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Abstract
River discharge is a relevant ingredient of the hydrological cycle for a wide scale of utilizations and evaluation of water 
assets, plan of water-related designs and flood admonitory and relief plans. The predictive discharge of the basin using the 
machine learning approaches is therefore significant for managing water resources and the prevention of flooding control. 
This investigation evaluated the viability of several machine learning methods, M5P tree, Random forest, Regression tree, 
reduced error pruning tree, Gaussian process and support vector machine, to predict the basin discharge of the Kesinga basin. 
Various statistical measures, i.e. correlation coefficient, mean absolute error, root mean square error, Willmott’s index, Nash–
Sutcliffe efficiency coefficient, Legates and McCabe’s index and normalized root mean square, error were utilized to assess 
the performance of the developed model. The presentation of random forest and M5P models was found to be the best when 
compared with the regression tree, reduced error pruning tree, Gaussian process and support vector machine–based models. 
Overall RF-based model gave the best results among all applied models for predicting water discharge for the Kesinga basin 
with the coefficient of determination (R2) values of 0.978 and 0.890 for the training and testing stages, respectively. The 
main significance of soft computing techniques is that they help users solve real-world problems by providing approximate 
results that conventional and analytical models cannot solve.
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Introduction

Rivers play a very important role in our Earth’s climate 
system. They ensure the link between both the atmosphere 
and the ocean (Vörösmarty et al. 2000). In many parts of 
the world, rivers are the only available water source hold-
ing up the local socio-economic development (Sullivan 
2002). Hence, monitoring and quantification of river flow 
becomes essential not only for its sustainable manage-
ment but also to estimate the future possible conditions 
(Zakharova et al. 2020). Hydrology and water resource 
management require the quantity of streamflow. The 
information on streamflow propagation speed and time for 
streams to pass downstream is analytical for flood predic-
tion, supply tasks and watershed displaying (Brakenridge 
et al. 2012). Consequently, there is a requirement for long 
haul, ceaseless, spatially reliable and promptly accessi-
ble streamflow data. Streamflow is presently recorded 
at waterway measuring stations, although access to data 
is intermittent or non-existent, especially in developing 
nations, and they are under restrictive control in advanced 
countries (Calmant and Seyler 2006). These difficulties 
limit the research that requires waterway release infor-
mation. A basic factor in assessing waterway release lies 
in the capacity to practically estimate spatial pressure-
driven factors (i.e. width, depth and speed) and addition-
ally to set up the connections between them (Mersel et al. 
2013). The ground perception technique is the most exact 
proportion for streamflow. Ground waterway release is 
attained by assessing the pressure-driven attributes of 
stream channels including width, depth and speed (Stut-
ter et al. 2021). These gauge discharge estimates form 
the backbone of human water management decisions and 
hydrologic science. Variability in rainfall and potential 
evaporation are the primary reasons for annual variation 
in the surface river discharge from a basin (Chien et al. 
2013). Increasing human activities such as dam construc-
tions and operations, land use/land cover (LULC) change, 
surface and groundwater extractions, mining, etc. have 
resulted in the changes in river discharges (Destouni et al. 
2013). Furthermore, the relation between river discharge 
and LULC changes varies depending upon the location 
and size of basins, land management, elevation and LULC 
types (Li et al. 2001).

By then, fluctuated contemplate to various investiga-
tions in regard to Mahanadi waterway through the utiliza-
tion of hydro-climatic factors like temperature, precipitation 
and streamflow (Rao 1993, 1995; Gosain et al. 2006; Raje 
and Mujumdar 2009; Asokan and Dutta 2008; Ghosh et al. 
2010). Gosain et al. (2006) assessed that due to the variation 
in environment, the severity of floods turns viral, and this 
also causes an impact on the Mahanadi River basin. Ghosh 

et al. (2010) examined the pattern in Mahanadi under a future 
environment situation and noticed a declining pattern in the 
drift of Mahanadi at Hirakud.

