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Abstract
Reservoir inflow prediction is a key factor to flood control decisions and is also crucial concerning the operational planning 
and scheduling of the reservoir. Today, machine learning methods have become very common in analyzing the reservoir 
inflow time series data. However, freezing a particular model requires rigorous trial and error practices depending on the 
structure of the data. The main objective of this paper is to forecast the reservoir inflow of Idukki Reservoir, Kerala, by 
analyzing the historical daily time-series data (2015–2020) using machine learning (ML)—Exponential smoothing (ES), 
Autoregressive Integrated Moving Average (ARIMA), and deep learning algorithms—Long Short-Term Memory (LSTM). 
The prediction results were evaluated for their MAPE (mean absolute percentage error) and FA (forecast accuracy). It was 
observed that the MAPE for ES, ARIMA, and LSTM were 61%, 43%, and 55%, respectively. As the conventional approach 
of using a single algorithm did not give a satisfactory result, the authors have devised a hybrid approach by using a weighted 
combination of the above 3 algorithms. The weights were appropriately chosen so as to lower the error in prediction. Experi-
mental analysis showed that the weighted combination approach lowered the MAPE to 29%, thereby significantly improving 
the forecast accuracy.
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Introduction

Inflow prediction in a reservoir, often characterized by its 
complexity and random behavior, is one of the most chal-
lenging tasks in hydrology. Especially in recent times owing 
to climate change and increased flood frequency, accurate 
inflow predictions are pivotal to flood control decisions 
(Chau and Thanh 2021). There are many factors that influ-
ence the same such as rainfall (which depends on tempera-
ture, humidity, wind speed, cloud formation, etc.), the topog-
raphy of the catchment area, etc. The main contributors of 
the incoming water to a reservoir are the rainfall occurring 
at the catchment area during a particular time period and 

the release of water from an upstream reservoir if any. By 
day, the task of reliable prediction is becoming intricate due 
to global environmental changes and associated changes in 
temperature, rainfall patterns, etc.

Often the methods used for prediction vary from math-
ematical or physical models (Adeyemi 2021) to the artifi-
cial intelligence–based data-driven models. The data-driven 
models provide much better and more reliable accuracy 
because the model is formulated by finding the association 
between the system input and output variables rather than 
understanding the physical behavior of the system, which 
is often complex with a large degree of uncertainty (Solo-
matine et al. 2008; Guergachi and Boskovic 2008). Some 
examples of such models are the statistical linear regres-
sion models, Autoregressive Moving Average (ARMA) and 
Autoregressive Integrated Moving Average (ARIMA) mod-
els, and other machine learning (ML) models.

Many investigators have worked on prediction forecasting 
techniques based on historical data, i.e., time series analy-
sis. These methods vary from simple averaging techniques 
to developing complex and highly sophisticated statistical 
models. When compared with statistical methods, machine 

Responsible Editor: Broder J. Merkel

 *	 Merin Skariah 
	 merin.skariah@gmail.com

	 Chethamangalath Damodaran Suriyakala 
	 cdsuriyakala@gmail.com

1	 Kerala University of Fisheries and Ocean Studies (KUFOS), 
Kochi, Kerala 682506, India

/ Published online: 13 July 2022

Arabian Journal of Geosciences (2022) 15: 1292

http://orcid.org/0000-0001-8995-8431
http://orcid.org/0000-0002-3643-499X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12517-022-10564-x&domain=pdf


1 3

learning techniques are found to be more precise in predict-
ing forecasts with improved accuracy (Wang et al. 2017). 
These days, machine learning models such as ARIMA and 
SARIMA (Box and Pierce 1970; Chatfield 2003), exponen-
tial smoothing, support vector regression (SVR) (Zhang 
et al. 2018a, b; Yu et al. 2018), and deep belief network 
(DBN)(Xu et al. 2019) have been widely used for making 
predictions based on time series data. The vivid range of 
applications varies from forecasting road accidents (Rabbani 
et al. 2021), estimating pandemic death rates (Talkhi et al. 
2021), and predicting corporate net income level (Gorbatiuk 
et al. 2021) among several others.

