1/1 1/4 0/7 3/2 0/7 1/6 1/4 1/6
  Ho 0/6 0/3 0/2 0/3 0/2 0/7 0/1 0/4 0/3 0/3
  Er 1/8 0/7 0/8 0/9 0/5 2/0 0/4 1/2 0/9 1/0
  Tm 0/3 0/1 0/1 0/1 0/1 0/3 0/1 0/2 0/2 0/2
  Yb 1/6 0/8 0/8 1/0 0/5 2/0 0/4 1/4 1/0 1/0
  Lu 0/2 0/1 0/1 0/1 0/1 0/3 0/1 0/2 0/2 0/2
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Table 2  Ratios and computed parameters of the chemical analyses of shale samples from the K8 unit

Sample SH- 1 2 3 4 5 6 7 8 9 Average

Fe2O3 + MgO 6.9 2.4 3.0 6.9 6.7 7.2 7.7 6.8 8.7 6.3

Al2O3 +  K2O +  Na2O 20.4 19.0 24.0 24.1 20.5 22.2 23.3 18.0 25.2 21.8

Y + Nb 23.8 14.8 31.5 16.4 11.8 23.8 8.8 17.8 12.0 17.8

Al2O3/TiO2 22.6 18.4 19.5 21.2 19.4 19.2 22.4 25.3 22.8 21.2

K2O/Al2O3 0.15 0.18 0.19 0.20 0.16 0.18 0.19 0.18 0.17 0.18

K2O/Na2O 1.36 1.61 1.70 3.43 1.38 1.68 1.81 2.25 1.84 1.81

SiO2/Al2O3 4.4 5.4 4.0 3.6 4.5 4.0 3.9 5.2 3.4 4.2

LREEs 107 92 83 76 21 75 62 54 91 74

HREEs 11.4 5.6 4.4 5.7 2.6 12.4 2.8 6.5 5.7 6.3

REEs 119 97 88 82 24 88 65 60 96 80

LREEs/HREEs 9.4 16.4 19.0 13.5 8.1 6.1 22.6 8.2 15.9 11.6

Ba/Th 85.2 49.9 98.8 50.4 134.2 64.8 46.7 111.9 75.3 76.4

Cr/Th 9.4 9.1 9.0 11.2 18.2 10.2 13.3 9.4 11.6 11.3

Cr/V 0.7 0.6 0.5 0.7 0.6 0.7 0.5 0.6 0.6 0.6

Co/Th 0.5 0.2 1.0 0.6 0.8 0.6 0.8 0.9 0.5 0.7

Dy/Yb 1.9 1.5 1.3 1.5 1.5 1.6 1.7 1.1 1.4 1.5

Ga/Rb 0.54 0.28 0.46 0.40 0.37 0.46 0.37 0.28 0.32 0.40

La/Co 7.1 14.0 3.3 3.9 1.5 2.3 4.8 3.0 5.4 5.0

La/Nb 3.4 2.3 0.7 1.8 0.6 2.6 2.7 1.8 4.3 2.2

La/Sc 1.8 2.0 2.1 1.3 0.5 0.7 2.5 1.4 1.6 1.5

La/Sm 6.8 6.2 8.4 7.1 5.1 4.2 9.8 10.9 7.0 7.3

La/Th 3.4 3.0 3.2 2.4 1.2 1.5 4.0 2.8 2.9 2.7

La/Yb 15.6 25.1 22.2 17.6 9.7 8.3 37.7 11.2 20.6 16.2

Nb/La 0.29 0.44 1.37 0.54 1.79 0.39 0.37 0.54 0.24 0.44

Nb/Ta 3.9 6.7 18.5 8.1 8.7 3.5 6.5 4.1 3.4 7.0

Nb/Th 0.99 1.34 4.34 1.29 2.18 0.58 1.45 1.51 0.69 1.44

Sc/Ni 0.49 1.00 0.27 0.45 0.40 0.44 0.26 0.22 0.41 0.39

Ta/Yb 1.2 1.6 1.6 1.2 2.0 0.9 2.1 1.5 1.4 1.5

Th/Co 2.1 4.6 1.0 1.6 1.2 1.6 1.2 1.1 1.8 1.8

Th/Sc 0.5 0.7 0.7 0.6 0.4 0.5 0.6 0.5 0.5 0.5

Th/U 6.5 7.2 6.4 6.8 4.7 7.7 6.0 4.5 5.6 6.2

Th/Yb 4.6 8.3 7.0 7.4 8.0 5.6 9.5 25.2 34.8 12.3

Y/Ho 25.2 20.2 28.1 22.9 24.6 25.9 22.4 24.4 25.0 24.3

Y/Nb 2.21 0.69 0.27 0.77 0.46 2.76 0.61 1.10 1.44 0.92

Y/Ni 0.56 0.60 0.22 0.25 0.17 0.34 0.15 0.18 0.22 0.28

Zr/Hf 106.7 73.9 34.6 84.2 24.5 219.2 35.3 128.6 164.2 77.0

Zr/Nb 7.7 4.6 1.9 4.6 2.4 12.4 3.5 8.4 9.7 6.1

Zr/TiO2 80.1 50.8 50.0 47.5 23.4 86.8 23.9 127.4 54.6 57.8

La/LuCN 11.6 16.5 15.8 11.8 5.4 5.8 24.4 7.1 13.8 12.5

La/YbCN 8.8 14.1 12.5 9.9 5.5 4.7 21.2 6.3 11.6 10.5

Nd/ErCN 4.3 9.6 7.6 5.8 4.0 3.3 10.8 2.8 7.3 6.2

Ce/Ce*SN 0.97 1.03 1.06 1.03 0.93 0.85 0.97 0.85 1.02 0.97

Eu/Eu*SN 0.9 0.7 0.5 0.7 0.3 0.6 0.7 0.3 0.7 0.6

Gd/YbCN 1.2 1.6 0.8 0.9 0.8 1.0 1.3 0.5 0.9 1.0

Nb/Nb*SN 0.18 0.26 0.82 0.28 0.67 0.16 0.25 0.31 0.14 0.34

CIA 70 71 71 75 72 72 70 73 73 72

CIW 79 83 83 89 82 84 82 86 85 84

CIW' 84 84 85 91 84 85 85 88 86 86

PIA 76 79 80 86 80 81 78 83 82 80

Mn*  − 3.6  − 6.1  − 6.2  − 5.1  − 4.7  − 6.6  − 4.9  − 3.9  − 4.7  − 5.1

Ni/Co 8.1 7.1 5.6 6.5 7.3 7.3 7.2 9.9 8.2 7.5

V/Cr 1.5 1.6 2.1 1.5 1.6 1.5 1.8 1.7 1.6 1.7

V/Ni 3.5 9.4 3.6 4.1 4.9 3.3 4.1 1.8 4.1 4.3

V/(V + Ni) 0.78 0.90 0.78 0.80 0.83 0.77 0.81 0.64 0.80 0.79

Eu/Eu* = [2*Eu/(Sm + Gd)]SN; Ce/Ce* = [2Ce/(La + Pr)]SN; SN = Post Archean Australian Shale; Nb/Nb* = [Nb/(Th* La)^0.5]CN; CN: Chondrite-
