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Abstract
Temperature and rainfall variations have already had an impact on the production of food crops, and upcoming variations pose 
a potential to further increase food insecurity. Smallholder farmers in Ethiopia rely mostly on rain-fed subsistence agriculture, 
which is extremely vulnerable to climate change. They forecast weather and climate using indigenous knowledge and their 
farm expertise to guide their farming operations. Future climate information based on scientific evidence can be obtained 
at the national or regional level rather than at the local level. Food production is an issue to accommodate rapid population 
growth due to farmers’ reliance on a single rainy season and a lack of dependable climatic projections. The forecasting of 
temperature and rainfall by researchers can aid farmers in making decisions because both factors have a substantial impact on 
agricultural production. In order to increase smallholder farmers’ capacity for adaptation and establish resilience to climate 
hazards in East Wollega Zone of Oromia National Regional State, the study focused on forecasting rainfall and temperature. 
The daily rainfall and temperature data of 37 years (1981–2017) from 7 stations were collected from National Meteorologi-
cal Agency of Ethiopia. Temperature and rainfall predictions were made using the ARIMA, quadratic trend, linear trend, 
and simple exponential smoothing models. Accuracy of the models has been determined based on an Akaike information 
criterion (AIC). Sen’s slope estimator was used to determine the magnitude of change, while the Mann–Kendall (MK) test 
was utilized to examine the trend of forecasted rainfall and temperature. Winter and spring rainfall predictions showed a 
substantial decreasing and increasing trend, respectively. Summer and autumn rainfall exhibited an insignificant upward and 
downward trend respectively, but yearly rainfall showed a substantial declining trend. The projected winter, spring, autumn, 
and yearly minimum temperatures indicate a considerable upward tendency, whereas the summer minimum temperature 
shows a negligible upward trend. Summer, autumn, and yearly maximum temperatures are expected to fall, but maximum 
temperatures in winter and spring are expected to rise dramatically. As the livelihoods of the farmers depend on seasonal 
rain-fed agriculture, adapting to the adverse impact of rainfall and temperature variability is unavoidable. Decisions about the 
agricultural system and the development of adaptation strategies in the area should consider rising minimum temperatures 
and declining annual rainfall.
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Introduction

Changes in the patterns of climate extremes at global, 
regional, and local scales have been documented in recent 
special reports on climate extremes (Omondi et al. 2014). 
Because of its reliance on agriculture, which is highly sus-
ceptible to weather and climate variables, Sub-Saharan 
Africa has been portrayed as the most vulnerable region to 
the effects of global climate change (Kotir 2011). Ethiopia 
is frequently cited as one of the most extreme examples of 
Africa’s vulnerability to future climate change (Conway and 
Schipper 2011). The majorities of Ethiopians live in rural 
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areas and rely on rain-fed agriculture (Rosell 2011). Rainfall 
and temperature patterns are frequently recognized as crucial 
variables in explaining different socio-economic concerns 
in Ethiopia, whose economy is mostly dependent on low-
productivity rain-fed agriculture (Cheung et al. 2008). It is 
critical to characterize the seasonal and inter-annual spatial 
temporal variability of rainfall and temperature in a chang-
ing climate in order to identify climate-induced changes and 
suggest appropriate future adaptation techniques (Wagesho 
et al. 2013). Climate change and variability are now posing 
a significant threat to agricultural production for smallholder 
farmers who rely on rain-fed agriculture on small farms 
(Workalemahu and Dawid 2021).

Ethiopia offers a vast range of eco-environmental varia-
bility, ranging from intense heat at one of the world’s lowest 
points to one of Africa’s coolest mountains (Mekasha et al. 
2014). Agriculture is the backbone of Ethiopian economy, 
which contributes 45% to the gross domestic product (GDP), 
85% foreign earnings and provides livelihood to 80% of the 
population (Tesfahun et al. 2018). Climate variability in the 
form of higher temperature and increased rainfall variabil-
ity and reduced crop yield has threatened food security in 
subsistence rain fed–based agriculture (Melese 2019). In 
Ethiopia, recurrent droughts and floods have been a major 
and persistent challenge to sustainable food crop produc-
tion (Muhammad et al. 2021). Climate variability affected 
crop productivity through delay of onset, early cessation, 
shortening of growing period, decreasing crop yields, and 
quality (Singh 2019). Although Ethiopia has different agro-
ecologies suited for food crop production, weather-related 
risks and a lack of a climate monitoring system impede 
agricultural productivity (Wasihun and Desu 2021). In the 
coming decades, ensuring food security for the rapidly grow-
ing population is one of the greatest challenges in Ethiopia 
(Gebissa 2021).