Today, many works in hydrology, specifically related to 
inflow prediction, use machine learning techniques. The use 
of ARIMA models for reliability forecasting and analysis 
was demonstrated by Ho and Xie (1998). The effective-
ness of ARIMA over ARMA and autoregressive ANN was 
evaluated by Valipour et al. (2013). Flow forecasting of 
Hirakud Reservoir with ARIMA model was done by Rath 
et al. (2017) and a MAPE of 31.4% was obtained. A model 
using ARIMA and two types of ensemble models were used 
by Gupta and Kumar (2020) to predict the reservoir inflow 
of three major reservoirs Linganmakki, Supa, and Mani in 
Karnataka with an error of less than 5% between the actual 
and predicted values. Using ARIMA to predict short-term 
water tank levels was experimented with by Viccione et al. 
(2020). Rahayu et al. (2020) studied the discharge prediction 
of Amprong River using five different ARIMA models and 
the best was chosen based on MSE and other parameters. 
Recently, researchers have also incorporated deep learning 
techniques for inflow forecasting as they seem to produce 
much better results. Time lagged recurrent neural networks 
were used by Kote and Jothiprakash (2009) for reservoir 
inflow prediction with good forecast accuracy. Lee and Kim 
(2021) have recently developed a sequence-to-sequence 
(Seq2Seq) mechanism combined with a bidirectional LSTM 
for forecasting inflow. Devi Singh and Singh (2021) have 
worked on reservoir inflow prediction of the Bhakra Dam 
in India using LSTM.

Often in machine learning, ensemble averaging is used to 
produce separate models and then combine their results to 
create a better model. In most cases, an ensemble of models 
produces a better performance than in the case of a single 
model because the errors are averaged out. Lee et al. (2020) 
developed an ensemble average-based model with multiple 
linear regression (MLR), support vector machines (SVM), 
and artificial neural networks (ANN) for the inflow predic-
tion of Boryeong dam, Korea. Similar ensemble approaches 
were carried out by many other investigators across the 
globe (Sun et al. 2022; Ostad-Ali-Askari and Ghorbaniza-
deh-Kharazi 2017).

The state of Kerala, the southernmost state in India, was 
devastated by one of the biggest floods of the century, the 

Kerala floods 2018. It was during August 2018 that all the 
shutters of the Idukki Reservoir were opened for the first 
time in 26 years. As it is known, any uncontrolled or exces-
sive release of a huge amount of water has the potential for 
loss of life and damage to property due to flooding. Subse-
quent floods along with incessant rainfall and unexpected 
landslides affected a large population along the banks of 
Periyar.

According to the reports by the Kerala State Disaster 
Management, despite the CWC (Central Water Commission) 
setting up 275 flood forecasting stations across the country 
by the year of 2017, no flood forecasting stations (FFS) were 
set up by the CWC in Kerala (CAG 2018). Developing a 
flood forecasting system requires forecasted precipitation 
along with inflow data among various other inputs. Hence, 
inflow forecasting is very crucial when it comes to flood risk 
management. Therefore, for proper reservoir management, 
reliable and efficient inflow forecasting is of utmost impor-
tance. Although there are several works across the globe on 
reservoir inflow prediction using hydrological and machine 
learning mechanisms, there are very few works pertaining 
to reservoirs in Kerala.

The main objective of this paper is to analyze the daily 
time series inflow data of the Idukki Reservoir, Kerala, from 
2005 to 2020 so as to predict the future inflow using machine 
learning and deep learning models, viz., ES, ARIMA, and 
LSTM, and to compare their results. In addition to this, an 
attempt has also been made to reduce the deficiencies and 
improve the results of the model by ensemble averaging ES, 
ARIMA, and LSTM methods.

Background

Exponential smoothing and ARIMA are two widely used 
time series forecasting techniques with complementary ways 
of approaching data. While exponential smoothing describes 
data in terms of trends and seasonality, the ARIMA model 
describes data in terms of its correlation and autocorrelation 
functions. The LSTM on the other hand is a powerful deep 
learning memory–based forecasting technique that elimi-
nates the vanishing problem in RNN.