normalized;  SiO2* = 39.34 + 1.2578  (A12O3/TiO2)-0.0109 *(A12O3/TiO2)^2; CIA =  [Al2O3/(Al2O3 + CaO* +  Na2O]100; CIW =  [Al2O3/(Al2O3 +  
K2O +  Na2O + CaO*)*100]; CIW' =  [Al2O3/(Al2O3 +  Na2O)]*100; PIA = [(Al2O3-K2O)/(Al2O3 + CaO* +  Na2O-K2O)]*100; Mn* = Log [(Mnsample/
Mnshale)/(Fesample/Feshale)];  Feshale = 6*10−4;  Mnshale = 4.6*10−2; CaO* refers to the mole fraction CaO in silicate minerals
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Fig. 4  87Sr/86Sr–87Rb/86Sr plots 
for the UCS samples: (A) for 
nine samples and (B) for seven 
samples

Fig. 5  (A) Chemical classification of the UCS samples (after Her-
ron 1988). (B) The REE patterns of the UCS shale samples. Data for 
chondrite-normalization is from Taylor and McLennan (1985). (C) 

A-CN-K  (Al2O3-CaO* +  Na2O-K2O) diagram with the associated 
CIA for the UCS shale samples. The samples fall within the interme-
diate weathering field (after Nesbitt and Young 1982)

Table 4  87Rb/86Sr–87Sr/86Sr data for the UCS samples

Sample no Rb Sr Rb/Sr 87Rb/86Sr 87Sr/86Sr 2SE

SH-1 36.4 83.8 0.43 1.26 0.713171 ± 11
SH-2 59.3 49.4 1.20 3.48 0.717206 ± 14
SH-3 46.4 133 0.35 1.01 0.711467 ± 13
SH-4 55.5 78.73 0.70 2.04 0.716593 ± 14
SH-5 47.4 45.8 1.03 2.99 0.715098 ± 16
SH-6 70.7 84.3 0.84 2.43 0.718594 ± 14
SH-7 35.5 26.6 1.33 3.86 0.717946 ± 14
SH-8 65.4 40.3 1.62 4.70 0.717881 ± 16
SH-9 72.9 91.9 0.79 2.14 0.714566 ± 13

Geochemistry

Table 3 represents the concentrations of major and trace 
elements, elemental ratios, and chemical index of weath-
ering for the nine UCS shale samples. The samples fall in 
the shale and wacke fields on the log  Fe2O3/K2O versus log 
 SiO2/Al2O3 chemical classification diagram (Fig. 5A; Her-
ron 1988). The geochemistry of fine-grained clastic sedi-
mentary rocks (Kasanzu et al. 2008) is a powerful tool for 
studying source rocks, tectonic settings, paleoclimate, and 
geodynamic evolution of the sedimentary basin (e.g., Dinelli 
et al. 1999; Zhai et al. 2018).

Chemical compositions, elemental ratio, 
and inter‑elemental correlations

The major element oxides in the Sanandaj shale samples 
show inverse linear trends with  SiO2 (Table 3).  K2O/Al2O3 
ratio in sediment is an indicator of the source rocks. This ratio 
in clay (0.0–0.3) and feldspar (0.3–0.9) minerals are different, 
and these ratios for the samples vary from 0.15 to 0.20, high-
lighting the dominance of clay minerals (Cox et al. 1995).

Weak correlations between  Fe2O3 + MgO and  TiO2 
(r =  − 0.15),  K2O (r = 0.17), high positive correlations 
between  Al2O3 and  K2O (r = 0.87),  TiO2 (r = 0.75) (e.g., 
Dabard 1990; Condie et al. 1992) associated with  K2O/
Al2O3 ratios varying from 0.15 to 0.20 in shales reflecting 
a higher proportion of aluminosilicates relative to acces-
sory minerals, and clay minerals control the distributions 
of  Al2O3,  TiO2, and  K2O (e.g., McLennan et al. 1983; Arm-
strong-Altrin et al. 2021). The strong correlation between 
 K2O and  Al2O3 (r = 0.87) indicates that samples were 
affected by post-depositional K-metasomatism (e.g., Fedo 
et al. 1997; Dey et al. 2008). This process has resulted in a 
weak positive correlation between  Al2O3 and CIA (r = 0.29), 
and the lack of accurate depositional age determinations of 
shale samples with the Rb–Sr isotope method.