The knowledge of past and recent climatic trends such as 
rainfall and temperature are a pre-requisite for the future sus-
tainability of agriculture and food security (Sintayehu 2018). 
Climate information is very crucial in supporting small-
holder farmers to manage climate related risks and adapt to 
climate variability (Radeny et al. 2019). Smallholder sub-
sistence farmers are vulnerable to climate change impacts 
due to their low adaptive capacity, dependence on rain-fed 
agriculture, widespread poverty and lack of reliable weather 
and climate information in Ethiopia (Musayev et al. 2021). 
Rainfall and temperature variability has imposed formidable 
uncertainties and risks in food crop production, thus fore-
casting for the future provides an opportunity to deal with 
such risks in advance (Yate and Hutjes 2021). Prediction of 
rainfall and temperature in advance would have enormous 
environmental, social, and economic benefits to countries 
such as Ethiopia that depend on rain-fed agriculture (Diro 
et al. 2008).

In Ethiopia, particularly in the study area, farmers depend 
on their accumulated experience for weather prediction to 
plan their farming activity (Wagaye et al. 2020). Develop-
ing more reliable and accessible climate information can 
assist smallholder farmers to improve their adaptive capac-
ity and building resilience to climate risk (Gbangou et al. 
2020). Forecasting temperature and rainfall is an important 
for planning and formulating of agricultural adaptation 
strategies (Teshome 2020). Subsistence rain-fed agriculture 
remains the main source of livelihoods in the study area fac-
ing challenge to feed the rapidly growing population because 
of climate variability. Thus, the study aimed at forecasting 
rainfall and temperature to provide information on for adap-
tation planning in advance. The objectives of the study were 
(1) to provide farmers with future climate data that they can 
utilize to lessen the risk of crop losses due to weather and 
(2) to determine the future rainfall and temperature trends in 
the research area. Rainfall and temperature have a significant 
impact on the agriculture. Farmers in the study area forecast 
weather and climate using indigenous knowledge and their 
acquired farm experience to guide their farming activities. 
Accurate future climate information can assist farmers in 
making more educated decisions about their farming opera-
tions. Climate information that is accurate and dependable 
is becoming increasingly significant, especially in the field 
of rain-fed agricultural production. Having access to scien-
tific data can assist farmers in making adjustments to their 
farming activities and planning for adaptation ahead of time. 
Therefore, the study is highly significant for the study area.

Materials and methods

Description of the study area

The study was conducted in East Wollega Zone of Oro-
mia National Regional State, Western Ethiopia. It is one of 
the Zones in Oromia National Regional State comprising 
17 rural districts and 289 rural peasant associations. It is 
located at 328 km west of Addis Ababa. The total land area 
of the zone is about 14,102.5km2 which accounts for about 
3.88% of the total area of the Oromia National Regional 
State (EWZPEDO 2017). East Wollega Zone is found on 
Northing 8°31′20″N to 10°22′30″N and Easting 36°06′00″E 
37°12′00″E. It is bordered by Amhara National Regional 
State in the North, Jimma zone in the South, Horo Guduru 
Wollega and West Shewa zone in the East, Benishangul 
Gumuz National Regional State in the North–West, West 
Wollega zone in the West, and Buno Bedelle zone in the 
South West. It is located at 328 km of west of Addis Ababa, 
the capital city of Ethiopia (EWZPEDO 2017). Figure 1 
below shows location map of the research area.
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Topography and climate

The altitude of the zone ranges between 718 and 3163 masl. 
It is mainly of low plateau with some isolated ranges such as 
in Jima Arjo district. The climate of the zone is divided into 
three categories, namely highland 20.50%, midland 50.90%, 
and lowland 28.60%. The annual temperature is between 
14 to 25 °C and annual rain fall is also between 1000 and 
2400 mm (EWZPEDO 2017). Maximum rainfall is received 
from June to August. The climatic condition alternates with 
long summer rainfall (June to September), short rain sea-
son (March to April), and winter dry seasons (December 
to February). The minimum and maximum annual rainfall 
and daily temperature ranges from 1450 to 2150 mm and 15 
to 27 °C, respectively (Asamenew and Mezene 2015). The 
major rainy season is during the months of June to Septem-
ber which is the case for many Ethiopian highlands (Fita 
2014).

Socio‑economic conditions

Population

According to East Wollega Zone Planning and Economic 
Development Office (EWZPEDO 2017) East Wollega 

zone’s total population was 1,628,569 out of which 824,195 
(50.61%) were males whereas about 804,374 (49.39%) were 
females. During this year, about 81.12% of the total popula-
tions were rural, who are directly engaged in agriculture. 
During the year 2017, there were 175,173 males and 20,405 
females totally 195,578 households in peasant associations 
of the zone. The crude population density of the zone in the 
year 2017 was 115.034 person per  km2 (EWZPEDO 2017). 
Rapid human growth in the study area has resulted in a sig-
nificant shift in land use, with the majority of natural forest 
destroyed for cereal cultivation and local fuel (Achalu 2014).