Exponential smoothing (ES)

During the late 1950s, Brown (1959) and Holt (1957) pro-
posed exponential smoothing, which is one of the successful 
forecasting techniques even today. Exponential smoothing 
is a time-series forecasting method where the forecasts are 
predicted using exponentially decaying weighted averages 
of past observations. To simplify, the recent observations are 
given relatively more weight than the previous ones and so 
on. There are several types of smoothing techniques, namely, 

1292   Page 2 of 11 Arab J Geosci (2022) 15: 1292



1 3

single exponential smoothing, double exponential smooth-
ing, and triple exponential smoothing also called the Holt-
Winters exponential smoothing.

Single exponential smoothing is best suited for data 
showing no trend or seasonality. It has a single smoothing 
parameter, alpha (α) where 0 ≤ α ≤ 1.

where yT+1 is the one step ahead forecast for time T + 1. 
The smoothing parameter determines the weights to be 
assigned, so the more the value of α, the more the weightage.

Further extending the single exponential smoothing, Holt 
1957 proposed the double exponential smoothing to forecast 
data with a trend. Double exponential smoothing is suitable 
for data showing trends in either an additive or multiplicative 
form. Here, in addition to α, the forecast equation has one 
more smoothing parameter for the trend, which is beta (β).

where yT+h is the h step ahead forecast for time T + h.

The triple exponential smoothing method also referred 
to as Holt-Winters exponential smoothing has the forecast 
function and three smoothing parameters alpha (α), beta (β), 
and gamma (γ). The method has two variations to incor-
porate additive and multiplicative seasonality. Additive 
seasonality is used for almost constant seasonal variations 
whereas multiplicative seasonality is for varying seasonal 
components.

Autoregressive Integrated Moving Average

ARIMA is a powerful statistical algorithm used in fore-
casting and it employs a different approach to time series 
forecasting by describing the autocorrelations in the data. 
It is capable of modeling any seasonal or non-seasonal 
(SARIMA) time-series data. It comprises three parts, auto 
regression (AR), integration (I), and moving average (MA). 
ARIMA relies on AR which means that it uses weighted 
past values to forecast future values. Integration reduces the 
seasonality of a time series by differencing. Moving average 
eliminates randomness from a time series.

An ARIMA model is characterized by 3 terms: p, d, and 
q where p is the order of the AR term, q is the order of the 
MA term, and d is the number of differencing required to 
make the time series stationary.

A pure AR only model is one where Yt depends only 
on its own lags and a pure MA only model is one where Yt 

yT+1 = αyT + α(1 − �)yT−1 + α(1 − �)2yT−2 +… ,

yT+h = lt + hbt

Level function lt = α yt + (1 − �) (lt−1 + bt−1)

Trend function bt = β (lt − lt−1) + (1 − β) bt−1

depends only on the lagged forecast errors. So basically in 
an ARIMA model, the time series is at least differenced once 
in order to make it stationary and the AR and MA terms are 
combined so that the equation takes the form:

where α is the intercept term estimated by the model, Yt−1 
is the first lag of the series, β is the coefficient of the lag, and 
Φ1 is the coefficient of forecast errors ∈t−1.

As in the case of any DL or ML algorithms, the selec-
tion of input has a major role in making a reliable forecast. 
It is a common practice to use the autocorrelation function 
(ACF) and partial auto correlation function (PACF) curves 
to prioritize and select the appropriate input to the model, 
for determining AR and MA in the ARIMA model. ACF 
function is also used to determine the stationarity of data. 
The ACF function curve abruptly drops to zero for stationary 
data whereas for non-stationary data, it decreases gradually.

Similar to ACF and PACF, AIC (Akaike Information Cri-
terion) and BIC (Bayesian Information criterion) can also 
be used to determine the order of the model. AIC tells how 
well the model and low AIC indicate a better model. BIC is 
very similar to AIC and both these metrics suggest a lower 
value for a better model.