A weak positive correlation of  Fe2O3 + MgO and  Al2O3 
(r = 0.36) exhibits ferromagnesian minerals (e.g., biotite and 
chlorite). The high content of  Fe2O3 (an average of 4.8 wt.%) 
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indicates that a part of the  Fe2O3 exists as an oxide/pyrite 
(e.g., Pettijohn et al. 1987). This interpretation is supported 
by the linear correlation between  Fe2O3 and LOI (r = 0.76) 
and the presence of pyrite observed in thin sections and 
hand-piece samples (Fig. 3B).

Although no correlation between  Al2O3 and MgO 
(r = 0.06), CaO (r =  − 0.01), and a moderate correlation 
between MgO and CaO (r = 0.67) probably indicates the 
presence of dolomite. The positive linear correlations 
between LOI and  P2O5 (r = 0.82),  Al2O3 (r = 0.54),  Fe2O3 
(r = 0.76), and  K2O (r = 0.43), and a high negative correlation 
of LOI-SiO2 (r =  − 0.77) show glauconite, phosphate, and 
pyrite minerals in the samples. These minerals commonly 
form in a starved basin under anoxic/reducing conditions.

The large-ion lithophile elements (LILs: Rb, Cs, Ba, 
Sr), Th, and U concentrations are high in the terrigenous 
rocks. The rubidium concentrations in the samples range 
from 35 to 73 ppm. Linear correlations of Rb with  Al2O3 
(r = 0.06),  K2O (i = 0.1), and Sr (r = 0.12) indicate that Rb 
neither participates in the same host minerals with Sr nor 
contributes to K-bearing aluminosilicate minerals. The 
correlation coefficients of Sr-Al2O3 (r = 0.55), Sr-K2O 
(r = 0.4), and Sr-CaO (r = 0) show Sr partly concentrated on 
aluminosilicate minerals such as illite and mica.

Correlations of U–Th (r = 0.83), U–LOI (r =  − 0.16), 
Th–LOI (r =  − 0.28), U–Al2O3 (r = 0.11), and Th–Al2O3 
(r = 0.15) reveal that U and Th have had similar geochemical 
behavior during weathering and erosion (e.g., McLennan 
et al. 1980), and their concentrations are independent of 
aluminosilicate minerals and organic matter in the samples. 
The strong correlation between Th and U suggests that 
they accumulated together in a stable mineral derived 
from the source rocks and, thus, are not fractioned during 
sedimentary processing and diagenesis (e.g., Kremer and 
Tishin 2017; Armstrong-Altrin et al. 2017, 2018).

HFSEs (Zr, Hf, Y, Nb, Ta) are abundant in the felsic upper 
continental crust (UCC; Taylor and McLennan 1985; McLen-
nan 2001) rather than in mafic rocks. Zirconium and Hf have 
similar geochemical behaviors and are mainly concentrated 
in zircon (Bau 1996). The samples contain 0.36–1.37 ppm Hf 
and 19.1–78.2 ppm Zr and show a weak negative linear cor-
relation between Zr and Hf (r =  − 0.17). The Zr/Hf ratios in 
the samples range from 25 to 107, which are probably related 
to changes in a geodynamic setting (e.g., Kremer and Tishin 
2017) and subduction processes (e.g., Rudnick et al. 2000).

Linear correlations of U–Zr (r = 0.86), Th–Zr (r = 0.78), and 
weak correlations of U–Al2O3 (r = 0.11), Th–Al2O3 (r = 0.15), 
U–TiO2 (r =  − 0.04), and Th–TiO2 (r = 0.23) indicate that zir-
con controls the distributions of U and Th. A moderate negative 
correlation of Zr–P2O5 (r =  − 0.58), U–P2O5 (r =  − 0.32), and 
Th–P2O5 (r =  − 0.41) represents that phosphate precipitated in 
the sediments during a slow rate of terrigenous deposits.

Scandium, Cr, V, Co, and Ni are compatible elements 
and are enriched in mafic to ultramafic rocks during igneous 
fractionation processes (Dimalanta et  al. 2013). Cobalt 
and Sc in the samples show moderate-to-strong positive 
correlations with Cr (r = 0.50; r = 0.90), Ni (r = 0.90; r = 0.63), 
and V (r = 0.67; r = 0.83), whereas they have weak-to-no 
linear correlations with  Al2O3 (r = 0.27; r = 0.05). These 
characteristics reveal that Co and Sc are concentrated, in part, 
in oxides and other accessory non-aluminosilicate minerals. 
Correlation coefficients of V–TiO2 (r = 0.56), V–Al2O3 
(r = 0.45), V–K2O (r = 0.28), and V–LOI (r =  − 0.07) 
highlight that vanadium is partly hosted in aluminum silicate 
and not in the organic materials. The samples have relatively 
low values of Cr (51–111 ppm), Ni (10–51 ppm), and Cr/
Ni ratios (1.03–5.88 with an average of 2.65) and show 
moderate-to-weak linear correlations of Cr–Ni (r = 0.42), 
Cr–Al2O3 (r = 0.34), and no correlation between Ni and  Al2O3 
(r = 0.01). These features may represent a minor contribution 
of mafic igneous rocks to the depositional system (e.g., Garver 
and Scott 1995; Armstrong-Altrin et al. 2021).

The samples show LREE/HREE > 1, flat HREE (an aver-
age of Gd/YbCN = 1), and distinctive negative Eu anomaly 
(0.26–0.89), indicating derivation from intermediate-acidic 
rocks in the active continental margin (Taylor and McLennan 
1985) (Fig. 5B). The weak-to-no correlation between either 
 Al2O3 (r = 0.30) or Zr with Eu/Eu* (r = 0.03) reflects that 
neither clay nor zircon does not play a role in the Eu anomaly.

