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Abstract
Rainfall variability is a common characteristic in Ethiopia that affects socioeconomic and ecological systems. In this study, 
we estimated the spatiotemporal variability and trend of rainfall from 1981 to 2019 in the Beshilo sub-basin of the Upper 
Blue Nile Basin (UBNB) using CHIRPS satellite rainfall estimates. The coefficient of variation (CV) and standardized 
anomaly index (SAI) were used to assess rainfall variability. The Mann-Kendall (MK) trend test and Sen’s slope estima-
tor were also employed to analyze the trend and extent of rainfall changes, respectively. The results showed that different 
rainfall events occurred in the catchment area, particularly on monthly and seasonal time scales. The annual rainfall CV 
ranges from 13.5–18.5% while the seasonal rainfall CV ranges from 15–40.6%, 36.5–85.7%, and 19–100.3% for the Kiremt 
(June–September), Belg (March–May), and Bega (October–February) seasons, respectively. The standardized anomaly index 
(SAI) also indicates the presence of moderate rainfall variability between the years with negative and positive anomalies in 
53.84% and 46.15% of the years analyzed, respectively. On a seasonal basis, the negative SAI of rainfall is 48.7%, 53.84%, 
and 51.28% in the Kiremt, Belg, and Bega seasons, respectively. The trends of annual and Kiremt rainfall showed an increas-
ing trend and decreasing trends in Belg and Bega rainfall were analyzed. The rising and declining trend for Kiremt and Bega 
rainfall was statistically significant (α = 0.05). Monthly, rainfall trends increased in all months except in February, March, 
April, and December. These results, therefore, highlight the need to plan and implement effective strategies for adapting to 
rainfall variability.
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Introduction

In the recent decades, there have been rapid changes and 
fluctuations in the earth’s climate system that have never 
occurred over an extended period of time (Ramanathan 
1988; Boisvenue & Running 2006; IPCC 2013; Pepin et al. 
2015; Ummenhofer and Meehl 2017; Wang et al. 2018). As 
a result of the drastic climate change and variability, a mul-
titude of effects have been seen on society, the environment, 
and the economy worldwide (Thornton et al. 2014; Frei et al. 
2015; Birkmann and Mechler 2015; Weldegerima et al. 
2018; IPCC 2013). Rainfall is among the most influential 

weather and climate variables. It affects the spatial and tem-
poral distribution of water in agricultural production, energy 
production, food production, and all water resources infra-
structure across the globe (Demeke et al. 2011; Bello et al. 
2012; Weldegerima et al. 2018; Ayehu et al. 2018). More 
than 85% of the African population depends on resources 
that are affected by climatic fluctuations and rain-fed agri-
culture (Diro et al. 2011; Lalego et al. 2019; Schilling et al. 
2020). This makes them particularly vulnerable to risks aris-
ing from the variability of rainfall (Anyah and Qiu 2012).

Rainfall patterns in East Africa exhibit large seasonal and 
interannual fluctuations that contribute to extreme weather 
events such as droughts and floods (Mekasha and Duncan 
2013; Viste and Sorteberg 2013; Omondi et al. 2014). In 
Ethiopia, rainfall varies widely due to seasonal changes and 
complex topography as well (Mekasha and Duncan 2013; 
Asfaw et al. 2018; Gebrechorkos et al. 2019). Variability in 
the spatial distribution of rainfall can be described by the 
seasonal rainfall cycle, the amount of rainfall, the beginning 
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and ending times, and the length of the vegetative period 
(Segele and Lamb 2005). It is also possible for rainfall to 
vary over time from days to decades in terms of the direc-
tion and extent of rainfall trends across regions and seasons 
(Viste and Sorteberg 2013; Worku et al. 2019; Dawit et al. 
2019). As a result of climate variability, climate extremes 
such as droughts or floods have resulted in a significant 
impact on millions of poor farmers and natural ecosystems, 
as well as people’s socioeconomic status (Worku et al. 2019; 
Tessema and Simane 2020). Hence, the increased capacity 
of consistent and adequate seasonal rainfall trend analysis 
and rainfall forecasting is essential to addressing future rain-
related disasters (Diro et al. 2011).

Therefore, it is crucial to study the spatiotemporal dynam-
ics of increased rainfall variability, in order to develop strate-
gies and agricultural practices for adaptation (Asfaw et al. 
2018; Lalego et al. 2019; IPCC 2021). For this, we need 
high-frequency in situ observations in both space and time 
that are as comprehensive as possible. Several studies have 
identified poor data quality, data discontinuities, a lack of 
evenly distributed stations, availability, and accessibility to 
be the most fundamental obstacles in developing countries 
in general and Ethiopia in particular (Katsanos et al. 2016; 
Kimani et al. 2017; Fenta et al. 2018). These are also the 
limitations in the Beshilo sub-basin where this study was 
conducted. Nevertheless, advances in satellite-based rainfall 
data sets have been widely used as an alternative to long-
term station observations to better characterize the spatial 
footprints associated with climate change (Ayehu et al. 2018; 
Dinku et al. 2018; Fenta et al. 2018; Cattani et al. 2018; 
Alemu and Bawoke 2020).

Several studies have been carried out in Ethiopia (e.g., 
Degefu and Bewket 2014; Gummadi et al. 2018; Moham-
med et al. 2018; Weldegerima et al. 2018; Gedefaw et al. 
2019; Dawit et  al. 2019; Abegaz 2020; Geremew et al. 
2020; Ademe et al. 2020) to assess rainfall variability and 
trends. According to studies cited above, rainfall in different 
Ethiopian agroecological zones exhibits various trends and 
variations. In addition, most of the previous studies have 
been limited to data from a few meteorological stations. A 
study of the temporal and spatial variability of rainfall in 
Beshilo sub-basin, which is often affected by climate-related 
disasters, does not exist. According to the abovementioned 
studies, a more comprehensive study of spatial and tem-
poral variability and trend of rainfall at the local level is 
needed by analyzing high-resolution geospatial data. For this 
purpose, Climate Hazards Group InfraRed Rainfalls with 
Stations (CHIRPS) has provided long-term, high-resolution 
data sets that can be used to examine rainfall variability and 
trends. The main objective of this study was, therefore, to 
assess the spatial distribution and temporal trends of rain-
fall in the Beshilo sub-basin of the UBNB, using CHIRPS 
satellite rainfall estimates. Findings from this study will be 

crucial for the development of effective strategies for adapt-
ing to and coping with climate change. It will also have 
broad implications for many other regions of the world with 
agroecologies similar to those in the Beshilo sub-basin.