Long Short Term Memory (LSTM)

LSTM was introduced by Hochreiter and Schmidhuber 
(Hochreiter and Schmidhuber 1997) in 1997 where they used 
gates and memory cells to handle the long-term dependency 
and mitigate the problem due to short-term memory in RNN.

where the different gates are the input gate ( it ), input 
modulate gate ( c}t ), forget gate ( gt ) with weights U and W, 
and the output gate ( ot ). Also b is bias vector, ct is cell state, 
and ht is the hidden state. The forget gate ( gt ) decides which 
information should be retained and which should be left 

Yt = � + �1Yt−1 + �2Yt−2 +…

+ �pYt−p∈t + Φ1∈t−1

+ Φ2∈t−2 +⋯ + Φq∈t−q

gt = σ(Ugxt +Wght−1 + bg)

it = σ(Uixt +Wiht−1 + bi)

c}t = tanh(Ucxt +Wcht−1 + bc)

ct = gt ∗ ct−1 + it ∗ c}t

ot = σ(Uoxt +Woht−1 + bo)

ht = ot ∗ tanh(ct)
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out. The cell state (ct ) contains the new values that are rel-
evant to the network. The output gate ( ot ) decides what the 
next hidden state should be. The hidden state ( ht ) contains 
information about previous inputs. These gates in LSTM 
have the capability to sequence data and will decide on the 
amount of information that is important and also pass them 
down the long chain to make predictions. This way, LSTM 
intelligently chooses the amount of information that has to 
be stored, while rejecting the rest and thus provides a better 
solution.

A basic LSTM architecture (Chevalier 2018) is shown 
in Fig. 1. It has the Tanh function which controls the val-
ues passing through the network, ht which denotes the new 
hidden state, ht−1 which denotes the previous hidden state, 
and xt the input. The sigmoid activation, similar to Tanh, 
decides how much value should be passed and it takes values 
between 0 and 1. A value of 0 means not passing any value 
and 1 means passing everything.

Materials and methods

Study area

The Idukki Reservoir in Kerala, India, is one of the highest 
arch dams in Asia. It is situated between two mountains, 
Kuravanmala and Kurathimala, in the district of Idukki. 
The dam, built on the Periyar River, has gross storage of 
1996 Mm3 which is equivalent to 1.996 km3. The Govern-
ment of Canada aided in the construction of the dam and 

it was inaugurated by Prime Minister Smt. Indira Gandhi 
on February 17, 1976. It is currently owned by the Kerala 
State Electricity Board (KSEB) of the Government of 
Kerala. The water from the dam is primarily used for the 
generation of electricity for the state. Table 1 details the 
salient features of the reservoir. Figure 2 shows the loca-
tion of the reservoir on Google Earth.

Data collection and preparation are among the primary 
step in any data analytics research. One common prob-
lem concerning data collection is missing data because 
of copious information and the interpretation of the same 
(Hamzah et al. 2021). For the purpose of the study, daily 
reservoir inflow data of Idukki Reservoir from January 
2015 to December 2020 were carefully collected and 
sorted from the Dam Safety Authority Department of the 
Kerala State Electricity Board (KSEB) with very negli-
gible data loss. Next, the data was checked and cleared 
for any ambiguous values/characters using Pythonic Data 
cleansing. Table  2 depicts the descriptive data of the 

Fig. 1   LSTM architecture. 
Chevalier 2018 Source: 

Table 1   Salient features of Idukki Reservoir (Skariah and Suriyakala 
2021)

Year of impoundment February 1973

Latitude, longitude 9.8062° N, 76.9441° E
Installed capacity 780 MW
Dam top level 2415 feet (736.09 m)
Maximum water level (MWL) 2408.5 feet (734.1 m)
Full reservoir level (FRL) 2403 feet (732.43 m)
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deployed information and Fig. 3 depicts the day-to-day 
reservoir inflow of Idukki Reservoir.

Methodology

Data from 1st January 2015 to 30th November 2020 were 
used for training purposes and the rest of the data till 31st 
December 2020 were used for model reliability testing. Fur-
thermore, depending on the results, inflow predictions were 

Fig. 2   Location of Idukki District on the map of Kerala (left) and map of Idukki Reservoir created using Google Earth Pro (right)

Table 2   Descriptive statistics of 
the inflow data

Descriptive statistics Value

Mean 4.612
Standard deviation 9.857
Median 1.806
Variance 97.171
Kurtosis 100.874
Skewness 8.157
Range 178.51

Fig. 3   Input inflow data of the 
Idukki Reservoir from 2015 to 
2020
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done for a period of 59 days from 1st January 2021 to 28th 
February 2021.