The lack of correlations between HREEs, LREEs, and 
REEs with  Al2O3,  TiO2, and  P2O5 confirms that apatite, 
monazite/rutile/titanite are not REEs host minerals in the 
samples. A strong correlation of Zr and LREEs (r = 0.82) 
and a weak correlation between Zr-LREEs (r = 0.38) indi-
cate that zircon is host HREE in shale samples.

Therefore, these rocks were dominantly derived from 
intermediate-acidic rocks in an active continental margin 
and deposited in a sediment-starved basin under reducing 
conditions. They have been affected by post-depositional 
K-metasomatism.

Source‑area weathering

Geochemical data of the fine-grained sedimentary rocks are 
significant in determining the weathering intensity of their 
source rocks (e.g., Lee 2002). Various chemical weathering 
indices have been proposed based on the molecular percent-
ages of major oxide elements (e.g., Taylor and McLennan 
1985). Nesbitt and Young (1982) proposed the CIA as a 
proxy for chemical weathering in the sediment source area 
as follows:

CIA = Al
2
O

3
∕
(

Al
2
O

3
+ K

2
O + Na

2
O + CaO∗

)

∗ 100
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In the equation, CaO* refers to the mole fraction of CaO 
in silicate minerals. Here, it is less than  Na2O, and the value 
of CaO remains unchanged (McLennan 1993).

CIA values of the samples range from 70 to 75, with an 
average of 73, representing moderately weathered source 
rocks (Table 3). Price and Velbel (2003) suggested that 
eroded metasediments would have high CIA (65–88) 
even without further chemical weathering. The samples 
fall nearby muscovite/illite minerals in the triangle 
 Al2O3–(CaO* +  Na2O)–K2O diagram (Fig.  5C). The 
locations of samples indicate a moderate-degree alteration of 
the source rock or low-grade metamorphism of the Sanandaj 
shale. Table 3 shows weathering intensity indices: CIW 
(= 79–89; Harnois 1988), CIW' (= 84–91; Cullers 2000), and 
PIA (= 76–86; Fedo et al. 1995). Strong linear correlations 
among weathering indices (Table 3), the weak relationship 
between them with  Al2O3, and the presence of sericite, 
are indicating the Sanandaj shale, experienced low-grade 
metamorphic conditions.

The Rb/Sr ratio is also a significant parameter in 
identifying the degree of source-rock weathering (McLennan 
et  al. 1993). The shale samples have Rb/Sr ratios from 
0.35 to 1.62 with an average of 0.92, which is higher than 
that calculated for Rb/Sr in the UCC (0.33) and the PAAS 
(0.80; McLennan et al. 1983). These values show relatively 
low maturity (e.g., Cisterna et al. 2018) and a moderate 
weathering intensity in the source area.

Weathering, leaching, and sedimentary recycling 
lead to the removal of U, whereas the Th content remains 
constant and the Th/U ratio increases. An average value 
of Th/U (= 4.5–7.7) for the samples is about 6.2, which 
points to intense weathering and recycling of the source 
rocks (McLennan et al. 1993). Linear correlations of Th-U 
(r = 0.83), Th/U-CIA (r = -0.14), Th/U-CIW (r =  − 0.02), 
Th/U-CIW' (r =  − 0.08), and Th/U-PIA (r =  − 0.11), 
representing there is no relationship between the Th/U ratios 
and weathering indices in the samples. That is due to the 
trapping of uranium and thorium elements in the resistant 
mineral zircon.

Source‑area paleoclimate

Suttner and Dutta (1986) proposed the binary  SiO2 against 
 (Al2O3 +  K2O +  Na2O) diagram to determine the climatic 
conditions during the deposition of siliciclastic rocks. In 
this diagram, UCS samples represent arid to semi-arid cli-
mates (Fig. 6A). Additionally, the Ga/Rb versus  K2O/Al2O3 
diagram (Roy and Roser 2013) for the samples emphasizes 
the semi-arid climatic conditions (Fig. 6B). The Cretaceous 
was characterized by humid conditions corresponding to 
active volcanoes associated with high seafloor spreading 
rates (Koch and Hansen 2021). Thus, the paleoclimate con-
ditions shown by the samples are probably related to the 
intense tectonic activity during weathering.

Sediment recycling

SiO2/Al2O3 ratio is an index of sediment maturity and sensi-
tivity to sediment recycling (Roser and Korsch 1986; Arm-
strong-Altrin et al. 2021).  SiO2/Al2O3 ratios for the samples 
range from 3.4 to 5.4, with an average of 4.3, indicating low 
sediment maturity (e.g., Roser et al. 1996).

On the Th/Sc–Zr/Sc diagram, the samples follow the gen-
eral trend of igneous differentiation (Fig. 6C) without indicat-
ing sediment recycling. Th/Sc and Zr/Sc values are assumed 
to remain constant throughout sedimentary processes and 
represent the original igneous/source rock compositions. In 
addition, the samples have low Hf (0.29–1.37 < 3–7 ppm) and 
La/Th ratios (1.22–3.38 < 5), suggesting absence of sediment 
recycling (e.g., McLennan et al. 1993).

