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Abstract

This paper presents results of laboratory investigation of alkali—surfactant—polymer (ASP) flooding technology for improving
recovery of crude oil from Upper Assam oilfields. Oil displacement efficiency of two-component ASP formula consisting of
polymer—surfactant, hydrophobically modified by added alkali was tested by conducting core flood studies. Contact angle
and wettability is an important criterion for alkali flooding. In chemical enhanced oil recovery, reservoir should be strong
water wet. The reservoir under study was initially intermediate wet, but after alkali and surfactant flooding, it altered to strong
water wet. Ultra low interfacial tension in the range of 10~ mN/m can be achieved by surfactant flooding. Salinity plays an
important role in ASP flooding. It should be compatible with reservoir. During the course of the experiments, 5 pore volumes
(PV) concentrated aqueous solutions of ASP slugs were injected into the core samples as a result of which oil displacement
increased to maximum 34% after secondary water flooding. This extra recovery is due to microscopic displacement and
macroscopic sweep efficiency. This technology has potential to become an alternative to the other chemical recovery meth-
ods especially in cases where application of these methods is restricted by geological, economical, or ecological factors.

Keywords ASP slug - ASP flooding - Water flooding - Chemical recovery - Pore volume

Introduction

Upper Assam basin is one of the most petroliferous and
old oil reservoirs in India. It was discovered in 1901. Most
of the wells are producing from the Tipam, Barail, and
Eocene formation (Gogoi 2009). Typical recovery factor
from primary drive mechanism is about 30%, depending
on the properties of oil and the characteristics of the res-
ervoir rock. On average, the recovery factor after primary
and secondary oil recovery operations is between 35 and
45%. Remaining 55% of initial oil in place is unrecover-
able by secondary flooding. Significant recovery can be
achieved by using proper slug in chemical enhanced oil
recovery (CEOR). This process involves injection of exotic
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fluids like alkali, surfactant, polymer, and combination of
these (Gogoi 2010). This method mobilizes and recov-
ers the oil that has been left behind or cannot produce
economically by conventional means; i.e., it reduces the
residual oil saturation. To sustain global production of
energy resources, it is imperative to recover more con-
ventional reserves. EOR methods are among the key ways
of achieving this goal. Using EOR, 30-60% or more of
the reservoirs original oil can be extracted compared with
35-45% using primary and secondary recovery. The selec-
tion of EOR method is a challenging approach (Mandal
and Bera 2015). All types of EOR methods are not feasible
in all types of reservoir. For that characterization of res-
ervoir rock as well reservoir fluid has great importance.
Alkali—surfactant—polymer (ASP) flooding is a promis-
ing method under CEOR. The recovery of oil depends
on the identification of alkali, surfactant, and polymer in
ASP flooding. Since it is a cost-sensitive business, proper
selection and formulation of slug is an important criterion
(Hazarika and Gogoi 2014; Gogoi 2009). ASP flooding
deserves special attention. This method was developed in
1984 by R. C. Nelson, Shell (Kudaibergenov et al. 2015),
but only in recent years, it started to be applied throughout
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the world. In ASP flooding alkali, surfactant and polymer
are injected into the reservoir simultaneously or as sepa-
rated slugs. Addition of surfactant, alkali, and polymer
in various combinations improves displacement proper-
ties of injected water. Presence of surfactant in injected
brine causes decrease of IFT at oil-water interface down
to ultra-low values 0.05-0.01 mN/m that allows mobiliza-
tion of residual discontinuous oil droplets, which coagu-
late forming oil bank. Addition of high molecular weight
polymers causes thickening of the aqueous phase, which
leads to more even distribution of the displacement front
and, thus, improvement of macroscopic sweep efficiency.
Application of alkali is motivated by its interaction with
oil and rock. Almost all-natural oils contain active compo-
nents—organic acids—though their amount and composi-
tion vary. Reactions that take place in situ between alkali
and organic acids occurring in oil produce surfactants,
which cause reduction of IFT at oil water interface (Gogoi
2011). Increase of the amount of organic acids in crude oil
increases the efficiency of alkali flooding.
High-molecular-weight polyacrylamide (PAM) has been
widely used in chemically enhanced oil recovery (EOR)
processes under mild conditions. PAM shows excellent vis-
cosifying criteria. It can significantly increase the viscos-
ity of the displacing fluid and hence decrease the mobility
ratio of the process even at very low concentrations. It has
resistance to shear degradation and exhibits pseudo-plastic
behavior. It is stable over large ranges of pH and less sen-
sitive to mechanical shearing and to divalent ion concen-
tration (hardness) due to its rigid polysaccharide chains. In
un-hydrolyzed form, it is generally nonionic in nature. Non-
ionic PAM has high adsorption in the porous media, so it is
not used for EOR applications (Shah and Schechter 1977).
However, most of the currently used CEOR polymers are
modified forms of PAM. The amide group present in PAM
may undergo hydrolysis at higher reservoir temperature and
high pH (Ramirez 1987). The hydrolysis of PAM at high
temperature and pH was first observed by Muller in 1980.
But at very harsh reservoir condition it may suffer from
thermal degradation. Therefore, at mild reservoir condition,
PAM is efficient to recover more oil during CEOR process.
Na,CO; buffering action can reduce alkali retention in the
rock formation as well as adsorption of SDS in the porous
media. Low tensions required for EOR by alkaline flooding
can be achieved with alkaline solutions at pH < 11. Na,CO; is
effective in lowering IFT. Oxidative degradation of polymers
may become a serious concern in EOR (Marszall 1977, Alagic
and Skauge 2010). Sodium carbonate has been demonstrated
to play a key role in stabilizing polymers against multiple
sources of degradation. The interfacial viscosity drastically
decreases in the presence of Na,CO;. Under favorable condi-
tions, the change may exceed three or four orders of mag-
nitude. Simultaneously, Na,CO; effectively suppresses the
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non-Newtonian flow behavior of the interfacial layer (Naga-
rajan 2002).