Materials and methods

Descriptions of the study area

The Beshilo basin is one of the sub-basins of the UBNB, 
locally known as Abbay in Ethiopia. It has an estimated area 
of 13,243 km2 and extends between 38° 58′ 8.760″ E and 11° 
20′ 57.954″ N. Its elevation ranges from 1117 to 4235 m above 
sea level (Fig. 1). A region of moist and sub-moist middle 
highlands can be found in the basin, whereas the afro-alpine 
to sub-afro-alpine highlands can be cold to very cold. The low-
lands in the southeastern parts of the basin are hot to warm 
humid lowlands (Yilma and Awulachew 2009). There are three 
rainy seasons in this area, locally called Kiremt, Belg, and the 
Bega. The main rainy season is Kiremt, which extends from 
June to September. Belg is a short rainy season from March to 
May, while the Bega is a dry season from October to February. 
Rainfall in the basin ranges from 825 to 1470 mm on average 
every year. The annual maximum and minimum temperature 
in the sub-basin fluctuates between 13 to 30 °C and −1 to 15 
°C. The majority of the sub-basin’s land is used for cultivation, 
with only a few parts used for pasture (Yilma and Awulachew 
2009; Ahmad et al. 2020).

Data types and sources

To conduct this study, we used high-resolution satellite rainfall 
data from remote sensing satellite estimates. Most of the rainfall 
data from meteorological station observations are inadequate in 
the study area due to sparse or non-existent station networks (Ale-
mayehu and Bewket 2017a; Bayissa et al. 2017; Asfaw et al. 2018; 
Alemu and Bawoke 2020). In addition, rainfall data from in situ 
meteorological stations included recordings over short periods 
and a large percentage of missing records to aid in trend analysis.

In this case, the satellite rainfall data from the Climate 
Hazards Group Infrared Rainfall with Stations (CHIRPS) 
(https://​data.​chc.​ucsb.​edu/​produ​cts/​CHIRPS-​2.0/) is a 
very reliable source of rainfall data (Bayable et al. 2021; 
Dinku et al. 2018; Belay et al. 2019). CHIRPS is a quasi-
global dataset (covering the range between 50° N and 50° 
S) available from 1981 to the present day with a spatial 
resolution of 0.05° (∼5.3 km) and created using multiple 
data sources (Funk et al. 2015). The data product CHIRPS 
is developed by the U.S. Geological Survey (USGS) 
and the Climate Hazards Group (CHG) of the Univer-
sity of California (Knapp et al. 2011; Funk et al. 2015). 
We chose this newly developed satellite rainfall product 
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because of its relatively high spatial resolution over long 
time series and the inexpensive information about rainfall 
on different time scales.

The daily observed rainfall station data for Masha, Des-
sie, Nefas Mewcha, and Wegel Tena were obtained from the 
National Meteorological Agency (NMA) of Ethiopia to vali-
date the satellite-derived rainfall products in the study region 
(Table 1). The missing data values ​​were filled in using the 
Multivariate Imputation by Chained Equations (MICE) algo-
rithm (Buuren 2014) that completes missing values ​​at a sin-
gle station, using the complete observed values ​​of all stations 
examined as predictors. The rainfall data of all selected sta-
tions were subjected to quality control and homogeneity test 
of their series with the software RClimDex to identify ques-
tionable data sets in the weather data sets (Zhang et al. 2004). 
Once these measures were undertaken, annual, monthly, and 
seasonal data were calculated from the daily rainfall records 
for each station. This was done to assess the accuracy of the 
CHIRPS satellite rainfall product.

Evaluation of CHIRPS rainfall data

Advances in satellite observation are becoming an ever-
increasing source of up-to-date, repetitive, and inexpensive 

rainfall data on various time scales. However, uncertain-
ties due to spatiotemporal sampling errors, errors in algo-
rithms, and satellite instruments can affect the accuracy 
and result from a significant error in satellite-based rainfall 
patterns and variability studies (Kimani et al. 2017; Dinku 
et al. 2018; Fanta et al., 2018; Belay et al. 2019; Alemu 
and Bawoke 2020; Bayable et al. 2021). Thus, the reli-
ability of the satellite-derived rainfall products must be 
evaluated with the corresponding rain gauge data before 
using them for the planned application (Dinku et al. 2018; 
Fenta et al. 2018; Belay et al. 2019). The performance 
of different satellite-derived rainfall estimates has been 
evaluated across Africa including in different parts of Ethi-
opia (Bayissa et al. 2017; Kimani et al. 2017; Ayehu et al. 
2018; Dinku et al. 2018; Fenta et al. 2018; Bayable et al. 
2021) and their results showed that the CHIRPS estimates 
are significantly better than most other long-term satellite 
rainfall products. However, further validation work needs 
to be carried out for the relatively recently developed 
CHIRPS rainfall product on different spatial and temporal 
scales over Ethiopia (Ayehu et al. 2018).

In this study, we assessed the performance of CHIRPS 
satellite rainfall estimates on monthly, seasonal, and 
annual timescales based on four rain gauge observations. 