Source rocks

The source rock is a critical parameter that controls the 
composition of sedimentary rocks (Taylor and McLennan 
1985). Yamamoto et al. (1986) and Willis et al. (1988) 
suggested that  Al2O3/TiO2 ratios of most sedimentary rocks 
are identical to those of their source rocks. Aluminum and Ti 
fractionations are insignificant between sediments and their 

Fig. 6  (A) Ga/Rb-K2O/Al2O3 diagram for the UCS samples (after 
Roy and Roser 2013). (B)  SiO2 vs.  (Al2O3 +  K2O +  Na2O) diagram 
showing chemical maturity of the UCS samples and their paleocli-

mate (after Suttner and Dutta 1986). (C) Plots of Th/Sc vs. Zr/Sc, 
monitoring sediment recycling processes for the UCS samples (after 
McLennan et al. 1993)
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parent rocks, but  SiO2 can change during sedimentary rocks’ 
alteration. Hayashi et al. (1997) used  Al2O3/TiO2 ratios of 
sedimentary rocks to estimate the  SiO2 content in the source 
rocks. Poldervaart (1955) and Holland (1984) constructed 
the following equation for the igneous rocks:

The samples contain 58.8 to 64.2 wt.%  SiO2
* with an 

average of 60.9 wt.% (based on  Al2O3 and  TiO2 values), 
similar to total  SiO2 in the crust (e.g., Rudnick and Gao 
2003), which probably suggests intermediate source rocks. 
Besides, the  Al2O3/TiO2 ratios in the samples range from 
18.4 to 25.3, with an average of ~ 21.2, and are equal to 
those in intermediate and felsic rocks (e.g., Sugisaki 1980; 
Yamamoto et al. 1986).

Potassium and rubidium are sensitive to sedimentary 
recycling and are used as indicators of the source rock 
compositions (Wang et al. 2014).  K2O versus Rb diagram 
indicates that samples are generated from intermediate and 
silicic igneous rocks (Fig. 7A). The samples in  K2O +  Na2O 
versus  SiO2 (LeBas et al. 1986) and  SiO2 versus Zr/TiO2 
(Winchester and Floyd 1977) diagrams show andesite and 
rhyolite-rhyodacite source rocks, respectively (Fig. 7B, C).

Source rock discrimination diagrams based on major ele-
ment oxides are sometimes unreliable because some of them, 
such as alkali and alkaline earth elements, are sensitive to 
diagenesis. In contrast, the HFSEs and REEs are immobile 
(e.g., Jian et al. 2013) and resistant to geochemical frac-
tionation during weathering, erosion, and post-depositional 
processes (Taylor and McLennan 1985; McLennan 1989; 
Greber and Dauphas 2019). They include both incompatible 
(Th, La, Hf) and compatible (Sc, Cr, Co) elements whose 
ratios are significant for separating felsic from mafic source 
rocks in shales and sandstones (e.g., Cullers 1994; Cox et al. 
1995; Fedo et al. 1996). Therefore, their abundances and 
ratios reflect the features of source rocks (Wang and Zhou 
2012; Wang et al. 2012, 2013).

Th/Sc ratio is a sensitive index of source rocks (e.g., 
McLennan 1989). The felsic and intermediate rocks have 
Th/Sc ratios of more than 1.0 and 0.6–1.0, respectively (Tay-
lor and McLennan 1985). The Th versus Sc plot (Fig. 7D) 
shows that shale data cluster below (n = 5) and above (n = 4) 
the Th/Sc = 0.6 line, indicating the contribution from inter-
mediate parent rocks.

A typical zircon has a Zr/Hf ratio of ~ 33.6, which is the 
average in the crust (Taylor and McLennan 1995). Hafnium 
content of zircon varies depending on the melt’s composi-
tion, from which the zircon is crystallized. Ratios of Zr/Hf in 
the samples (range from 24 to 217) show compositional vari-
ation (Table 3), and a comparison with the PAAS illustrates 
at least exists three types of source rocks in the study area: 
The ratios are lower than, equal to, and more than that in the 

SiO
∗
2
(wt.%) = 39.34 + 1.2578

(

Al2O3∕TiO2

)

− 0.0109
(

Al2O3∕TiO2

)2

PASS (Zr/Hf = 42). Zr/Hf ratios decrease from silica-under-
saturated rocks, such as syenite and nepheline syenite (Zr/
Hf = 60–150) (Correia Neves et al. 1974), to gabbro, diorite, 
and granitic rocks (Brooks 1970; Cerny et al. 1985). The Zr/
Hf ratio can be changed chiefly by mantle metasomatism and 
partial melting associated with subduction zone processes 
(e.g., Dostal and Chatterjee 2000).

On the Nb/Th–La/Nb diagram (Wang et al. 2016), the 
samples lie within arc volcanic rocks or magma fields that 
may have been polluted by crustal source components 
(Fig. 7E). La/Nb ratios > 1 (n = 7) indicate that their source 
rocks were derived from the lithospheric mantle (Erturk 
et al. 2018). The samples on the Co/Th versus La/Sc dia-
gram fall close to the felsic volcanic source rocks (Fig. 7F; 
Cullers 2002)

Bau and Dulski (1996) documented that Y/Ho ratios 
have nothing relationship with geological processes but 
rather represent source rocks. Y/Ho ratios range from 20.2 
to 28.1 in the samples (Table 3) and correspond to the val-
ues of Late Jurassic–Early Cretaceous igneous rocks (20.6 
to 26.9) in the study area (Azizi and Asahara 2013). Addi-
tionally, in the Cr/V versus Y/Ni diagram (Bailey 1981), 
all samples fall near the PAAS (Fig. 7G).

Felsic source rocks have high ratios of LREEs/HREEs 
(> 1), whereas mafic source rocks show lower ratios of 
LREEs/HREEs (< 1) (Wronkiewicz and Condie 1987). 
High Nd/ErCN (7.5–29.2 > 5) and La/LuCN (5.43–24.4 
between 3 and 27) ratios reveal felsic source rocks of 
samples (e.g., McLennan and Taylor 1991; Cullers 2000).