In the most recent couple of years, different soft comput-
ing techniques like random forest, support vector machine, 
artificial neural network, Gaussian process and M5P model 
tree are effectively executed in engineering and water asset 
issues (Singh et al. 2022, 2021, 2019; Bhoria et al. 2021; 
Sepahvand et al. 2021; Sihag et al. 2020; Pandhiani et al. 
2020). Garg et al (2022) used two soft computing tech-
niques, artificial neural network and genetic programming, 
in the prediction of the streamflow and found that both soft 
computing techniques work well. Sridharam et al. (2021) 
implemented soft computing techniques (layered recurrent 
neural network, coactive neuro-fuzzy inference system and 
cascade forward back propagation neural network) and got 
reliable results in the prediction of streamflow. Muham-
mad Adnan et al. (2019) also investigated the potential of 
soft computing techniques and found them suitable for the 
prediction of the discharge of a river. Hence, the soft com-
puting techniques are the technique which can be used in 
the discharge prediction. Also, these techniques solve the 
real-life problem in an efficient way which is very hard to 
analyse using conventional methods. Keeping this in view, 
the current study focuses on the analysis of different soft 
computing techniques and change points in various hydro-
meteorological variables specifically rainfall, evapotranspi-
ration, inflow discharge (inflow), percolation, groundwater, 
surface runoff, water yield, potential ET and discharge in 
Kesinga basin.

Methodology

The data sets used for the present study include hydrologi-
cal data (surface runoff, inflow and discharge), meteorologi-
cal data (rainfall, evapotranspiration, potential evapotran-
spiration) and groundwater data (percolation, water yield 
contribution and groundwater) on monthly basis for the 
years 1990–2004. The meteorological data (1990–2004) 
were collected from the India Meteorological Department 
(IMD), Pune. Hydrological data (1990–2004) were collected 
from the Central Water Commission (CWC), Mahanadi and 
Eastern Rivers division, Bhubaneswar, Odisha. Rainfall 
and runoff data were recorded at Kasinga gauging station as 
shown in Fig. 1. Groundwater data (1990–2004) were col-
lected from the Central Groundwater Board, South Eastern 
Region Bhubaneshwar, Odisha. The evapotranspiration data 
and missing observed data of streamflow were supplemented 
by the outputs of the SWAT hydrological model.

The area selected for the research is the Kesinga sub-catch-
ment of the Mahanadi basin. The Mahanadi River is one of 
the main streams in India which establishes freshwater supply 
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for irrigation, commercial and household use in the watershed 
(Agarwal et al. 2019). The Kesinga sub-catchment covers an 
approximate area of about 11,855 km2, which expands from east 
longitudes of 82′21°–83′24° and north latitudes of 19′15°–20′44°. 

Most of the sub-catchment is located in the Kalahandi district 
of Odisha which has a population density of 50–100 people for 
each square kilometre. The elevation of the area is 187 m and the 
land corresponds to a flatter topography. Throughout the region, 

Fig. 1   Kesinga catchment area of Mahanadi basin situated in Odisha state
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the product of the constant progression of the water stream is 
fine and medium-textured soil. Such soil types are productive 
and quite appropriate for husbandry. Kesinga basin is rich in its 
water resources which comprise multiple reservoirs, dams, bar-
rages, wells, etc. In the study area, the higher temperature is felt 
in May and the lowest temperature in December. In summer, the 
temperature goes from 25 to 40 °C, and in winter, the temperature 
ranges between 11 and 27 °C. Maximum rainfall is observed in 
the monsoon season from June to September.

Performance criteria

There is a necessity for the assessment of the performance 
of the models for analysing the data with model evalua-
tion utilising various methods. There are various statistical 
methods to evaluate the performance of the developed model 
using observational and computational values of the model. 
In this analysis, the correlation coefficient, mean absolute 
error, root mean square error, Willmott’s index, scattering 
index, Nash–Sutcliffe efficiency index, normalized root mean 

square error and Legates and McCabe’s index are perfor-
mance assessment indices that are carried out in the present 
investigation to assess the fitting capability of the techniques.