The conventional CEOR methods are mainly polymer flooding,
and surfactant and alkaline flooding (Samanta et al. 2012). The
mechanism of polymer flooding is to reduce the mobility ratio
and hence increase the macroscopic sweep efficiency. In some
cases the efficiency of polymer flooding may be reduced due to
viscosity reduction in presence of reservoir brine and high reser-
voir temperature. In case of surfactant flooding, recovery can be
enhanced by reducing IFT and hence increase the microscopic
displacement efficiency. Wettability alteration, IFT reduction by
producing in situ surfactant, and reduction of chemical adsorption
in CEOR are the main objectives of alkali flooding. The combi-
nation of the abovementioned methods for example alkali—sur-
factant (AS), surfactant/polymer (SP), alkaline/polymer (AP), and
alkaline/surfactant/polymer (ASP) slug have proven to be most
efficient methods in CEOR. Recently, the use of foam-assisted
surfactant and polymer, for improved stability of the injected slug
and mobility control, has been studied and found to enhance oil
recovery for CEOR processes; nanofluid flooding has been evalu-
ated and explored as a chemical EOR process with field applica-
tion reported in Colombia (Franco et al. 2017). The mechanism
of the improved oil recovery was identified as structural disjoining
pressure, wettability alteration, IFT reduction, and improved vis-
cosity of injectant (Nikolov et al. 2019). More recently, the use of
nanoparticles to conventional CEOR has been studied and reported
to yield novel materials with excellent and improved properties.
For example, polymer slug stability can be increased by adding
polymeric nanofluids, which can improve rheological properties
and stability of the slug for application in the presence of high
reservoir temperature and high reservoir brine salinity conditions
(Gbadamosi et al. 2018). Furthermore, the adsorption of surfactant
can be reduced and efficiency of the system can be improved by
the synergistic application of nanoparticles (Yekeen et al. 2018).

In this study, IFTs for different samples were determined by
spinning drop Tensiometer using by Vonnegut’s formula (Von-
negut 1942). Contact angles of different core samples were
determined in KRUSS DSA100 instrument, and hence, wet-
tability was determined from the contact angle values (Gogoi
2007). Relative permeability of wetting and non-wetting phase
was measured by JBN method. Core flooding experiment was
done to calculate the recovery efficiency for secondary brine
flooding, alkali, surfactant, polymer, and combination of these.

Experimental
Materials
The list of materials is shown in Table 1.
Two anionic surfactants namely SDS and SDBS were

used, the polymer used was PAM, and the alkali was NaOH,
NaHCO;, and Na,CO;. The core samples were collected from
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Table 1 List of materials