Farming system

The farming system in the study region is characterized as 
mixed farming (Degefa et al. 2020). Crop cultivation and 
livestock keeping are the primary sources of income in the 
study area. Crop and livestock production are used for both 
domestic use and as a source of revenue. Maize, sorghum, 
teff, millet, wheat, and barley are the principal cereal crops 
farmed in the area. Crop production is a major source of 
income for farmers, and it is primarily rain-fed agriculture. 
In 2017, the zone had 315,752 ha of cultivated land and 
produced 11,733,199 quintals of grains. Temperature, length 
of growing season, moisture availability, flood hazard, soil 

Fig. 1  Location map of the research area
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degradation, toxicity, and rooting condition are some of the 
primary characteristics that define the land’s potentiality 
(EWZPEDO 2017). Cattle rearing relies on natural grasses 
and crop residues that are retained in the traditional man-
agement approach (Dereje et al. 2014). Land degradation, 
erosion, variable rainfall distribution, small land holdings 
and fragmentation, traditional agricultural operations, and 
a lack of access routes to local or central markets are the 
main obstacles to agricultural productivity in the zone. In 
addition, inefficient and insufficient irrigation schemes, a 
low emphasis on the market system and lack of infrastruc-
ture, lack of finance facilities, as well as a lack of technical 
support, are some of the issues that limit agricultural output 
(EWZPEDO 2017).

Data type and sources

Historical time series climate data (temperature and rainfall) 
for 37 years of 7 stations (1981–2017) was collected from 
National Meteorology Agency (NMA). The study included 
both dependent and independent (explanatory) variables. In 
this case, time was used as independent variable and tem-
perature and rainfall as the dependent variables.

Analytical methods

An autoregressive integrated moving average (ARIMA), 
trend, and simple exponential smoothing models were used 
for prediction of rainfall and temperature time series. After 
automatically running 17 different models for each variables 
using Statgraphics Centurion version 19 statistical software, 
the best models were selected for forecasting the variables 
(Fig. 2). The selections of the models were based on the 
smallest value of the Akaike information criterion (AIC) for 
prediction. Akaike information criteria (AIC) is an impor-
tant tool for model selection (Acquah 2018). Models with 
minimum AIC values are preferred. Akaike’s (1973) infor-
mation criterion (AIC) is defined as:

where K is the number of model parameters (the number of 
variables in the model plus the intercept). Log-likelihood is 
a measure of model fit.

Mann–Kendall trend test and Sen’s slope estimator

Mann–Kendall (MK) test was employed to examine the 
trend of forecasted rainfall and temperature. Kendall’s 
tau, S statistics, and P value were used to detect variation 
in rainfall and temperature. The P values used to deter-
mine whether any apparent patterns are statistically sig-
nificant or not. The decision was made based on level of 

AIC = −2(log − likelihood) + 2K

significance (alpha value of 0.05) which compared against 
the p value. There is no significant trend if the p value is 
above the significance level (alpha value of 0.05); there is 
a significant trend if the p value is below the significance 
threshold. The negative of MK Stat (S) and Kendall’s tau 
value represents the declining trend while the positive 
value represents the increasing trend. Sen’s slope estimator 
was used to estimate the average changes in the forecasted 
rainfall and temperature over time.

Results and discussion

Winter rainfall time series forecasting

To forecast future values of winter rainfall, an autore-
gressive integrated moving average (ARIMA) model was 
selected. The output summarizes the statistical signifi-
cance of the terms in the forecasting model. Terms with 
P values less than 0.05 are statistically significantly at the 
95% confidence level. Table 1 below indicates ARMA 
model summary.

Forecast plot of winter rainfall using ARIMA (0, 2, 2) model

Figure 3 below indicates forecasted plots of winter rainfall. 
Figure 3A indicates time sequence plot for winter rainfall 
with the predicted values when the actual data available 
from the fitted models. Figure 3B indicates forecasted plots 

Plotting the data to identify 
outliers

Automatic Model Selection

Automatic forecasting options (models to include)

Method selection ceiterion (Akaike Information 
Criterion) (AIC)

Model validation  using ACF and PACF of residuals 

Using the model to forecast

Fig. 2  Process of automatic model selection using Statgraphics Cen-
turion statistical software
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of winter rainfall and for time periods beyond the end of the 
series shows 95% prediction limits for the forecasts. These 
limits show where the true data value at a selected future 
time is likely to be with 95% confidence.