Mean absolute error (MAE)

It is the measure of error between observations that express 
the same phenomenon. The MAE is calculated as follows.

Root mean square error (RMSE)

Root mean square error is generally calculated to determine 
numeric evaluation. RMSE is calculated as in the following:

(1)MAE =
1

N

∑N

i=1
|A − B|

(2)RMSE =

√
1

N

∑N

i=1
(A − B)

2

Fig. 2   Structure of M5P unpruned model used in this study
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Coefficient correlation

It is used to analyse the performance of any model using a 
numerical value. The CC is given as:

Nash–Sutcliffe efficiency coefficient (NSE)

It is implemented to examine the predictive power of the 
models. It is expressed by (Nash and Sutcliffe, 1970):

Willmott’s index (WI)

It is a standardized measure of the degree of model predic-
tion error which varies between 0 and 1. It is expressed as 
(Willmott 1981):

(3)CC =

∑N

i=1

�
A − A

�
(B − B)

�∑N

i=1
(A − A)

2
�∑N

i=1
(B − B)

2

(4)NSE = 1 −

⎡
⎢⎢⎣

∑N

i=1
(A − B)

2

∑N

i=1
(A − B)

2

⎤
⎥⎥⎦

Normalized root mean square error (NRMSE)

It is expressed as a percentage, where lower values indicate 
less residual variance.

Legates and McCabe's Index

It is utilized for measuring the accuracy of the model.

where A is the actual values, B is the predicted values, N 
is the number of observations and B is the average predicted 
value.

(5)WI = 1 −

⎡
⎢⎢⎢⎣

∑N

i=1
(B − A)

2

∑N

i=1
(
���B − A

��� +
���A − A

���)
2

⎤
⎥⎥⎥⎦

(6)NRMSE ∶=
1

B

√
1

N

∑N

i=1
(A − B)

2

(7)LMI = 1 − ⌈
∑N

i=1
�A − B�

∑N

i=1

���B − B
���
⌉

Table 1   Features of the data set

Units Data set Mean Standard deviation Minimum Maximum Kurtosis Skewness Confidence level
(95.0%)

Rainfall (mm) Training 116.36 157.46 0 694.2 1.67 1.56 27.11
Testing 134.11 211.21 0 873.2 3.13 1.92 61.33

Inflow (m3/sec) Training 42.93 68.97 0.183 370 8.85 2.88 11.87
Testing 50.59 68.97 0.745 287.4 3.33 1.97 20.03

Evapotranspiration (mm) Training 68.78 47.87 0 164.2  − 1.27 0.13 8.24
Testing 64.62 48.61 0 148.8  − 1.41 0.21 14.11

Percolation (mm) Training 31.03 66.95 0 333.9 6.23 2.58 11.53
Testing 41.97 90.59 0 369.7 5.65 2.51 26.30

Groundwater (mm) Training 2.57 8.19 0 50.13 13.85 3.66 1.41
Testing 1.62 5.82 0 30.09 18.13 4.26 1.69

Surface runoff (mm) Training 15.84 41.47 0 258.3 12.35 3.36 7.14
Testing 26.59 68.56 0 367.7 13.66 3.49 19.91

Potential ET (mm) Training 161.06 56.47 72.92 304.1  − 0.34 0.83 9.72
Testing 167.97 60.35 92.05 314.3  − 0.21 0.97 17.52

Water
yield contribution

(mm) Training 45.38 67.82 0.99 418.6 9.03 2.80 11.67
Testing 63.07 88.62 1.4 454.1 7.72 2.54 25.73