Fig. 1   Map of the study area 
and the climate stations used

Table 1   Properties of in situ 
meteorological stations and 
percentage of the missing value

No. Stations Geographical coordinates Elevation Period of record Missing data (%)

Latitude (°) Longitude (°)

1 Masha 39.02 11.3 1792 2008–2018 4.68
2 Dessie 40.66 11.12 2553 2007–2019 9.36
3 Nefas Mewcha 38.468 11.73 1800 1998–2015 5.53
4 Wegel Tena 39.22 11.59 1973 1998–2015 13.43
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We downloaded CHIRPS rainfall estimates in a raster for-
mat and used the Python 3.8.5 (Van Rossum and Drake 
2001) software to retrieve the desired point values at a 
spatial resolution of 0.05° latitude-longitude. Addition-
ally, the point values of the CHIRPS rainfall estimates 
were extracted at rain gauge locations in order to validate 
the CHIRPS rainfall estimates. The comparison between 
the extracted CHIRPS satellite rainfall estimates and the 
ground rainfall observation data was made with various 
statistical measures (Bayissa et al. 2017; Kimani et al. 
2017; Ayehu et al. 2018; Dinku et al. 2018; Fenta et al. 
2018; Alemu and Bawoke 2020; Bayable et al. 2021). The 
validation statistics used here are as follows:

i	 Pearson coefficient
	   The Pearson correlation coefficient (r) is used to 

measure the goodness of fit and the linear relationship 
between CHIRPS and rainfall data from meteorologi-
cal stations (Alemu and Bawoke 2020). Its value ranges 
from a negative one to a positive one, with a positive 
one indicating the perfect score. The Pearson correlation 
coefficient (r) was calculated using the formula:

where Oi is the observation value and Pi is the forecast value 
and Obar is average of observation values and Pbar is 
average of forecast values.

ii	 Nash Sutcliffe Efficiency coefficient
	   The Nash-Sutcliffe coefficient of efficiency (NSE) was 

used to show the relative magnitude of the variance in 
residuals compared to the variance in observed rainfall 
values (Nash and Sutcliffe 1970). The value ranges from 
–∞ to 1, with higher values indicating a better match 
between CHIRPS satellite rainfall data and meteoro-
logical station data. Negative NSE values indicate that 
the meteorological station is a better estimate than the 
CHIRPS rainfall products; 0 indicates that the meteoro-
logical station is as good as the CHIRPS rainfall prod-
ucts. It was calculated using the formula:

where Oi is the observation value and Pi is the forecast value 
and Obar is average of observation values and Pbar is 
average of forecast values.

iii	 Root mean square error
	   The root mean square error (RMSE) was used to 

measure the difference between values predicted by 
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CHIRPS satellite rainfall data and meteorological sta-
tion data. These individual differences are also known 
as residuals, and the root mean square error serves to 
aggregate them into a single measure of predictive 
power. Root mean square error measures how much 
error there is between CHIRPS satellite rainfall data 
and station data sets. Its value ranges from 0 to ∞, and 
the maximum value is zero. It was calculated using the 
equation:

where Oi is the meteorological gauge rainfall value and Pi 
is the CHIRPS rainfall value.

iv	 Mean absolute error
	   Mean absolute error (MAE) is also a validation sta-

tistic that tells us how much of an error we can expect 
from CHIRPS satellite rainfall estimate. Similar to the 
root mean square error the value of mean absolute error 
ranges from 0 to ∞ and a perfect value is zero.

where Oi is the meteorological gauge rainfall value and Pi 
is the CHIRPS rainfall value.

v	 Mean bias error
	   Mean bias error is primarily used to estimate the 

average bias in the CHIRPS rainfall value. The value of 
MBE ranges from-∞ to ∞ and its positive and negative 
value indicates an overestimation and underestimation of 
CHIRPS data products, respectively (Fenta et al. 2018; 
Bayissa et al. 2017). It was calculated using the follow-
ing equation.

where Oi is the observation value and Pi is CHIRPS rainfall 
value.

Spatial‑temporal variability and trend analysis 
of rainfall

The spatial variability of rainfall was calculated using the 
coefficient of variation (CV) and the standardized anomaly 
index (SAI). The data set was analyzed via spreadsheet 
tools in MS Excel and the graphs were mapped with Arc-
GIS software. Inverse distance weighting was applied 
for spatial interpolation. The Mann-Kendall’s trend test 
(Mann 1945; Kendall 1975) and the Sens slope estimator 
(Theil 1950; Sen, 19680) were also used to identify and 
analyze possible trends in rainfall data.
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Coefficient of variation (CV)

The annual, seasonal, and monthly time series variability 
of the rainfall in the study area was examined by calculat-
ing the coefficient of variation (CV) (Muthoni et al. 2019). 
According to the classification of Asfaw et al. (2018), a 
CV below 20 is less variable, a CV between 20 and 30 is 
moderately variable, and a CV above 30 indicates high 
variability. It was calculated using the formula:

Here, CV is the coefficient of variation of the rainfall, σ 
is the standard deviation, and μ is the mean rainfall for the 
selected time scales. A higher CV value indicates greater 
variability in rainfall and vice versa.

Standardized anomaly index (SAI)

The standardized anomaly index (SAI) was used as a 
descriptor of the rainfall variability, which indicates the 
number of standard deviations by which a rainfall event 
deviates from the average of the years under consideration 
(Funk et al. 2015). It has also been calculated to deter-
mine the dry and wet years on the records and is used to 
assess the frequency and severity of droughts (Alemu and 
Bawoke 2020). The SAI value is classified as extremely 
wet (SAI>2), very wet (1.5 ≤ SAI ≤1.99), moderately wet 
(1 ≤ SAI ≤1.49), almost normal (−0.99 ≤ SAI ≤ 0.99), 
moderately dry (−1.49 ≤ SAI ≤ −1), very dry (−1.99 ≤ 
SAI ≤ −1.5), and extremely dry (SAI≤ −2) (Funk et al. 
2015) and is calculated as follows:

where SAIi is the standardized anomaly index in the year i, 
and Xi is the rainfall value for the respective year; x is the 
long-term mean rainfall during the observation and σ is the 
standard deviation of the rainfall during the observation 
period. In comparison, negative values ​​indicate a drought 
period, while the positive ones indicate above-average 
rainfall (wet situation) (Muthoni et al. 2019; Alemu and 
Bawoke 2020).