Spring rainfall time series forecasting

To forecast future values of spring rainfall, a quadratic trend 
model was selected. This model assumes that the best fore-
cast for future data is given by a quadratic regression curve 
fit to all previous data. The output summarizes the statistical 
significance of the terms in the forecasting model. Terms 

with P values less than 0.05 are statistically significantly 
at the 95% confidence level. In this case, the P value for 
the quadratic term is less than 0.05, so it is significantly 
significant. Table 2 below shows a quadratic trend model 
summary.

Forecast plot of sprig rainfall using Quadratic trend model

Figure 4 below indicates forecasted plots of spring rainfall. 
Figure 4A shows time sequence plot for spring rainfall with 
the predicted values when the actual data available from the 

Table 1  ARIMA (0, 2, 2) model summary to forecast winter rainfall

Parameter Estimate Stnd. error t P value

MA(1) 1.78815 0.0434824 41.1235 0.000000
MA(2)  − 0.80379 0.042733  − 18.8096 0.000000

Fig. 3  Forecasted plots of win-
ter rainfall
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Table 2  Quadratic trend model summary to forecast spring rainfall

Parameter Estimate Stnd. Error t P value

Constant 476.801 55.7966 8.54535 0.000000
Slope  − 19.2423 6.77106  − 2.84184 0.007529
Quadratic 0.495809 0.172823 2.86888 0.007031
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fitted models. Figure 4B indicates forecasted plots of spring 
rainfall and for time periods beyond the end of the series 
shows 95% prediction limits for the forecasts. These limits 
show where the true data value at a selected future time is 
likely to be with 95% confidence level.

Summer rainfall time series forecasting

To forecast future values of summer rainfall, an autore-
gressive integrated moving average (ARIMA) model was 
selected. As indicated in Table 3, the output summarizes 

the statistical significance of the terms in the forecasting 
model. Terms with P values less than 0.05 are statistically 
significant at the 95% confidence level.

Forecast plot of summer rainfall

Figure 5 below indicates forecasted plots of summer rainfall. 
Figure 5A shows time sequence plot for summer rainfall 
with the predicted values when the actual data available 
from the fitted models. Figure 5B indicates forecasted plots 
of summer rainfall and for time periods beyond the end of 
the series shows 95% prediction limits for the forecasts. 
These limits show where the true data value at a selected 
future time is likely to be with 95% confidence level.

Autumn rainfall time series forecasting

To forecast future values of autumn rainfall, an autore-
gressive integrated moving average (ARIMA) model was 
selected. The output summarizes the statistical significance 

Fig. 4  Forecasted plots of 
spring rainfall
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Table 3  ARIMA (2, 1, 2) model summary to forecast summer rainfall

Parameter Estimate Stnd. error t P value

AR(1)  − 0.566914 0.0921083  − 6.15486 0.000001
AR(2)  − 0.919607 0.0904063  − 10.1719 0.000000
MA(1)  − 0.199438 0.0253705  − 7.86099 0.000000
MA(2)  − 0.973874 0.0386911  − 25.1705 0.000000
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of the terms in the forecasting model. Terms with P values 
less than 0.05 are statistically significantly at the 95% confi-
dence level. The P value for the AR (2) and MA (2) term is 
less than 0.05, so it is significantly significant. Table 4 below 
shows ARMA (2, 1, 2) model summary.

Forecast plot of autumn rainfall

Figure 6 below indicates forecasted plots of autumn rainfall. 
Figure 6A indicates time sequence plot for autumn rainfall 
with the predicted values when the actual data available 
from the fitted models. Figure 6B shows forecasted plots of 
autumn rainfall and for time periods beyond the end of the 
series shows 95% prediction limits for the forecasts. These 

limits show where the true data value at a selected future 
time is likely to be with 95% confidence level.

Trends of forecasted seasonal rainfall

The two-sided Mann–Kendall test was performed to examine 
whether there is a statistically significant monotonic increas-
ing or decreasing trend in the forecasted seasonal rainfall 
as shown in Table 5. The result demonstrated a significant 
decreasing and increasing trend in the forecasted winter and 
spring rainfall respectively. An insignificant increasing and 
decreasing trend was detected in forecasted summer and 
autumn rainfall respectively. The Sen’s slope of a trend line 
displays a declining magnitude in forecasted rainfall of win-
ter and autumn while it shows an increased magnitude in the 
forecasted rainfall of spring and summer.