Discharge (m3/sec) Training 188.35 227.17 3.29 916.2 1.65 1.64 39.11
Testing 218.82 230.45 9.664 943.2 1.71 1.48 66.97
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Modelling approaches

M5P model

This model was initially established by Quinlan (1992) 
which is a combined type of decision tree learning 

process for both linear and nonlinear regression algo-
rithms. The decision tree recommends a correlation 
between measured input data and rational learning output 
data which is relevant for categorized statistical inputs 
and outputs. The Model Tree algorithm assigns a one-
dimensional function with output units as well as assigns 

Fig. 3   Flow diagram of the 
methodology
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a multivariate regression model to each spatial domain 
by dividing and categorising the complete data storage 
into various input spaces. Furthermore, rather than dis-
crete classes, the M5P technique is compact with con-
stant class issues while handling tasks with very high 
dimensions. M5P is therefore not just quick and easy but 
is also a robust and appropriate method for predicting 
and modelling huge amounts of data. The structure of 
M5P unpruned model developed in this study is shown 
in Fig. 2.

Random forest (RF)

The random forest technique has been  suggested by 
Breiman (1999) and has been used to produce an esti-
mate which usually carried an organization of various 
trees. Every tree represents a specific categorization 
and also the vote categorization. The RF approach pre-
fers a category that has optimum votes throughout the 
forest. The tree is fully developed unless the training 
set contains the number of N cases. N cases at random 
with the substitutes of the original information could be 
the input data set to fully mature the tree. Variable m is 
selected randomly from the input variables K for the best 
partition so that the value of m is not more than K and 
should be consistent. The tree is grown to its maximum 
possible without pruning. The set of data within each 
circumstance is handed down to each tree to arrange a 
new data set. Modelling a single tree is extremely com-
plicated and sensitive, as small changes in the training 

data set often result in large variations in individual tree 
classifications, leading to a low accuracy rate (Breiman 
1996). However, RF is relatively quick to achieve results 
and can be readily assimilated if there is the requirement 
of less computational time.

Random tree (RT)

The random tree is an algorithm-based technique that 
addresses both classification and regression problems. 
RT algorithm was originally established by Aldous 
(1993). Regression tree is an array or organizing of 
tree estimation methods; the method applied by the 
regression tree method includes a data set that collects 
information through input, categorizes it as a singular 
branch of a tree and eventually accepts the vote. They 
are instructed to use different training data set but simi-
lar elements. The development of certain data sets is 
made from total data using the bootstrap process. In each 
node of each tree, a subset of the parameter is used to 
derive the maximal split. Each node grows or develops 
a new subset, and furthermore, newly grown trees are 
not pruned.

Reduced error pruning (REP Tree)

The REP tree method is a speedy classification tree 
logic technique that uses the concept of computer 
technology–selected features with randomness and 
decrease variance inaccuracy (Quinlan, 1987). The 

Table 2   The performance of 
M5P, RF, RT, REP Tree, GP_
RBF, GB_PUK, SVM_RBF and 
SVM_PUK

Approaches CC MAE RMSE WI NSE LMI NRMSE

Training data set
M5P 0.9644 34.3398 59.9091 0.9813 0.9299 0.8004 0.3181
RF 0.9893 20.3488 34.6361 0.9938 0.9766 0.8818 0.1839
RT 0.9999 1.9571 3.2966 0.9999 0.9998 0.9886 0.0175
REP Tree 0.9508 41.1466 70.0975 0.9743 0.9041 0.7609 0.3722
GP_RBF 0.9378 56.6186 82.5343 0.9591 0.8670 0.6710 0.4382
GP_PUK 0.9596 48.8750 73.0509 0.9675 0.8958 0.7160 0.3879
SVM_RBF 0.9565 32.8319 68.3398 0.9751 0.9088 0.8092 0.3628
SVM_PUK 0.9954 8.9104 21.7823 0.9977 0.9907 0.9482 0.1156