MK trend test and Sen’s slope estimator

The trend analysis was performed using the MK trend test 
and the Sen’s slope estimator (Mann 1945; Kendall 1975), 
using a modified package included in the statistical software 
R (RStudio) which was developed by the R Development 
Core Team (Core Team 2015). The MK test is the most 
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widely used nonparametric test used to detect monotonous 
trends in a series of environmental data, climatic data, or 
hydrological data (Gocic and Trajkovic 2013; Feng et al. 
2016). The trends determined with the MK test are less 
influenced by outliers, missing values, and uneven data dis-
tribution since its statistics are based on the (+ or −) sign 
and not on the values ​​of the random variables (Mann 1945; 
Kendall 1975; Belay et al. 2019). Therefore, the MK trend 
test is highly recommended by the World Meteorological 
Organization for general use in trend analysis. In this study, 
we have tested the null hypothesis (H0) with no trend, i.e., 
H. the observations xi are randomly ordered in time, tested 
against the alternative hypothesis (H1), in which there is 
a monotonous (increasing or decreasing) trend in the time 
series based on the MK test (Mann 1945; Kendall 1975). 
Mann-Kendall’s test S was calculated using the following 
formula:

where xi and xj are sequential data values for the time series 
data of length n and,

It was found that if the number of observations exceeds 
10, the statistic S is identical and independently distributed 
with the mean and E (S) becomes zero (Kendall 1975). In 
this case, the variance statistic is given as follows:

where n is the number of observations, j is the number of 
bound groups in the time series, and tp is the number of data 
points in the pth group. The test statistic Z is calculated as 
follows:

The existence of a statistical significance trend is assessed 
with the significance level = 0.05 to test either a monotonous 
upward or downward trend. Positive and negative values ​​of 
Z indicate an upward and downward trend, respectively. 
The null hypothesis is rejected if the absolute value of Z 
is greater than the critical values ​​or the p-value is less than 
the selected significance level (= 0.05 or 0.1). If the null 
hypothesis is rejected, the result is said to be statistically 

(8)S =
∑n−1

i=1

∑n

j=i+1
Sign(xj − xi)

(9)Sign(xj − xi) =

⎧
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1 if (xj − xi) > 0

0 if (xj − xi) = 0

− 1 if (xj − xi) < 0

(10)
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18

[
n(n − 1)(2n + 5) −
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]
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for S > 0

0 for S = 0
S+1√
Var (S)

for S < 0
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significant. On the other hand, the magnitude of the trends 
was calculated using the Theil-Sen’s slope estimator (Theil 
1950; Sen 1968). The method is a robust non-parametric 
estimator that does not react to missing values or outliers. It 
also provides consistent performance in statistical metrics 
of standard deviation, mean square error (RMSE), and slope 
estimator bias versus linear regression. The Theil-Sen test 
estimates the median of the slopes (β) using the following 
equation (Theil 1950; Sen 1968):

whereby β represents the median value of the slope values 
between the data measurements xi and xj in the time steps 
i and j (i < j) accordingly. The positive value of β indicates 
an increasing trend, while the negative value of β indicates 
a decreasing trend in the time series. The sign of β reflects 
the direction of the data trend, while its value indicates the 
steepness of the trend (Alemu and Bawoke, 2020; Asfaw 
et al., 2018).

Results and discussion

Evaluation of CHIRPS rainfall data

This study examined the performance of CHIRPS rainfall data 
on monthly, seasonal, and annual timescales for use in spati-
otemporal variability and trend assessment of rainfall. The eval-
uation was carried out based on meteorological measuring point 
data. Table 2 shows the results of the validation of CHIRPS 
rainfall data using data from meteorological measuring stations. 
The difference between the recorded mean monthly rainfall of 
the station and the corresponding values ​​from the CHIRPS data 
is presented separately for each station in Fig. 2. In general, 
the result shows a very consistent agreement between the data 
from the weather station and the CHIRPS rainfall estimates on 
monthly timescales. The values ​​of the correlation coefficient (r) 
were high for the three stations with values ​​around 0.99. The 
relatively lowest correlation coefficient (0.64) was obtained at 
the Nefas Mewcha weather station.

In addition, the monthly mean values ​​of the Nash Sut-
cliff efficiency coefficient (NSE) for all station locations 
were between 0.32 and 0.99 (Table 2). The monthly com-
parison of the rainfall data with statistical MAE, MBE, and 
RMSE values ​​showed a good performance of the CHIRPS 
rainfall estimates over the Beshilo sub-basin (Table 2). As 
can be seen from the table, the monthly CHIRPS rainfall 
products were underestimated by approximately −2.029 
mm, −38.13 mm, −6.67 mm for Dessie, Nefas Mewcha, 
and Wegel Tena stations, respectively. On the other hand, 
the monthly CHIRPS rainfall data at the Masha stations was 

(12)β = median

(
xj − xi

j − i

)

overestimated by about 1.26 mm. The minimum MAE (5.43 
mm) and the maximum MAE (42.28 mm) were recorded in 
the Masha and Nefas Mewcha stations, respectively. The 
RMSE values ​​ranged from 6.84 to 107.85. Based on the sta-
tistical measurements (Table 2), the monthly CHIRPS rain-
fall products at the stations Masha and Dessie do better than 
at the other two stations. In general, the overall performance 
assessment of the CHIRPS rainfall estimates demonstrated 
the potential of the CHIRPS rainfall products for various 
applications. This includes rainfall trends and variability 
studies in the study area. The present result is in line with 
previous studies carried out by Alemu and Bawoke (2020) 
in the Amhara regions of Ethiopia, Ayehu et al. (2018) in the 
UBNB of Ethiopia, Dinku et al. (2018) on east Africa, and 
Bayissa et al. (2017) and Bayable et al. (2021) in the West 
Harerge zone of Ethiopia.