Winter minimum temperature time series 
forecasting

To forecast future values of winter minimum temperature, 
an autoregressive integrated moving average (ARIMA) 

Fig. 5  Forecasted plots of sum-
mer rainfall
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Table 4  ARIMA (2, 1, 2) model summary to forecast autumn rainfall

Parameter Estimate Stnd. error t P value

AR (1)  − 0.527436 0.126142  − 4.18129 0.000210
AR (2) 0.564844 0.149549 3.77699 0.000652
MA (1)  − 0.00471918 0.108418  − 0.0435277 0.965551
MA (2) 1.06644 0.124651 8.55537 0.000000
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model was employed. This model assumes that the best 
forecast for future data is given by a parametric model 
relating the most recent data value to previous data values 
and previous noise. The output summarizes the statistical 
significance of the terms in the forecasting model. Terms 
with P values less than 0.05 are statistically significantly at 
the 95% confidence level. Table 6 below indicates ARMA 
model summary for winter minimum temperature.

Fig. 6  Forecasted plots of 
autumn rainfall
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Table 5  Mann–Kendall trend test results for the forecasted seasonal rainfall

P value of less than or equal to 0.05 is significant, while one more than 0.05 is not

Season MK stat (S) Kendall’s tau P value (two-tailed) Alpha (α) Sen’s slope Trend (at 0.05 sig. level)

Winter  − 78  − 1  < 0.0001 0.05  − 5.803 Significant
Spring 78 1  < 0.0001 0.05 0.041 Significant
Summer 10 0.128 0.590 0.05 0.011 Insignificant
Autumn  − 2  − 0.026 0.952 0.05  − 0.005 Insignificant

Table 6  ARIMA (0, 0, 1) model summary to forecast winter mini-
mum temperature

Parameter Estimate Stnd. error t P value

MA (1)  − 0.48679 0.160779  − 3.02769 0.004604
Mean 13.1796 0.183799 71.7065 0.000000
Constant 13.1796
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Forecast plot of winter minimum temperature

Figure 7 below indicates forecasted plots of winter minimum 
temperature. Figure 7A shows time sequence plot for win-
ter minimum temperature with the predicted values when 
the actual data available from the fitted models. Figure 7B 
indicates forecasted plots of winter minimum temperature 
and for time periods beyond the end of the series shows 95% 
prediction limits for the forecasts. These limits show where 
the true data value at a selected future time is likely to be 
with 95% confidence level.

Spring minimum temperature time series 
forecasting

To forecast future values of spring minimum temperature, 
simple exponential smoothing model was selected. This 
model assumes that the best forecast for future data is given 

by an exponentially weighted average of all previous data 
values.

Forecast plot of spring minimum temperature

Figure 8 below indicates forecasted plots of spring minimum 
temperature. Figure 8A shows time sequence plot for spring 
minimum temperature with the predicted values when the 
actual data available from the fitted models. Figure 8B indi-
cates forecasted plots of spring minimum temperature and 
for time periods beyond the end of the series shows 95% 
prediction limits for the forecasts. These limits show where 
the true data value at a selected future time is likely to be 
with 95% confidence level.

Summer minimum temperature time series 
forecasting

To forecast future values of summer minimum temperature, 
an autoregressive integrated moving average (ARIMA) 

Fig. 7  Forecasted plots of win-
ter minimum temperature
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model was selected. This model assumes that the best fore-
cast for future data is given by a parametric model relating 
the most recent data value to previous data values and previ-
ous noise. As indicated in Table 7, the output summarizes 
the statistical significance of the terms in the forecasting 
model. Terms with P values less than 0.05 are statistically 
significantly at the 95% confidence level. The P value for 
the AR (2) and MA (2) term is less than 0.05, so it is signifi-
cantly significant.

Forecast plot of summer minimum temperature

Figure 9 below indicates forecasted plots of summer mini-
mum temperature. Figure 9A shows time sequence plot 
for summer minimum temperature with the predicted val-
ues when the actual data available from the fitted models. 
Figure 9B indicates forecasted plots of summer minimum 
temperature and, for time periods beyond the end of the 
series, shows 95% prediction limits for the forecasts. These 
limits show where the true data value at a selected future 
time is likely to be with 95% confidence.

Autumn minimum temperature time series 
forecasting

To forecast future values of autumn minimum temperature, 
a linear trend model was selected. This model assumes that 
the best forecast for future data is given by a linear regres-
sion line fit to all previous data. The output summarizes 
the statistical significance of the terms in the forecasting 

Fig. 8  Forecasted plots of 
spring minimum temperature
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Table 7  ARIMA (2, 1, 2) model summary to forecast summer mini-
mum temperature

Parameter Estimate Stnd. error t P value

AR (1) 1.02999 0.167406 6.15262 0.000001
AR (2)  − 0.530487 0.155283  − 3.41626 0.001745
MA (1) 1.85233 0.0375653 49.3097 0.000000
MA (2)  − 0.954703 0.0418472  − 22.814 0.000000
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model. Terms with P values less than 0.05 are statistically 
significantly at the 95% confidence level. In this case, the 
P value for the linear term is less than 0.05, so it is sig-
nificantly significant. Table 8 below indicates linear trend 
model summary for autumn minimum temperature.