Eu anomalies are usually inherited from igneous sources 
in sedimentary rocks (e.g., Taylor and McLennan 1985; 
McLennan and Taylor 1991). Eu/Eu* values in samples 
vary from 0.26 to 0.89. Negative Eu anomaly (Eu/Eu* < 1) 
is attributed to the Eu-depleted felsic igneous rocks such as 
granite and granodiorite in the source region (Taylor and 
McLennan 1985). The Th/Sc–Eu/Eu* diagram (Cullers 
and Podkovyrov 2000) indicates that granodiorite rocks are 
the predominant sources of samples (Fig. 7H). Eby (1992) 
noticed that the Y/Nb ratio in granitoid evolved from the 
crustal melt is > 1.2 and in the mantle melt is < 1.2. Y/Nb 
ratios of samples range from 0.27 to 2.76 with an average 
of 1.15, possibly suggesting that source magma was mainly 
derived from the partial melting of the continental crust. 
Nb/Ta ratios are 11–12 for the crustal-derived and 17.5 for 
mantle-derived magma (e.g., Green 1995). The samples have 
a wide range of Nb/Ta ratios, varying from 3.3 to 18.5 with 
an average of 7.1, reflecting compositional variation origins 
due to magma differentiation. Niobium anomalies vary from 
0.15 to 0.30 for subduction-related rocks and 0.5 for passive 
margin sediments (Floyd et al. 1991). Nb/Nb* anomalies of 
samples (range from 0.14 to 0.34 except for two with values 
of 0.66 and 0.82) are mainly consistent with sources derived 
from subduction-related magmatic rocks (Table 3).
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The primitive mantle has Zr/Nb = 6.3–7.6 and Nb/
La = 1.0, and the continental rocks have Zr/Nb = 22–25 and 
Nb/La = 0.46 (Morata et al. 2005). The negative Nb anom-
alies (= 0.14–0.82), low Zr/Nb (= 1.9–12.4), and Nb/La 
(= 0.24–1.79) ratios along with La/Sm > 4 of the samples are 
typical features of arc-related calc-alkaline andesite rocks 
(e.g., Kelemen et al. 2003) generated in subduction zones 
(Pearce 1983; Baier et al. 2008). Besides, on the Th–Co dia-
gram (Hastie et al. 2007), the samples plot in calc-alkaline 
dacite and rhyolite source rock fields (Fig. 7I).

The 87Sr/86Sr ratios for granite and intermediate Jurassic 
arc rocks in the N-SaSZ are 0.711–0.725 and 0.708, respec-
tively (Shahbazi et al. 2010). The initial 87Sr/86Sr ratio for 
the shale samples (0.7106 ± 0.0032) is higher and lower than 
those of the intermediate and felsic source rocks, respectively.

Tectonic setting

Roser and Korsch (1986) applied the major oxide element 
patterns  (K2O/Na2O–SiO2) to discriminate tectonic settings. 
In this diagram, most samples fall in the active continental 
margin field and active continental margin-passive margin 
fields based on the  SiO2* and  SiO2 values, respectively 
(Fig.  8A). The  SiO2/Al2O3-K2O/Na2O diagram (Bhatia 
1983) suggests that UCS rocks have originated an active 
continental margin (Fig. 8B). The samples on the Rb/Zr 
versus Nb and Rb versus Y + Nb diagrams (Peccerillo and 
Taylor 1976) fall in the normal continental arc (subduc-
tion enriched source) and volcanic arc granite fields, too 
(Fig. 8C, D). In the Th–Sc–Zr/10 and La–Th–Sc triangle 
diagrams (Bhatia and Crook 1986), samples mainly plot in 

Fig. 7  (A) Diagram of  K2O vs. Rb. The main trend of Shaw 
(1968) with the K/Rb ratio of 230 and the boundary line between 
acid + intermediate and basic compositions (Floyd and Leveridge 
1987) are shown the UCS samples fall in the acid + intermediate 
field. (B, C) Diagrams of the  K2O +  Na2O-SiO2 and  SiO2-Zr/TiO2 
(after Winchester and Floyd 1977), based on  SiO2* (circle) and  SiO2 
(rhomb). (D) Th vs. Sc diagram for the UCS samples. Th/Sc ratios 
near unity are typical of UCC derivation, and Th/Sc ratios near 0.6 
suggest a more mafic component (after Taylor and McLennan 1985). 
(E) Nb/Th vs. La/Nb plot, showing the UCS samples are derived 
from arc volcanic rocks or crustal contamination. (F) Discrimination 

diagram of Co/Th–La/Sc for the UCS samples (after Gu et al. 2012). 
Most samples plot below the horizontal line of Co/Th = 1.27, indicat-
ing a felsic to an intermediate igneous source. (G) The plot of Cr/V 
vs. Y/Ni. The arrow points toward an ophiolitic component. The UCS 
samples plot nearby and below PAAS. PAAS: Post Archaen Aus-
tralia Shale; UC: Upper Crust. (H) Th/Sc vs. Eu/Eu* plot (Cullers 
and Podkovyrov 2000), showing the UCS samples are derived from 
granodiorite-tonalite. (I) Th–Co classification diagram (Hastie et  al. 
2007). The UCS samples fall within the calc-alkaline dacite and rhyo-
lite fields
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the continental island arc (Fig. 8E, F) and on the La/Yb–Th/
Yb diagram (Dostal et al. 1996) fall in the continental mar-
gin arc field (Fig. 8G).

Among the arc types, the samples show Andean arc-type 
geochemical features based on the La/Yb–Th/Yb (Condie 
1986) and La/Yb–Sc/Ni diagrams (Fig. 8H, I). On the Th/Yb 
versus Ta/Yb diagram (Pearce 1983), samples plot both in the 
within-plate volcanic zone (WPVZ) and active margin fields 
(Fig. 8J). The same behavior is observed in complex regions, 
where volcanic activity is transitional between subduction- 
to extension-related phases (e.g., Gorton and Schandl 2000).