Table 2   Average statistical analysis of rainfall on monthly, seasonal, 
and annual timescales for the weather station and CHIRPS rainfall 
data

Monthly time scale Dessie Masha Nefas Mewcha Wegel Tena

  R 0.99 0.99 0.644 0.99
  NSE 0.987 0.995 0.319 0.978
  MAE 6.746 5.432 42.284 9.145
  MBE −2.029 1.26 −38.139 −6.673
  RMSE 10.478 6.84 107.85 14.874
Bega (October–

February)
  R 0.878 0.824 0.259 0.279
  NSE −0.135 −0.135 −0.245 −0.267
  MAE 22.944 12.323 55.58 41.924
  MBE −10.393 9.7 −33.338 −17.387
  RMSE 25.836 15.444 84.966 47.187
Belg (March–May)
  R 0.74 0.995 0.747 0.541
  NSE 0.431 0.987 0.37 −0.118
  MAE 38.005 2.78 51.067 50.05
  MBE −12.79 2.78 −15.788 −17.67
  RMSE 64.87 6.553 71.118 76.951
Kiremt (June–Sep-

tember)
  R 0.54 0.68 0.17 0.69
  NSE −0.557 0.352 −2.377 0.399
  MAE 33.43 42.656 46.742 28.736
  MBE 18.43 2.744 −27.027 −8.716
  RMSE 55.338 49.717 57.035 33.508
Annual time scale
  R 0.65 0.9 0.5 0.4
  NSE 0.14 0.65 0.15 0.26
  MAE 9.8 13.8 23.013 31.14
  MBE 24.04 30.832 −35.013 −28.11
  RMSE 49.1 38.25 48.78 58.6
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The performance of the CHIRPS rainfall products was 
also assessed and shown in Table 2 for each season of the 
Beshilo sub-basin. This is because a different amount of 
rainfall is recorded. The table shows a good agreement 
between the CHIRPS rainfall estimates and the rainfall 
from the weather station for the Bega season (Octo-
ber–January) with correlation coefficients (r) ranging from 
0.26 to 0.88 and NSE values ​​between 0.15 and 0.35 found 
for all station locations. Likewise, the CHIRPS rainfall 
data in the Belg season was in very good agreement with 
the data from the observation stations, with the r-value 
between 0.54 and 0.99 and the NSE values ​​for all station 
locations between 0.21 and 0.98 positions. In addition, 
good agreement between the CHIRPS products and the 
gauging stations with correlation coefficients (r) ranging 
from 0.17 to 0.69 was observed in the Kiremt season. The 
maximum correlation coefficient (r = 0.69) was obtained 
at the locations of the Wegel Tena station, while the cor-
relation coefficient for the location of the Nefas Mewcha 
station (r = 0.26) is weak.

In the Bega season, the CHIRPS rainfall data at the Des-
sie, Nefas Mewcha, and Wegel Tena stations in the study 
area were underestimated, while the rainfall data from the 
CHIRPS satellite at the locations of the Masha station in the 
study area was overestimated by about 9.7 mm. Similarly, 
in the Belg season, the CHIRPS rainfall data at the Dessie, 

Nefas Mewcha, and Wegel Tena stations were underesti-
mated. On the other hand, at the Masha station location, it 
was overestimated by about 2.78 mm. The rainfall data from 
CHIRPS were underestimated during the Kiremt season at 
the stations Nefas Mewcha and Wegel Tena and overesti-
mated at the stations Dessie and Masha (Table 2). For the 
seasons Belg and Bega, the minimum MAE (2.78 mm) and 
maximum MAE (55.58 mm) were recorded in the stations 
Masha and Nefas Mewcha. This indicates that the CHIRPS 
rainfall data for all seasons correspond to the rainfall data 
in the study area. The result of this study agrees with previ-
ous studies by Bayissa et al. (2017) and found that CHIRPS 
are the most reliable satellite-based rainfall data on decadal, 
monthly, and seasonal timescales in the UBNB. In addi-
tion, Bayable et al. (2021) also reported the existence of a 
significant match between rainfall data from CHIRPS and 
monitoring stations west of the Harerge Zone in Ethiopia 
during the Belg, Bega, and Kiremt seasons.

On the annual timescale, an excellent agreement was also 
observed between the weather stations and the CHIRPS 
estimates, with the values ​​of the correlation coefficient 
(r) being between 0.4 and 0.9. The cumulative values ​​of 
CHIRPS rainfall were underestimated at the Nefas Mewcha 
and Wegel Tena stations, while they were overestimated 
at the Dessie and Masha stations (Table 2). In addition, 
CHIRPS showed NSE values ​​between 0.14 and 0.65 and 

Fig. 2   Performance of CHIRPS 
rainfall data with rainfall data 
from meteorological stations 
based on the mean monthly 
rainfall in the Beshilo sub-basin
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RMSE between 38.25 and 58.6 for all station locations. The 
result was consistent with the results of previous studies in 
most parts of Ethiopia (Ayehu et al. 2018; Dinku et al. 2018; 
Fenta et al. 2018; Alemu and Bawoke 2020; Bayable et al. 
2021). Overall, the CHIRPS rainfall data showed a very high 
performance for assessing the spatial distribution and tem-
poral trends of rainfall in the Beshilo sub-catchment area of ​​
the UBNB.

Annual and seasonal rainfall distribution

The mean annual CHIRPS rainfall estimate (1983–2019) 
for the Beshilo sub-basin was 946.06 mm. The minimum 
and maximum rainfall recorded were 759.5 and 1177 mm, 
respectively (Fig. 3). Only five station locations recorded 
rainfall of more than 1000 mm, while the remaining ten sta-
tion locations recorded rainfall amounts of less than 1000 
mm. The highest levels of rainfall were observed in the 
western and southeastern parts of the study area. The low-
est rainfall values, however, were observed in the central-
western part of the study area. The highest annual rainfall 
values ​​(1043–1177 mm) were measured around Dessie, Lay 
Gayint, Tulu Awlia, and the Dessie Zuria stations (Fig. 3). 
Torke and the southeastern part of Tach Gayint and the 
northern part of Simada district recorded the least annual 
rainfall (759.5–848 mm). The heaviest annual rainfall 
was observed at upper elevations than at lower elevations. 