Forecast plot of autumn minimum temperature

Figure 10 below indicates forecasted plots of autumn mini-
mum temperature. Figure 10A shows time sequence plot 
for autumn minimum temperature with the predicted val-
ues when the actual data available from the fitted models. 

Figure 10B indicates forecasted plots of autumn minimum 
temperature and for time periods beyond the end of the 
series shows 95% prediction limits for the forecasts. These 
limits show where the true data value at a selected future 
time is likely to be with 95% confidence.

Trends of forecasted seasonal minimum 
temperature

The two-sided Mann–Kendall test was performed to examine 
whether there is a statistically significant monotonic increas-
ing or decreasing trend in the forecasted seasonal minimum 
temperature as shown in Table 9. The result revealed a sig-
nificant increasing trend in the forecasted winter, spring, and 
autumn forecasted minimum temperature while it shows an 
insignificant upward trend for summer minimum tempera-
ture. The Sen’s slope of a trend line exhibited an increased 
magnitude in the forecasted minimum temperature of winter, 
summer, and autumn while it shows a declining magnitude 
in the forecasted minimum temperature of spring.

Fig. 9  Forecasted plots of sum-
mer minimum temperature
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Table 8  Linear trend model summary to forecast autumn minimum 
temperature

Parameter Estimate Stnd. error t P value

Constant 13.0934 0.173939 75.2758 0.000000
Slope 0.0243717 0.00798089 3.05376 0.004300
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Winter maximum temperature time series 
forecasting

To forecast future values of winter maximum temperature, an 
autoregressive integrated moving average (ARIMA) model was 

selected. This model assumes that the best forecast for future 
data is given by a parametric model relating the most recent data 
value to previous data values and previous noise. As indicated in 
Table 10 below the output summarizes the statistical significance 
of the terms in the forecasting model. Terms with P values less 
than 0.05 are statistically significantly at the 95% confidence level.

Forecast plot of winter maximum temperature

Figure 11 below indicates forecasted plots of winter maxi-
mum temperature. Figure 11A shows time sequence plot 

Fig. 10  Forecasted plots of 
autumn minimum temperature
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Table 9  Mann–Kendall trend test results for the forecasted seasonal minimum temperature

Season MK Stat (S) Kendall’s tau P value (two-tailed) Alpha (α) Sen’s slope Trend (at 0.05 sig. level)

Winter 78 1  < 0.0001 0.05 7.738 Significant
Spring 78 1  < 0.0001 0.05  − 0.500 Significant
Summer 20 0.256 0.252 0.05 26.110 Insignificant
Autumn 78 1  < 0.0001 0.05 41.026 Significant

Table 10  ARIMA (0, 2, 1) model summary to forecast winter maxi-
mum temperature

Parameter Estimate Stnd. Error t P value

MA(1) 1.02366 0.0169411 60.4247 0.000000
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for winter maximum temperature with the predicted values 
when the actual data available from the fitted models. Fig-
ure 11B indicates forecasted plots of winter maximum tem-
perature and for time periods beyond the end of the series 
shows 95% prediction limits for the forecasts. These limits 
show where the true data value at a selected future time is 
likely to be with 95% confidence.

Spring maximum temperature time series 
forecasting

To forecast future values of spring maximum temperature, 
simple exponential smoothing model was selected. This 
model assumes that the best forecast for future data is given by 
an exponentially weighted average of all previous data values.

Forecast plot of spring maximum temperature

Figure 12 below indicates forecasted plots of spring 
maximum temperature. Figure 12A shows time sequence 

plot for spring maximum temperature with the predicted 
values when the actual data available from the fitted 
models. Figure 12B indicates forecasted plots of spring 
maximum temperature, and for time periods beyond 
the end of the series, it shows 95% prediction limits 
for the forecasts. These limits show where the true data 
value at a selected future time is likely to be with 95% 
confidence.

Summer maximum temperature time series 
forecasting

To forecast future values of summer maximum tempera-
ture, an autoregressive integrated moving average (ARIMA) 
model was employed. This model assumes that the best fore-
cast for future data is given by a parametric model relating 
the most recent data value to previous data values and previ-
ous noise. As indicated in Table 11, the output summarizes 
the statistical significance of the terms in the forecasting 

Fig. 11  Forecasted plots of win-
ter maximum temperature
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model. Terms with P-values less than 0.05 are statistically 
significantly at the 95% confidence level.