Testing data set
M5P 0.9465 51.2383 82.9280 0.9697 0.8678 0.7147 0.3790
RF 0.9438 44.4497 75.5598 0.9748 0.8902 0.7525 0.3453
RT 0.8900 83.5595 122.3565 0.9340 0.7121 0.5347 0.5592
REP Tree 0.8720 74.1214 115.4103 0.9413 0.7439 0.5873 0.5274
GP_RBF 0.9087 49.3153 99.1282 0.9567 0.8110 0.7254 0.4530
GP_PUK 0.8658 55.5909 119.5222 0.9370 0.7253 0.6904 0.5462
SVM_RBF 0.8929 59.3595 105.1593 0.9512 0.7873 0.6695 0.4806
SVM_PUK 0.8913 57.5504 104.8255 0.9516 0.7887 0.6795 0.4790
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REP tree uses the logistic regression algorithm as 
well as generates numerous trees in several calcu-
lation procedures  by which the simplest tree was 
taken out of all the produced  trees. REP tree has 
been capable of generating a f lexible and straight-
forward modelling procedure by observing training 
data sets whenever the outcome will be huge and 
the complication of the tree’s internal structure is 
reduced. During this method, the pruning algorithm 
has taken under consideration the backward over-
f itting complexity and attempts to urge the mini-
mum version of the best precision tree logic using 
the post-pruning algor ithm (Quinlan  1987; Chen 
et al. 2019). It selects values for numeric attributes 
only once (Kalmegh, 2015).

Gaussian process regression (GP)

The vector method (Gaussian process) is an artificial 
machine learning approach that allows computing sys-
tems to adapt and strengthen their skills. GP regression 
is depending on the premise that adjoining observations 
must share data with each other, and it is a strategy that 
refers directly above the spatial domain. Furthermore, 
Gaussian process also involves the generalization of the 
Gaussian kernel. The Kernel-based regression vector 
and Gaussian distribution matrix are presented in the 
form of mean and covariance. Based on the probability 
theorem, GP regression models are capable of making 
predictions about unknown input data, while at the same 
time, they can also provide predictive accuracy which 

Fig. 4   The performance of the 
M5P model for training and 
testing stages
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greatly increases the statistically significant results of 
the predictive model. A Gaussian process is inclusion 
of multiple random variables that extend it to infinite 
dimensionality; hence, the processes are based on mul-
tivariate Gaussian distributions. Since the emergence of 
this technique in the last few years, it has been broadly 
used in varied research areas of chemistry, medicine, 
construction, etc.

Support vector machines (SVM)

Cortes and Vapnik (1995) were the first ones to pro-
pose SVM which uses a classification and regression 

approach which is based on the theory of statistical 
learning. The SVM concept is based on the ideal seg-
ment of courses. From divisible courses, SVM pre-
fers one with the least error of generalization with an 
unlimited number of linear classifiers or sets a higher 
rate of return on the errors acquired from systemic 
risk assessment. The highest range between both the 
two classes could indeed be derived from the speci-
fied hyper lane, and the total of the hyper lane inter-
vals from the nearest point of the two courses may 
set the highest range between the two classes. Hyper 
lanes are explained as a set of points whose dot prod-
uct with vectors in that space is constant. The basic 

Fig. 5   The performance of the 
RF model for training and test-
ing stages
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approach of SVM is therefore to assemble sets of data 
from the interface region to the inexhaustible func-
tion region by designing a series of hyper-planes so 
that regression, categorization and other difficulties 
can be made easier in the function region. The vector 
machine method system provides the kernel function 
scheme.

Data set

The total data set containing 180 observations from the 
Kesinga basin was divided randomly into two categories 

of training and testing. Training data is the larger group 
which contains 70% of the total data, while testing data 
is the smaller group which contains the rest 30% of the 
total data. Different input variables used in this study are 
rainfall, evapotranspiration, inflow, percolation, ground-
water, surface runoff, water yield and potential ET and the 
output parameter is discharge (Q) of the river. The features 
of both training and testing data sets are listed in Table 1. 
The complete flow diagram of the methodology is shown 
in Fig. 3. In this figure all steps explained clearly from 
data collection to best model selection for the prediction 
of river discharge.