Previous studies on rainfall distribution also reported a 
strong correlation between rainfall and altitude in their 
respective study areas (Addisu et al. 2015; Gummadi et al. 
2018; Ademe et al. 2020; Alemu and Bawoke 2020; Bay-
able et al. 2021).

Rainfall in the Beshilo sub-basin is bimodal. The spa-
tial rainfall patterns for all seasons (1983–2019) are shown 
below (Fig. 4a, b, and c). Much of the rainfall is concen-
trated in Kiremt (main rainy season), which accounts for 
more than 71% of the annual rainfall with a peak in July 
and August (Fig. 4a and Fig. 5). The highest rainfall values ​​
were recorded in the western and south-eastern parts of the 
study area, while the lowest rainfall values ​​were recorded in 
the north-western parts of the study area. Another notable 
contribution to the total annual rainfall occurred in the Belg 
(small rainy season) with 18.83%. During the Belg season, 
the southern and northeastern parts of the study area show 
the highest rainfall values, while the lowest rainfall values ​​
were recorded in the north-western parts of the study area. 
The rainfall of the Kiremt and Belg seasons followed almost 
the same spatial distribution as the annual rainfall. In addi-
tion, there was a strong correlation between rainfall and 
altitude this season. Similarly, the Bega season accounts for 
9.84% of the total annual rainfall in the study area. From 
Fig. 4c, it can be seen that the highest rainfall values ​​were 
recorded at the top of the northwestern part of the investi-
gation area. The result was in agreement with the results of 

Fig. 3   Spatial distributions 
of long-term mean annual 
rainfall (mm) in the study area 
(1981–2019)
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Fig. 4   Spatial distribution of the long-term mean Kiremt rainfall (mm) (a), the mean Belg rainfall (mm) (b), and the mean Bega rainfall (mm) (c) 
of the Beshilo sub-basin (1981–2019)

Fig. 5   Long-term average 
monthly rainfall of the Beshilo 
sub-basin (1981–2019)
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previous studies (Kiros et al. 2017; Gummadi et al. 2018; 
Alemu and Bawoke 2020; Geremew et al. 2020; Bayable 
et al. 2021) in most parts of Ethiopia.

The monthly rainfall was determined by averaging the 
rainfall of each month during the study period (1981–2019). 
The long-term mean monthly rainfall is shown in Figs. 5 
and 6. These figures show that April, July, August, and Sep-
tember were the wettest months, while January, February, 
November, and December were the driest months. In March, 
May, June, and October, there was relatively scant rainfall. 
The highest rainfall was recorded in July and August, while 
the lowest rainfall was recorded in January (Fig. 5). Alemu 
and Bawoke (2020) also found that June, July, August, and 
September were the main rainy months, and November, 
December, January, February, and March were the driest 
months in the Amhara region of Ethiopia.

Annual and seasonal spatio‑temporal variability 
of rainfall

Figure 7 shows the spatial distribution of the annual vari-
ability in rainfall using coefficients of variation in the study 
area. This figure shows that there was moderate variability 

in annual rainfall between years based on the coefficient of 
variation. The variability between the years was relatively 
greater in the northern and central-eastern parts of the study 

Fig. 6   Spatial distributions of the long-term average monthly rainfall of Beshilo sub-basin (1981–2019)

Fig. 7   Spatial distribution of long-term CV (%) of annual rainfall in 
Beshilo sub-basin (1981–2019)
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area (CV> 17%). In contrast, the variability in annual rain-
fall is lower in the western parts of the area (14.5%). High 
variability of rainfall was found in the northern and central-
eastern parts of the station locations including Wegel Tena, 
Wadla, Tenta, and Dawnt (Fig. 7). Areas with high annual 
rainfall showed less variation between years, while areas 
with low annual rainfall showed relatively greater variation 
between years. The results of this study were in agreement 
with previous studies by Alemayehu et al. (2020) and Marie 
et al. (2021), who showed moderate variation in rainfall in 
the Alwero watershed in western Ethiopia and north-western 
Ethiopia. It also agrees with the results of Yimer (2018), 
who reported moderate rainfall variability between years 
in the northeastern highlands of Ethiopia. In addition, the 

inverse relationship between rainfall variability and mean 
annual rainfall confirms the results of (Gummadi et al. 2018; 
Dawit et al. 2019; Alemu and Bawoke 2020; Geremew et al. 
2020; Bayable et al. 2021).

The spatial distributions of the CV of seasonal rainfall in 
the study area are shown below (Fig. 8a, b, and c). As shown 
in the figure, the seasonal rainfall variability was higher 
than the annual rainfall variability. The rainfall variability of 
Kiremt is less than 20% in the western parts, while the highest 
CV values ​​(35.5–40.6%) were observed in the Belg and Bega 
seasons. Kiremt’s rainfall variability appeared to be relatively 
stable. The coefficients of variation (CVs) for the area during 
the Belg season (36.5–85.7%) turned out to be significant 
(Fig. 8b). Similarly, the highest values ​​of the CV captured the 

Fig. 8   Spatial distribution of the long-term CV (%) of the rainfall of the season Kiremt (a), Belg (b), and Bega (c) in the lower basin of Beshilo 
(1981–2019)
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selection of the northwestern parts of the study area. With a 
CV of up to 100.3%, the Bega rainfall amount was extremely 
variable compared to the other seasons. The maximum CV 
during Bega rainfall was observed in the central northern 
and southeastern parts of the study area. Such annual and 
seasonal variability in rainfall could affect farmers’ ability to 
mitigate the effects of climate change and variability (Lalego 
et al. 2019). The result of our determination is supported by 
the findings of Alemu and Bawoke (2020), Geremew et al. 
(2020), and Marie et al. (2021), who reported more moderate 
variability in annual rainfall than seasonal rainfall, as many 
studies (e.g., Asfaw et al. 2018; Yimer 2018; Belihu et al. 
2018; Mohammed et al. 2018; Alemu and Bawoke 2020; 
Geremew et al. 2020; Bayable et al. 2021) in different parts of 
Ethiopia reported that rainfall from Bega and Belg was more 
variable than rainfall from Kiremt. In addition, this result 
agrees with the results of Marie et al. (2021) in northwestern 
Ethiopia and Abegaz (2020) across central Ethiopia, who 
noted that the Belg season rainfall was more variable than 
the Kiremt season rainfall.