Forecast plot of summer maximum temperature

Figure 13 below indicates forecasted plots of summer 
maximum temperature. Figure 13A shows time sequence 
plot for summer maximum temperature with the predicted 
values when the actual data available from the fitted mod-
els. Figure 13B indicates forecasted plots of summer maxi-
mum temperature and, for time periods beyond the end of 
the series, shows 95% prediction limits for the forecasts. 
These limits show where the true data value at a selected 
future time is likely to be with 95% confidence.

Autumn maximum temperature time series 
forecasting

To forecast future values of autumn maximum temperature, 
an autoregressive integrated moving average (ARIMA) 
model was employed. This model assumes that the best fore-
cast for future data is given by a parametric model relating 
the most recent data value to previous data values and previ-
ous noise. The output summarizes the statistical significance 
of the terms in the forecasting model. Terms with P values 
less than 0.05 are statistically significantly at the 95% con-
fidence level. The P value for the AR (1) term is less than 
0.05. Table 12 below shows ARIMA model summary for 
autumn maximum temperature.

Forecast plot of autumn maximum temperature

Figure 14 below indicates forecasted plots of autumn maxi-
mum temperature. Figure 14A shows time sequence plot 
for autumn maximum temperature with the predicted val-
ues when the actual data available from the fitted models. 
Figure 14B indicates forecasted plots of autumn maximum 

Fig. 12  Forecasted plots of 
spring maximum temperature
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Table 11  ARIMA (1, 0, 0) model summary to forecast summer maxi-
mum temperature

Parameter Estimate Stnd. Error t P value

AR (1) 0.443807 0.154235 2.87746 0.006788
Mean 22.6683 0.148988 152.149 0.000000
Constant 12.608
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temperature and, for time periods beyond the end of the 
series, shows 95% prediction limits for the forecasts. These 
limits show where the true data value at a selected future 
time is likely to be with 95% confidence.

Trends of forecasted seasonal maximum 
temperature

The two-sided Mann–Kendall test was performed to examine 
whether there is a statistically significant monotonic increas-
ing or decreasing trend in the forecasted seasonal maximum 

temperature as shown in Table 13. The result revealed a 
significant increasing trend in the forecasted winter and 
spring forecasted maximum temperature while it shows a 
significant declining trend for the forecasted summer and 
autumn maximum temperature. The Sen’s slope of a trend 
line exhibited an increased magnitude in the forecasted 
maximum temperature of winter, while it shows a declin-
ing magnitude in the forecasted maximum temperature of 
spring, summer and autumn.

Annual rainfall time series forecasting

To forecast future values of annual rainfall, an autoregressive 
integrated moving average (ARIMA) model has been selected 
based on its performance. This model assumes that the best 
forecast for future data is given by a parametric model relating 
the most recent data value to previous data values and previ-
ous noise. As indicated in Table 14 below, the output of the 
model was found to be statistically significant with P values 
less than 0.05 at the 95% confidence level. The P value for the 

Fig. 13  Forecasted plots of 
summer maximum temperature

Table 12  ARIMA (1, 0, 0) model summary to forecast autumn maxi-
mum temperature

Parameter Estimate Stnd. error t P value

AR (1) 0.651373 0.127846 5.09496 0.000012
Mean 24.064 0.292108 82.3806 0.000000
Constant 8.38938
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AR (1) and the P value for the constant term is less than 0.05, 
so it is significant at the 95% confidence level.

Forecast plot of annual rainfall

Figure 15 below indicates forecasted plots of annual rainfall. Fig-
ure 15A indicates time sequence plot for annual rainfall with the 
predicted values when the actual data available from the fitted 
models. Figure 15B shows forecasted plots of annual rainfall, and 

Fig. 14  Forecasted plots of 
autumn maximum temperature

Table 13  Mann–Kendall trend 
test results for the forecasted 
seasonal maximum temperature

Season MK Stat (S) Kendall’s tau P value (two-tailed) Alpha (α) Sen’s slope Trend (at 
0.05 sig. 
level)

Winter 78 1  < 0.0001 0.05 9.444 Significant
Spring 78 1  < 0.0001 0.05  − 0.500 Significant
Summer  − 76  − 0.974  < 0.0001 0.05  − 213.675 Significant
Autumn  − 78  − 1  < 0.0001 0.05  − 145.423 Significant

Table 14  ARIMA (1, 0, 0) model summary to forecast annual rainfall

Parameter Estimate Stnd. error t P value

AR(1) 0.603771 0.134483 4.48955 0.000074
Mean 1831.06 133.89 13.6758 0.000000
Constant 725.521
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for time periods beyond the end of the series, it shows 95% pre-
diction limits for the forecasts. These limits show where the true 
data value at a selected future time is likely to be with 95% con-
fidence, assuming the fitted model was appropriate for the data.