Fig. 6   The performance of the 
RT model for training and test-
ing stages
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Results and discussions

The effectiveness of the soft computing techniques in 
predicting the discharge of the river in Kesinga basin is 
tested by several soft computing techniques, viz. random 
forest (RF), M5P, radial basis Kernel function–based 
Gaussian process (GP_RBF), Pearson VII kernel func-
tion–based Gaussian process (GP_PUK), reduced error 
pruned (REP tree), radial basis kernel function–based 
support vector machine (SVM_RBF), Pearson VII kernel 
function–based support vector machine (SVM_PUK) and 
random tree (RT).

Result of M5P, RF, REP Tree, RT

The performance of four models to predict Kesinga 
basin discharge for both training and testing stages 
using various performance assessment indices is shown 
in Table 2. The preparation of M5P, RF, REP tree and 
RT models is a trial-and-error process. The numbers of 
manual trials were done to find the maximum value of 
user-defined variables of M5P, RF, REP tree and RT. 
Scatter plot among observed and predicted discharge 
for training and testing stages using M5P, RF, RT and 
REP Tree based models are shown in Figs.  4, 5, 6 

Fig. 7   The performance of the 
REP tree model for training and 
testing stages
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and 7,  respectively. These figures indicates that the 
performance of M5P model is better than RF, RT and 
REP Tree based models with R2 = 0.8959 for testing 
stage. The performance of M5P, RF, RT, REP Tree are 
listed in Table 2. For the ideal model, maximum value 
of WI, NSE and LMI and minimum value of CC, MAE, 
RMSE and NRMSE were considered. Out of these four 
models, M5P and RF show comparable results. The 
result of CC in M5P model (0.9465) is performing bet-
ter than random forest (0.9438) but in other cases of 

MAE (44.4497), RMSE (75.5598), WI (0.9748), NSE 
(0.8902), LMI (0.7525) and RMSE (0.3453). Random 
forest shows best results by having minimum value in 
MAE, RMSE and NRMSE and maximum value in WI, 
NSE and LMI.

Result of GP_RBF, GP_PUK

To predict Kesinga basin discharge, the performance of 
the Gaussian process (GP_RBF and GP_PUK) for both 

Fig. 8   The performance of the 
GP_PUK model for training and 
testing stages
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training and testing stages using performance assessment 
indices is shown in Table 2. The preparation of GP_RBF 
and GP_PUK models is a trial-and-error process.  The 
Scatter plot among observed and predicted discharge 
using GP_PUK and GP_RBF  are shown in Figs. 8 and 9 
respectively. These figures indicates that the performance 
of GP_RBF is better than GP_PUK based model with R2 
= 0.8258. For the ideal model, maximum value of WI, 
NSE and LMI and the lower value of CC, MAE, RMSE 
and NRMSE were considered. Although these models 
show considerable results on the bases of CC value, still 
GP_RBF is the best model based on the model assess-
ment pattern. Result of CC in GP_RBF model (0.9087) 

is performing better than GP_PUK (0.8658) but in other 
cases of MAE (49.3153), RMSE (99.1282), WI (0.9567), 
NSE (0.8110), LMI (0.7254) and RMSE (0.4530). GP_
PUK performs best results by having minimum value in 
MAE, RMSE and NRMSE and maximum value in WI, 
NSE and LMI.