From Fig. 4, it can be interpreted that the data is an addi-
tive time series and hence the time series data is considered 
to be a sum of its various components as in the case of addi-
tive decomposition. Figure 5 depicts the ACF and PACF 
on the inflow data. It calculates the dependence of present 
samples on the past samples of the same series.

• Data pre-processing: Firstly, the reservoir data obtained 
from the authorities is checked for missing values and is 
normalized. The data set is checked for stationarity using 
the Augmented Dicky Fuller test (ADF). The ADF Test 
Statistic indicated a p value less than − 0.05 which means 
that the data was stationary and, hence, no further pre-
processing was required.
• Model implementation: The clean data set is now 
divided into training data and test data in the ratio of 

Fig. 4   Decomposition of addi-
tive time series

Fig. 5   ACF and PACF of the input data
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80:20. The data is trained and tested using 3 models, 
namely, ES, ARIMA, and LSTM.
a. Exponential smoothing: The data is fed into a single 
exponential smoothing network with optimization param-
eter alpha (α) = 0.8036. As observed in the time-series 
decomposition, the input data does not exhibit any trend 
as such; hence, the most suitable form of ES is single 
exponential smoothing. The smoothing factor alpha (α) 
ranges between 0 and 1. A value of alpha (α) closer to 
1 indicates fast learning, which means that the recent 
observations are given more weightage (Shmueli and 
Lichtendahl 2016).

 b. Autoregressive Integrated Moving Average: Firstly, 
the Dickey-Fuller test was performed to check the sta-
tionarity of data as data should be stationary to apply 
ARIMA. The hypothesis returned p = 0.01 which meant 
that the data is stationary. To optimize the parameters p, 
d, and q for the best fit, the ACF and PACF were plotted. 
After evaluation, the ARIMA model was implemented 
with p, d, q values ARIMA (1, 0, 1) respectively as it 
resulted in the smallest AIC value. In machine learn-
ing, Akaike’s information criterion (AIC) and Bayesian 
Information Criterion (BIC) are the statistics that help in 
model selection. They compare the superiority of a set of 
statistical models to each other and a lower AIC or BIC 
value shows a better fit (Snipes and Taylor 2014). Hence, 
the AIC is a factor that determines the order (p, d, q) of 
the ARIMA model. The model was tested for many other 
structures including ARIMA (3, 1, 1), ARIMA (4, 2, 0), 
etc., and the best was chosen based on AIC values as 
shown in Table 3.
c.  Long Short-Term Memory: Here, the data is fed into 
a model with an input layer followed by a hidden layer 
which comprises 5 LSTM layers and 1 dense layer with 
the number of neurons 50, 100, 100, 100, and 50, respec-
tively, with activation function ReLU (Rectified Linear 
Unit), loss function MSE, and optimizer as Adam. The 
performance of the LSTM model can be optimized by an 
appropriate selection of these parameters. The ReLU is a 
common activation function used in the hidden layer as 
it results in better performance. It is because ReLU does 
not activate all the neurons at the same time and hence 
provides better computational efficiency. It returns the 
input or 0 if the input is less than 0 (Agarap 2018). The 
Adam is an optimization algorithm used by DL models 

Table 3   Parameters for ARIMA (p, d, q) and corresponding AIC

Model (p, d, q) AIC BIC

ARIMA (1, 0, 1) 17,658.6 17,681.4
ARIMA (3, 1, 1) 17,667.64 17,696.03
ARIMA (4, 2, 0) 18,893.86 18,922.25

Table 4   Performance metrics for different models

Algorithm MAPE (%) FA (%)

Exponential Smoothing (ES) 61% 39%
Autoregressive Integrated Moving Average 

(ARIMA)
43% 57%

Long Short-Term Memory (LSTM) 55% 45%
Ensemble Averaged ES-ARIMA-LSTM 29% 71%

Fig. 6   Inflow prediction results using the ES method
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for stochastic gradient descent. Adam is very similar to 
other optimizers such as AdaDelta and is chosen because 
of its less memory requirement, easy implementation, and 
efficiency (Kingma and Ba 2014). The output layer, which 
is the third layer, uses the sigmoid activation function. 
The input is a weighted sum of observations and a bias is 
added to each hidden layer. The output is obtained such 
as to minimize the error by correcting the weights and 
the bias.
• Model prediction: The results obtained were assessed 
using statistical methods like mean absolute percentage 
error (MAPE) and forecast accuracy (FA). Pertaining 

to the current data set, the initial results indicate that 
ARIMA performs better than LSTM.