Paleoredox conditions

A geochemical index is an effective method to determine the 
paleoredox conditions during the deposition of mudstone/

shale. Mn*, ratios of Ni/Co, V/V + Ni, and U/Th are sen-
sitive to paleoredox depositional environment conditions 
(e.g., Rimmer 2004). Manganese is more soluble in anoxic 
water and would tend to precipitate in overlying/underlying 
oxygenated waters. Mn* value is calculated as follows (e.g., 
Wedepohl 1978):

where the values of Mn  shales and Fe  shales are 600 and 
46,150 ppm, respectively (Wedepohl 1978).

Negative values of Mn* (− 3.6 to − 6.6) (Table 3) suggest 
that UCS samples were deposited under reducing conditions 
(e.g., Brumsack 2006). Besides, the samples show a strong 
positive correlation between Ni and Co (r = 0.89), high Ni/
Co (5.6–9.9) (> 5: Jones and Manning 1994), and V/(V + Ni) 

Mn ∗= log [(Mn sample∕Mn shales)∕(Fe sample∕Fe shales)],

Fig. 8  (A)  K2O/Na2O vs.  SiO2 (circle) and modified  SiO2 (rhomb) 
plot with discrimination fields (after Roser and Korsch 1986). (B) 
Diagram of  SiO2/Al2O3 vs.  K2O/Na2O (after McLennan et  al. 
1990), samples based on  SiO2 (rhomb) and modified  SiO2 (circle) 
fall within the ACM area. (C) Rb/Zr–Nb diagram (Peccerillo and 
Taylor 1976) represents that samples fall in the normal continental 
arc field. (D) Rb-Y + Nb diagram shows that samples plot within 
the volcanic arc granite field. (E, F) Th-Sc-Zr/10 and La-Th-Sc 

diagrams (after Bhatia and Crook 1986). The UCS samples mainly 
plot within or close to the sectors of continental island arcs and 
active continental margins. (G) La/Yb-Th/Yb diagram (Dostal et al. 
1996), the UCS samples plot within the sectors of the continental 
margin arc. (H, I) La/Yb-Th/Yb (after Condie 1986) and La/Yb-Sc/
Ni (after Bailey 1981) diagrams, the UCS samples mainly show the 
Andean arc type. (J) The samples on the Th/Yb-Ta/Yb diagram plot 
within the active continental margins
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(0.64–0.90) ratios (> 0.46: Hatch and Leventhal 1992) support 
the reducing conditions. Meanwhile, low U/Th ratios (0.13 
to 0.22 < 0.75) of the samples highlight that deposition has 
occurred under oxic conditions (Rogers and Adams 1969), 
unlike the other proxies. As described before, the strong cor-
relations of Zr-U (r = 0.86) and Zr-Th (r = 0.78) indicate that 
U and Th are hosted in zircon (Bea 1996). The high chemical 
resistance of zircon leads to the U and Th values being insen-
sitive to redox conditions. Therefore, Mn*, V/(V + Ni), and 
Ni/Co values show dysoxic/anoxic marine conditions.

Sedimentary environment

The chemical compositions of the UCS samples imply that 
deposition occurred in an active continental margin envi-
ronment. This setting is common in the convergent plate 
boundaries. Active continental margins include trench, 
trench slope, fore-arc, and back-arc settings (Bailleul et al. 
2007). The  REECN patterns, Eu/Eu*SN anomaly, and Rb–Sr 
isotope system of the shale samples reveal that detritus were 
derived from the weathering of the young differentiated arc 
in the subduction zone (e.g., McLennan et al. 1993; Girty 
et al. 1996). Lithofacies and their stacking patterns of the 
UCS (Fig. 1C) are comparable to those from the trench (K8 
unit) to trench slope (K8 and K9 units) and fore-arc (K8, 
K10-K12 units) basins (Draut and Clift 2012). Paleoredox 
indices, slightly negative Ce anomalies (0.85 to 1.03 with an 
average of 0.97), and the negative linear correlation between 
Ce/Ce*SN and HREEs/LREEs ratio (r =  − 0.72) indicate that 
shale layers formed predominantly in the clastic sediment-
starved basin under reducing conditions (e.g., Rimmer et al. 
2004). The volcanic activity may have caused the upwelling 
of the anoxic deep-water, the demise of planktonic foraminif-
era, and the deposition of marine black shale-bearing pyrite 
(Fig. 3G) during the Late Cretaceous (e.g., Schlanger et al. 
1987; Ohkouchi et al. 2015). The deposits of these settings 
are mainly derived from the slope and accumulated in the 
basin like the turbidites (i.e., flysch deposits) in the northern 
North Atlantic (e.g., ODP Site 1276; Trabucho-Alexandre 
et al. 2011) and Mariana Basin (DSDP Site 585; Whitman 
et al. 1985).

Carbonate facies association with the shale layers repre-
sents the warm conditions during deposition (Hay 1981). 
Due to high relief, no effective recycling occurs in turbidites. 
These deposits preserve provenance characteristics such as 
source rocks and the evolution of magmatic and plate tec-
tonic systems (Clift et al. 2000). Therefore, they would be 
ideal candidates for studying the geodynamic evolution of 
basins (e.g., Guo et al. 2012).

Geodynamics

The geodynamic evolution of the SaSZ has been con-
trolled through the opening and later closure of the Neo-
tethys Ocean at the northeastern margin of Gondwana 
(Alavi 1994). Berberian and King (1981) proposed a new 
rift roughly at this location of the main Zagros thrust from 
the Early Permian to the Middle Triassic, resulting in the 
development of the Neotethys basin. Following that, the 
Iranian plate was separated from the Arabian plate. From 
the Late Triassic, the Neotethys oceanic basin was reduced 
in its extent by subduction oceanic crust (final Wilson 
cycle stages) beneath the Iranian continental plate. The 
continued subduction generated an active arc margin and a 
deep-water trench basin. During the initial phase, the basin 
was filled with mud and organic matter derived from the 
water column (because of the lack of a significant source 
of deposits) associated with submarine volcanic rocks.