Result of SVM_RBF and SVM_PUK

Presentation of support vector machine (SVM_RBF and 
SVM_PUK) to predict Kesinga basin discharge for both 
training and testing stages using performance assessment 
indices is depicted in Table 2. The preparation of SVM_RBF 

Fig. 9   The performance of the 
GP_RBF model for training and 
testing stages
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and SVM_PUK models is a trial-and-error process. Several 
manual trials were done to discover the maximum value of 
user-defined parameters of SVM_RBF and SVM_PUK. The 
Scatter plot among observed and predicted discharge using 
SVM_PUK and SVM_RBF are  shown in Figs.  10  and 
11 respectively. These figures indicates that the performance 
of SVM_RBF is better than SVM_PUK based model with 
R2 = 0.7973 for testing stage. For the ideal model, maxi-
mum value of WI, NSE, CC and LMI and minimum value 
of MAE, RMSE and NRMSE were considered. SVM_PUK 
performance assessment indices shows CC (0.8913), MAE 
(57.5504), RMSE (104.8255), WI (0.9516), NSE (0.7887), 

LMI (0.6795) and RMSE (0.4790). Based on these out-
comes, SVM_PUK can be concluded as the best model.

Comparative results of M5P, RF, RT, REP Tree, GP_
RBF, GP_PUK, SVM_RBF and SVM_PUK

Figure 12 shows the comparison of the models used in 
the present study for the prediction of Kesinga basin 
discharge. Random forest is outperforming among all 
applied models. Based on performance assessment 
indices, the output of CC in M5P model (0.9465) is 
performing better than random forest (0.9438), but 

Fig. 10   The performance of the 
SVM_PUK model for training 
and testing stages
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is best in terms of MAE (44.4497), RMSE (75.5598), 
WI (0.9748), NSE (0.8902), LMI (0.7525) and RMSE 
(0.3453). Descriptive statistics of observed and predicted 
values using various oft computing techniques are listed 
in Table 3. Figure 13 indicates the box plot for observed 
and predicted values of discharge using soft computing 
techniques. Taylor diagram for the assessment of the soft 
computing based models for the prediction of discharge 
is shown in Figure 14. This figure indicates that M5P 
model works better than other applied models. Red solid 
circle is closer to hollow black circle with maximum 
value of CC. Overall the performance of RF model is 
also suitable for the prediction of discharge.

Comparison of results with multilinear regression 
(MLR)

Finally, a comparison of results is done with multilinear 
regression which is a simplified method of soft computing. 
MLR is a statistical technique that uses several explana-
tory variables to predict the outcome of a response vari-
able. MLR equation generated from the current data set is 
presented in Eq. 8. Figure 15 shows a comparison of the 
results with the MLR which suggested that the advanced soft 
computing techniques gave the good results than MLR. The 
value of CC for MLR is 0.7781 which is less than all other 
soft computing techniques.

Fig. 11   The performance of the 
SVM_RBF model for training 
and testing stages
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Table 3   Descriptive statistics (quantitative data)

Statistic Observed M5P RF RT REP Tree GP_RBF GP_PUK SVM_RBF SVM_PUK

Minimum 9.6640  − 3.8590 18.9230 6.4070 43.4690 8.1520 20.9030 6.9240 9.1040
Maximum 943.2000 1093.6890 739.0220 916.2000 717.5560 754.3330 725.8310 739.8630 776.3950
1st quartile 47.5900 35.8490 40.2030 31.1555 43.4690 58.4475 55.9833 34.9188 35.8120
Median 126.2500 122.1555 126.6605 122.3750 91.1170 114.3355 113.1045 110.7065 110.6845
3rd quartile 331.6000 352.0595 314.5735 389.8000 394.0220 284.8580 288.9635 312.2945 369.1775
Mean 218.8207 228.1570 215.5630 238.2374 218.7401 196.3603 191.6761 199.0218 213.7949
IQR 284.0100 316.2105 274.3705 358.6445 350.5530 226.4105 232.9803 277.3758 333.3655

Fig. 12   The performance of the 
comparison of soft computing 
model
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The present study aims at evaluating the prediction 
of annual water discharge of Kesinga sub-catchment of 
Mahanadi basin, India. In this research, different soft 
computing models, M5P, random forest, regression tree, 
reduced error pruning, Gaussian process (GP_RBF, 
GP_PUK) and support vector machine (SVM_RBF, 
SVM_PUK), are used. Based on performance assess-
ment indices, random forest performs the best among all 
other models.