The spatial distribution of the monthly rainfall CV (%) 
of the study area is shown in Fig. 9. It was found that not 
only the seasonal rainfall distribution but also the monthly 
rainfall distribution in the Beshilo sub-basin is variable. The 

coefficient of variation (CV) is between 16.55 and 222.7%. 
It was found to be highest in November, December, January, 
May, and February (CV> 175%). In contrast, in some parts 
of the study area, the months of August, July, and Novem-
ber showed the lowest inter-month variability (CV <25%). 
The remaining months had coefficients of variation (CVs) 
between 27.35 and 165.73%, indicating increased rainfall 
variability during these months. The result of this study 
agrees with the study by Marie et al. (2021), who reported 
the highest CV during the February and January months and 
the lowest CV during the August and July months across 
central Ethiopia. In addition, a study carried out in the West 
Harerge Zone of Ethiopia by Bayable et al. (2021) reported 
the highest CV in January, February, and November, and the 
lowest CV in July and August.

Annual and seasonal standardized anomalies 
of rainfall

The standardized annual and seasonal rainfall anomalies 
(1981–2019) over the entire study area are presented in Fig. 10. 
The result of the standardized anomaly index (SAI) showed 
the existence of interannual variability with 53.84% dryness 
tendency and 46.15% wetness tendency over the study area on 

Fig. 9   Spatial distribution of long-term monthly rainfall CV (%) of Beshilo sub-basin (1981–2019)
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an annual basis (Fig. 10a). The highest (extremely wet) posi-
tive anomaly (SAI = about 2.2) was observed in 2016, while 
the highest (extremely dry) negative anomaly (SAI = 2) was 
observed in 1984. The long-term annual rainfall anomalies were 
negative in 1981, 1986, 1988, 1993–2001, 2006/2007, 2010, 
2012–2014, and 2016–2019 (Fig.10a). The results of this study 
agree with the results of Alemayehu et al. (2020) in the Alw-
ero watershed in western Ethiopia, Bayable et al. (2021) in the 

western Harerge zone of Ethiopia, Geremew et al. (2020) in the 
Enebsie Sar Midir district in northwest Ethiopia, and Alemu 
and Bawoke (2020) in the regional state of Amhara in Ethiopia. 
According to Funk et al. (2015), fourteen nearly normal years 
(two moderately dry years (1982 and 1983), one severe (2015), 
and two extremely dry years (1984 and 1987)) were identified. 
In contrast, the study area experienced extremely wet years in 
2016, while 1998, 2017, and 2019 showed very wet years.

Fig. 10   Standardized anomalies 
of time series of the average 
annual (a), Kiremt (b), Belg 
(c), and Bega (d) rainfall. The 
straight red line is the linear 
trend for the variables while the 
black curved line is the 5-year 
moving average
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The result of this study also agrees with the findings of Abe-
gaz (2020) and reports that years like 1987 were years of extreme 
drought over the central parts of Ethiopia. In addition, Alemayehu 
et al. (2020) identified positive standardized rainfall anomalies for 
years such as 1996, 1997, 1998, 1999, 2010, 2012, 2013, 2015, 
and 2016 in the Alwero watershed in western Ethiopia.

The results of the SAI’s analysis of seasonal rainfall in 
the study area during the study period are also shown in 
Fig. 10b, c, and d. The percentage of negative anomalies was 
larger than positive anomalies in all seasons except Kiremt. 
Similarly, a study by Alemayehu et al. (2020) showed that 
the percentage of negative anomalies exceeded that of posi-
tive anomalies in all seasons except Kiremt in the Amhara 
region. Similar to the annual rainfall, interannual variability 
of the rainfall was found in the seasons Kiremt, Belg, and 
the Bega. These seasons had negative anomalies account-
ing for 48.7%, 53.84%, and 51.28%, respectively, during the 
years examined. Extremely dry conditions for Kiremt rains 
were experienced in 1984 and 1987. On the other hand, the 
highest negative anomaly was found in 1999 and 2011 in 
the Belg and Bega seasons, respectively. In the period from 
2000 to 2018, the standardized rainfall anomalies were posi-
tive, except for the years 2008 and 2013 for the Bega season.

Annual and seasonal rainfall trends

The results of the MK trend test and Sen’s slope estimator analy-
sis of monthly rainfall in the study area are presented in Table 3. 
The results of the analysis showed that there was a downward 
trend in February, March, April, and December (1981–2019). 
In contrast, a rising trend was observed in January, May, June, 
July, August, September, October, and November. The results of 
these decreasing and increasing trends for the monthly rainfall 
data were not significant in all months except June and Novem-
ber at a significance level of = 0.05 (Table 3). The result of this 

finding agrees with a study by Alemu and Bawoke (2020), which 
reports insignificant trends in all months except November in the 
Amhara region, to which our study area belongs. Another study 
conducted by Marie et al. (2021) also found no noticeable trend in 
monthly rainfall except for the February and September months in 
northwest Ethiopia. In addition, significant increasing trends were 
found by Tesfamariam et al. (2019) for the November month at 
Billate and Konso stations and the June month at Ziway station in 
the Rift Valley Lakes basin of Ethiopia.