On the Ba/Th versus 87Sr/86Sr diagram (Fig. 9), sam-
ples fall in the pelagic sediment field/global subducting 
sediments in the trench, GLOSS (e.g., Plank and Lang-
muir 1998; Kilian and Behrmann 2003; Özdemir and Güleç 
2014). Released fluids from dehydrating of the oceanic slab 
also resulted in post-depositional K-metasomatism (e.g., 
Fedo et al. 1997; Dey et al. 2008) and a weak positive cor-
relation between  Al2O3 and CIA (r = 0.29).

Slope instability processes have eroded the accumu-
lated sediments on the slope and re-deposited them in 
the basin as turbidites. Also, the trench changed to the 
trench slope and fore-arc basins during the northeastward 
migration of the arc.

Fig. 9  Ba/Th vs. 87Sr/.86Sr diagram for the UCS samples showing the 
UCS samples fall within Gloss (global subducted sediments)/pelagic 
sediments (Plank and Langmuir 1998)
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Fig. 10  (A)  REECN patterns for Indian sediments (after Othman et al. 
1989). (B) Selected  REECN patterns for graywacke-shale turbidites 
from Phanerozoic sequences deposited on active continental margins 

(McLennan and Taylor 1991). (C) Typical  REECN patterns for mod-
ern deep-sea turbidites from continental arc tectonic settings (data 
from McLennan et al. 1990)

Black shales can be deposited during most of the 
Wilson cycle stages, but their properties are dependent 
on the depositional environment and the Wilson cycle 
stages. The  REECN patterns of the UCS shale are com-
parable to those found in the UCC, turbidites from the 
Phanerozoic continental arc, the young differentiated arc 
type in modern deep-sea (McLennan and Taylor 1991), 
and  REEsCN patterns for Indian sediments (Othman et al. 
1989) (Fig. 10A−C).

LREECN enrichment (mean La/YbCN = 10.5), low 
yttrium (Y < 20 ppm), and Yb concentrations (Yb < 2 ppm) 
of the samples (Table 3) are similar to adakite (e.g., Kele-
men et al. 2003), which originate from melting of the young 
subducted lithosphere (Defant and Drummond 1990). Also, 
the samples represent various Nb/Ta anomalies (0.14–0.84 
with an average of 0.34), the same as Archean granitoids of 
the tonalite-trondhjemite-granodiorite suite and the early 
continental crust of Earth (e.g., Foley et al. 2002). They 
are generated from the partial melting of subducted oce-
anic slabs under eclogite or garnet–amphibolite conditions 
at the convergent margins (Defant and Drummond 1990). 
The La/YbCN ratios of the samples (4.7–21.2) suggest that 
partial melting has occurred in garnet–amphibolite facies 
rather than in eclogite conditions (Foley et al. 2002). The 
 REECN patterns of the samples indicate that garnet was not 
a significant residual phase, and intracrustal partial melt-
ing happened at pressures below 10 kb (e.g., Taylor 1977). 
This process resulted in plagioclase fractionation and nega-
tive Eu anomaly in the source rocks.

The samples have a significant variation of Nb/Ta ratios 
(3.37–18.5) (Table 3), representing crustal recycling in the 
arc magmas (e.g., Foley et al. 2000). Niobium and Ta usually 
occur together in titanite and rutile, stable under high-pres-
sure conditions in the source rocks. The low concentrations 
of Nb and Ta in the samples show that these minerals did 
not contribute significantly to the melting.

Shifting from the ACM to WPVZ in the Th/Yb versus Ta/
Yb diagram may display tectonic evolution from low angle 
subduction to extensional volcanism regimes (e.g., Kremer 

and Tishin 2017). This transition probably occurred due to 
the rollback of the Neotethys slab in the collision zone dur-
ing subduction.

Conclusions

Upper Cretaceous Sanandaj shale is immature, first-order sed-
iment, and its terrigenous particles were eroded from interme-
diate to felsic source rocks in an active margin. In contrast to 
the generally Cretaceous humid climate, shale samples on the 
weathering index diagrams show the arid-semiarid climatic 
conditions of the source area. Therefore, the arid-semiarid 
climatic conditions/low chemical weathering of sediments is 
related to intense tectonic activity in the study area.

The correlations of Th–U (r = 0.83), Th–Zr (r = 0.83), and 
U–Zr (r = 0.90) indicate that zircon hosts both U and Th in 
the samples. The significant chemical resistance of zircon 
caused U–insensitive leaching behavior, and Th/U or U/Th 
ratios cannot reflect the paleoredox conditions and the inten-
sity of chemical weathering. The weak linear correlation 
of Th/U-CIA and the opposite behavior of U/Th relative to 
other paleoredox indices support this suggestion.

The studied samples show ratios of Th/U (> 3.8) and Th/
Sc (= ~ 0.4–0.7), a wide range of Eu/Eu*SN (= 0.26–0.89), 
and an isochron age of 125 ± 39 Ma with an initial 87Sr/86Sr 
ratio of 0.7106 ± 0.0032. These characteristics show that 
sediments were mainly derived from the young differen-
tiated continental Andean arcs of the Late Jurassic-Early 
Cretaceous.

The  REECN patterns of the samples are similar to those 
from the UCC, turbidites from the Phanerozoic continental 
arc and the young differentiated arc type in modern deep-
sea. The stacking pattern of K8-K12 units and shale geo-
chemistry indicates a transition from trench to fore-arc set-
tings through time under reduced conditions. The upwelling 
of anoxic water due to Cretaceous volcanic activity led to a 
critical change in ocean chemistry.
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The shifting from the ACM to WPVZ fields in the Th/
Yb versus Ta/Yb diagram may indicate the nature of tec-
tonic evolution from low angle subduction to volcanism in 
an extensional tectonic setting.
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