The above models were simulated in RStudio’s Keras 
package with the TensorFlow backend (Gandrud 2018; 
Hodnett and Wiley 2018). As the prediction results from 
the individual models (ES, ARIMA, and LSTM) were not 
satisfactory, a weighted ensemble average was taken for a 
much more reliable forecast. A weighted ensemble average, 
an extension of simple ensemble averaging, produces an 
output with the weights added in such a way that it is pro-
portional to each model’s individual performance. Hence, 

Fig. 7   Inflow prediction results using the ARIMA method

Fig. 8   Inflow prediction results using the LSTM method
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ARIMA was given slightly more bias as it performed bet-
ter individually. The weights were optimized using Solver-
based optimization technique to minimize the error. Solver 
is a Microsoft Excel add-on for optimization used in what-if 
analysis.

Experiment results

There are different tools to evaluate the accuracy of a pre-
diction model. In this study, the efficiency of prediction for 
each of the models is calculated in terms of MAPE and FA.

Mean Absolute Percentage Error = 

The smaller the value of MAPE, the better is the predic-
tion result.

Forecast accuracy = 

The higher the value of FA, the more accurate is the 
prediction.

where, pred (t) is the predicted value at time t; org (t) is 
the actual value at time t; and n is the total predicted time.

The prediction results for ES gave a MAPE of 61% with 
FA of 35%. ARIMA gave 43% MAPE with 57% FA whereas 

MAPE =
1

n

∑n

=1

|
|
|
|

pred(t) − org(t)

org(t)

|
|
|
|

FA =

(

1 −
|
|
|
|

pred(t) − org(t)

org(t)

|
|
|
|

)

∗ 100%

Fig. 9   Inflow prediction results 
using averaged ES-ARIMA-
LSTM method
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LSTM gave MAPE of 55% with FA of 45%. To generate a 
much more reliable result, a weighted average of the above 
3 models were taken. This combined weighted average 
provided a better model in terms of MAPE and FA. These 
results are tabulated in Table 4.

A graphical plot of the predictions is shown in Figs. 6, 
7, 8, and 9 with gross inflow (MCM) on the y-axis and date 
on the x-axis. The right-side plots in these figures are a 
zoomed version of the predictions for better understanding.

Apart from tuning the hyper-parameters, there are dif-
ferent optimization algorithms employed in ES, ARIMA, 
and LSTM models. A summary of a few of these tech-
niques is included below in Table 5.

Conclusion

A reliable reservoir inflow forecasting mechanism is benefi-
cial for an optimal operation as it largely influences many 
decisions including flood management. Owing to the recent 
climatic changes and flood scenarios, scheming inflow rates 
have become a crucial part of reservoir management. The 
current work has explored a combined weighted model of 
ES, ARIMA, and LSTM, for developing a reservoir inflow 
forecast model for the Idukki Reservoir, India. For the exper-
iment, daily reservoir inflow data was collected from the 
authorities for a period from 2015 to 2020. The input data 
was cleaned and divided into two sets for training and testing 
purposes. These were then individually fed into ES model 
with smoothing factor alpha (α) 0.8036; ARIMA model with 
p, d, q (1, 0, 1); and LSTM network with 5 layers and 1 
dense layer. Each model’s efficiency was defined in terms of 
MAPE and FA. The individual results showed that ARIMA 
performed better for the particular input data of the reser-
voir with a MAPE of 43% whereas ES and LSTM showed a 
MAPE of 61% and 55%, respectively. A distinctive improve-
ment in performance was observed while taking a weighted 
ensemble average of the three models with MAPE reduced 
to 29% thereby increasing the forecast accuracy to 71%. One 
drawback of the current study was that it deals with only his-
torical time series data of the inflow and does not take into 

account various other climatic factors such as rainfall and 
temperature. Hence, for further investigation, it is advised 
to include the above-said parameters for an enhanced result.
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