Annual maximum temperature time series 
forecasting

To forecast annual maximum temperature to the future based 
on the actual historical value, an autoregressive integrated mov-
ing average (ARIMA) model has been selected. This model 
assumes that the best forecast for future data is given by a para-
metric model relating the most recent data value to previous 
data values and previous noise. The output summarizes the 
statistical significance of the terms in the forecasting model. 
Values with P values less than 0.05 are statistically significant 
at the 95% confidence level. The P value for the AR (1) and MA 
(1) was statistically significant to use the model. Table 15 below 
also summarizes the performance of the currently selected 
model in fitting the historical data.

Forecast plot for annual maximum temperature

Figure 16 below indicates forecasted plots of annual maxi-
mum temperature. Figure 16A shows time sequence plots 

of annual maximum temperature with the predicted values 
when the actual data available from the fitted models. Fig-
ure 16B indicates forecasted annual maximum temperature, 
and the time periods beyond the end of the series show 95% 
prediction limits for the forecasts. These limits show where 
the true data value at a selected future time is likely to be 
with 95% confidence, assuming the fitted model is appropri-
ate for the data.

Trends of forecasted annual rainfall 
and temperature

The two-sided Mann–Kendall test was performed to examine 
whether there is a statistically significant monotonic increas-
ing or decreasing trend in the forecasted annual rainfall and 
temperature as shown in Table 16. The result revealed a sig-
nificant increasing trend in the forecasted annual minimum 

Fig. 15  Forecasted plots of 
annual rainfall
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Table 15  ARIMA (1, 1, 1) model summaries for annual maximum 
temperature

Parameter Estimate Stnd. error t P value

AR (1) 0.692153 0.123729 5.59412 0.000003
MA (1) 1.09559 0.00068835 1591.61 0.000000
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temperature while it shows a significant declining trend 
for annual rainfall and maximum temperature. The Sen’s 
slope of a trend line exhibited an increased magnitude in 
the forecasted annual minimum temperature, while it shows 
a declining magnitude in the forecasted annual rainfall and 
maximum temperature. A study conducted in north central 
Ethiopia also revealed an increasing trend for minimum 
average temperatures (Asfaw et al. 2018). Another study also 
found a similar result of a declining trend in annual rainfall 
(Gemeda et al. 2021).

Conclusion

Ethiopia is one of the most vulnerable countries experienc-
ing food insecurity as a result of crop damage by climate 
variability and change. Climate variability is already pos-
ing a serious obstacle to efforts of ensuring food security 
in the face of climate change. Farmers use their indig-
enous knowledge for weather and climate prediction to 
make farming decisions. Because of the complexities of 
climate change, relying on such unreliable information to 

Fig. 16  Forecasted plots of 
annual maximum temperature

Table 16  Mann–Kendall trend 
test results for the forecasted 
annual rainfall and temperature

Annual MK Stat (S) Kendall’s tau P value (two-tailed) Alpha (α) Sen’s slope Trend (at 
0.05 sig. 
level)

Rainfall  − 78  − 1  < 0.0001 0.05  − 0.329 Significant
Tmin 78 1  < 0.0001 0.05 980.392 Significant
Tmax  − 78  − 1  < 0.0001 0.05  − 523.274 Significant
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sustainably enhance agricultural productivity and provide 
food security in a changing climate is difficult. Scientific 
based reliable climate information helps the farmers for 
building resilience to climate shocks by formulating appro-
priate adaptation strategies and crop management deci-
sions. Knowledge about past and upcoming of weather and 
climate is very crucial for successful farm management. 
As a result, the study aimed to forecast rainfall and tem-
perature so that farmers and agricultural planners could 
make informed adaptation decisions in advance. The pre-
dicted results for winter and spring rainfall indicated a sig-
nificant decreasing and increasing tendency respectively. 
Summer and autumn rainfall exhibited an insignificant 
upward and downward trend respectively, but yearly rain-
fall showed a substantial declining trend. The projected 
winter, spring, autumn, and yearly minimum temperatures 
all indicate a considerable upward tendency, whereas the 
summer minimum temperature shows a negligible upward 
trend. The forecasted maximum temperature in the win-
ter and spring shows a significant rising tendency, while 
in the summer, autumn, and annual shows a substantial 
dropping trend. As the livelihoods of the farmers mainly 
depend on seasonal rain fed agriculture, adapting to the 
adverse impact of rainfall and temperature variability is 
undisputable. Decisions regarding the agricultural system 
and formulation of adaptation strategies in the area are 
better to consider increasing in minimum temperature and 
declining in annual rainfall.
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