(8)

Discharge =0.74 Rainfall − 1.08 inflow + 0.59 Evapotranspiration

− 1.03 Percolation + 8.64 Groundwater − 1.13 Surface Runoff

− 0.51 Potential ET + 2.93 Water Yield Contribution + 96.10

Ghorbani et al. (2016) performed a study in which four 
modelling techniques were reported to provide evidence for 
an appropriate method for forecasting discharge data. Dif-
ferent soft computing models, viz. support vector machines 
(SVM), rating curve (RC), artificial neural networks (ANNs) 
and multiple linear regression (MLR), were used. This 
research reveals that the ANN, SVM and RC models display 
a clear edge over the MLR model in forecasting discharge 
values, which may be explained by their nonlinear math-
ematical formulations. In Ghorbani et al. (2016), SVM and 
ANN show comparable results but perform better than the 
rating curve and multiple linear regression. He et al. (2014) 
performed the modelling technique, viz. support vector 
machine (SVM), artificial neural network (ANN) and adap-
tive neuro-fuzzy inference system (ANFIS), on small river 
basins of semi-arid mountainous with complex topography 
by predicting the river flow performance. Support vector 
machine was found to be outperforming than artificial neural 
network and adaptive neuro-fuzzy inference system. This 
research has served to establish the excellent performance 
of the RF and the M5P techniques over the other approaches 
(RT, REP Tree, GP_RBF, GP_PUK, SVM_RBF and SVM_
PUK). The RF and M5P is the tree-based approach that gave 
the edge to these approaches over other approaches. Among 
the RF and M5P approaches, the RF are the superior one for 
the prediction of the discharge. Therefore, it may be decided 
that RF is the ideal machine learning approach in the predic-
tion of the Kesinga basin discharge by using different soft 
computing techniques.

Sensitivity study

To examine the most influential input variable, a sensitivity 
study was designed for the prediction of water discharge in the 

Fig. 14   Taylor diagram of various soft computing techniques for the 
testing stage

Fig. 15   Comparison of results 
with MLR
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basin. It was found that the random forest model outperformed 
other models selected in this research. Each input variable is 
removed one by one to quantify the impact of every variable 
on the output at a time and the outcomes were presented in the 
form of CC and RMSE for the test data set. From the result 
shown in Table 4, it has been observed that the most signifi-
cant variable of Kesinga basin discharge is rainfall.

Conclusion

This study aimed at predicting the Kesinga basin discharge 
by using different soft computing techniques with various 
input variables. The primary focus of this study is compar-
ing the performance of discharge of the Kesinga basin using 
M5P, RF, RT, REP Tree, GP_RBF, GP_PUK, SVM_RBF 
and SVM_PUK models. During testing and training, the per-
formance of all applied models is reliable and significant 
for the prediction of Kesinga basin discharge data sets. RF 
and M5P shows comparable outcomes based on higher CC 
value of M5P and lower MAE and RMSE values. RF models 
performed better than all other models for the forecasting of 
discharge of the Kesinga basin with the coefficient of deter-
mination (R2) values of 0.978 and 0.890 for the training and 
testing stages, respectively, using rainfall, inflow, evapotran-
spiration, percolation, groundwater, surface runoff, potential 
ET and water yield contribution. However, further expansion 
and exploration of the M5P, RF, RT, REP tree, GP and SVM 
models are required for the prediction of river discharge and 
sustainability of water resources management. Results of 
sensitivity analysis suggested that the most significant vari-
able of Kesinga basin discharge is rainfall.
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