The seasonal rainfall showed a downward trend in the Belg 
and Bega seasons, while an upward trend was recorded in the 
Kiremt season (Table 4 and Fig. 10b, c, and d). Significant 
rising and falling trends at 0.05 were also observed in the 
seasonal rainfall amounts of Kiremt and Bega. In addition, the 
annual rainfall showed an upward trend (Table 4 and Fig. 10a) 
and this positive trend was not significant with a significant 
level of 0.05. This result agreed with the results of Viste et al. 
(2013) in southern Ethiopia and reported a decreasing trend 
in rainfall during the Belg season over different periods. In 
addition to this, Gebrechorkos et al. (2019) found a non-
significantly decreasing (increasing) trend in eastern (west-
ern) parts of Ethiopia during the Kiremt season from 1981 
to 2016. Mohammed et al. (2018) also reported that rainfall 
in the Kiremt season around Dessie, Haik, and Mekaneselam 
increased significantly from six meteorological stations and 
in Belg recorded a decrease at all stations examined in the 
South Wollo zone (1984–2014). Similarly, Weldegerima et al. 
(2018) found an insignificant upward trend on both seasonal 
and annual time scales in the Lake Tana Basin. In addition, 
Alemu and Bawoke (2020) found an insignificant increas-
ing trend in annual and Kiremt rainfall (1981–2017) in the 
Amhara region of Ethiopia. Alemayehu and Bewket (2017b) 
also reported that the annual rainfall in most areas of the 
UBNB, to which the study area also belongs, shows statisti-
cally non-significant increases (Fig. 11).

Table 3   MK trend analysis of 
basin wide monthly rainfall in 
the Beshilo sub-basin (1983–
2019) at a significance level of 
α= 0.05

*Significant at α=0.05

Month Kendall’s tau S p-value Trend Z-value Sen’s slope 
(mm/year)

January 0.14 105 0.2 Upward 1.28 0.055
February −0.13 −94 0.26 Downward −1.13 −0.19
March −0.06 −43 0.61 Downward −0.51 −0.32
April −0.18 −67 0.42 Downward −0.8 −0.09
May 0.06 48 0.57 Upward 0.57 0.33
June 0.23 173 0.037 Upward 2.08* 0.64
July 0.15 111 0.18 Upward 1.33 1.77
August 0.14 101 0.23 Upward 1.21 1.06
September 0.27 23 0.53 Upward 0.15 0.15
October 0.185 137 0.1 Upward 1.65 0.63
November 0.34 249 0.003 Upward 3* 0.45
December −0.01 −9 0.92 Downward −0.1 −0.009
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In contrast, Wagesho et al. (2013) and Mulugeta et al. (2019) 
find a significantly reduced trend in Kiremt rainfall (at 0.1) over 
most parts of the Awash river basin. Likewise, Ademe et al. 
(2020) reported that there has been a significant decrease in 
rainfall for about 25% of locations around the entire agricultural 
region of Ethiopian highlands. Tabari et al. (2015) also reported 

that annual rainfall decreased at most stations across Ethiopia. 
Moreover Cheung et al. (2008) showed a significant decreasing 
rainfall trend in the southwestern and central parts of Ethiopia 
during the Kiremt season. The difference in our result of the rain-
fall trend analysis to the studies mentioned above could be related 
to the difference in the study area and study period.

Table 4   MK trend analysis 
of basin wide annual and 
seasonal rainfall (1983–2019) 
in the Beshiho sub-basin at a 
significance level of = 0.05

*Significant at α=0.05

Kendall’s tau S p-value Trend Z-value Sen’s slope 
(mm/year)

Annual rainfall 0.21 153 0.07 Upward 1.84 4.65
Kiremt rainfall 0.035 175 0.035 Upward 2.1* 4.29
Belg rainfall −0.11 −83 0.32 Downward −0.99 −1.03
Bega rainfall −0.46 −339 0.0 Downward −4.09* −2.04

Fig. 11   Long-term mean annual 
and mean seasonal rainfall 
(annual (a), Kiremt (b), Belg 
(c), and Bega (d)) of the Beshilo 
sub-basin (1981–2019)
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Conclusion

Several studies have shown that Ethiopia is vulnerable 
to climate change, and it will likely cause more frequent 
and more severe disasters. The adverse impacts of climate 
change could worsen existing economic and social chal-
lenges in the entire country, especially in areas where rain-
fed agriculture and resources sensitive to climate change 
are prevalent. Climate change and weather extremes can 
be reduced if the information is available about the nature, 
extent, and location of their impacts. This is if appropriate 
adaptation options are to be designed.

This study examined seasonal and annual variations in 
rainfall in the Beshilo sub-basin of the UBNB using CHIRPS 
rainfall products. The spatiotemporal variability of rainfall 
showed that annual rainfall varied moderately from year to 
year. Meanwhile, high spatiotemporal variability of rainfall 
between the years was observed on seasonal and monthly 
time scales within the study area. The result coefficient of 
variation indicated that the seasonal rainfall in the dry sea-
son (Bega) showed a greater variability between years than 
in other seasons, which means a greater variability of rain-
fall in Bega than in other seasons. Similarly, rainfall was 
more variable during the short rainy season (Belg) than in 
the main rainy season (Kiremt). Based on the results of the 
annual standardized anomaly index, the percentage of nega-
tive anomalies in the study period (53.84%) exceeded the 
percentage of positive anomalies (46.15%). Furthermore, the 
percentage of negative anomaly was higher for all seasons of 
rainfall, except for Kiremt.

However, there was a decreasing trend in Belg and Bega 
rainfall during the periods studied. There was also a signifi-
cant increase in monthly rainfall in June and November, and an 
insignificant decrease in February, March, April, and Decem-
ber. The rising trend for Kiremt rainfall was found to be sig-
nificant (α = 0.05). Conversely, a significant downward trend 
was observed for the Bega season. From the result, it can be 
concluded that the rainfall in the study area is characterized by 
a high spatial and temporal variability. So it is imperative to 
adjust agricultural activities in response to rainfall variability 
and prepare adaptation strategies for climate change to increase 
the adaptability and resilience of rain-dependent smallholders. 
In this study, however, the lack of time and funds made it diffi-
cult to determine the inferential causes and effects of spatiotem-
poral variability of rainfall. As a consequence, more research is 
needed to determine the driving forces and implications of the 
spatiotemporal variability of rainfall.
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