S.N Material Specification Make

1 Sodium dodecyl sulfate (SDS) 288.372 g/mol MERCK

2 Sodium dodecyl benzene sulfonate(SDBS) 348.48 g/mol MERCK

3 Sodium hydroxide (NaOH) 39.997 g/mol MERCK

4 Sodium carbonate (Na,CO5) 105.988 g/mol MERCK

5 Sodium bicarbonate (NaHCO;) 84.07 g/mol MERCK

6 Polyacrylamide (PAM) 71.08 HiMedia laboratory Pvt Itd
7 Liquid paraffin light 15c¢cp Fisher Scientific

8 Crude oil (NH) 31° API Collected

9 Core sample (C1-C4) Barail Collected

Table 2 List of equipment

S1. No Equipment name Model, make
Viscometer Grace, M3600
Spinning drop tensiometer Grace, M6500
3 Soxhlet apparatus E instruments
&equipments,
101
Core flooding instrument Gon Engg. Works
5 Contact angle instrument KRUSS, DSA100

a depth of 2315 to 3600 m of the producing horizon of Upper
Assam Basin. Liquid paraffin light was selected instead of
crude oil because in the existing core flood apparatus, crude
oil cannot be flooded. Moreover, liquid paraffin light resembles
crude oil in terms of API and viscosity (Hadia et al. 2007).
Since the size of core sample is 1.5-inch diameter and 3.5-inch
length, it is homogenous in nature. Effective porosity, perme-
ability, and saturation properties are constant throughout the
core sample. Since the properties of liquid paraffin which is
used in core flooding process resemble the crude oil under
study area, there is very negligible effect on S, S,, recovery
efficiency, and viscosity. The list of equipment used in this
work is given in Table 2.

Methodology
Interfacial tension (IFT)

The IFT of the aqueous phases, which comprises surfactants
or their mixtures and oleic phase which was NH, was deter-
mined in spinning drop tensiometer. Calculations were done
byVonnegut’s formula (Vonnegut 1942).

1
o= 7 Apa)zan

In this formula.
o = IFT in (N/m),
R_,=mean radius in (m),

Ro Rm

Fig. 1 Cylindrical elongated drop curvature radii in Vonnegut’s
approximation case

Ap= density difference in (kg/m3),

o = angular velocity in (rad/S).

R, is the radius of the drop at equator as indicated in
Fig. 1. This formula has been shown to be valid within
0.1% if the length of the drop exceeds 4 times its diameter.
Since the centrifugal acceleration is not constant along the
elongated drop, the radius at the tip is not equal to that in
center as indicated in Fig. 1 (R, = 2/3 R)).

Surfactants were SDS (S1) or SDBS (S2) or SDS+NaOH (S3)
or SDS+Na,CO; (S4) or SDS+NaHCO; (S5) or SDBS +NaOH
(S6) or SDBS +Na,COj; (S7) or SDBS+NaHCO; (S8). The steps
for determining IFT are as follows:

(a) IFTs were measured between the aqueous phase com-
prising SDS dissolved in brine (0 to 4000 ppm) (0.1—
0.7% by volume of 0.1 M SDS) and NH and the CMCs
were determined at minimum IFTs.

(b) The CMC value of (S1) was added to different concen-
trations (0.25-1.15% by weight) of NaOH to determine
the CMC at minimum IFT.

(¢) The CMC value of (S1) was added to different concen-
trations (0.25-1.15% by weight) of Na,COj; to deter-
mine the CMC at minimum IFT.

(d) The CMC value of (S1) was added to different concen-
trations (0.25-1.15% by weight) of NaHCO; to deter-
mine the CMC at minimum IFT.

(e) IFTs were measured between the aqueous phase com-
prising SDBS dissolved in brine (0 to 4000 ppm)
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(0.1-0.7% by volume of 0.1 M SDBS) and NH and the
CMCs were determined at minimum IFTs.

(f) The CMC value of (S2) was added to different concen-
trations (0.25-1.15% by weight) of NaOH to determine
the CMC at minimum IFT.

(g) The CMC value of (S2) was added to different concen-
trations (0.25-1.15% by weight) of Na,COj; to deter-
mine the CMC at minimum IFT.

(h) The CMC value of (S2) was added to different concen-
trations (0.25-1.15% by weight) of NaHCOsto deter-
mine the CMC at minimum IFT.

Contact angle and wettability

Contact angles of C1-C4 samples were measured in KRUSS
DSA100 instrument. From the contact angle values, wet-
tability was determined (Gogoi 2007). Contact angle and
wettability is an important criterion for alkali flooding. For
chemical EOR process, the reservoir rock should be water
wet; otherwise, it should be altered from oil wet to water wet
by alkali flooding (Anderson 1987). Wettability depends on
contact angle. Before measuring the contact angle, the sam-
ple was saturated under vacuum in 3000 ppm brine solution
for 3 h; then, the core was centrifuged with crude oil for
30 min (3000 rpm); after that, it was soaked in toluene for
2 s to remove the surface oil under atmospheric pressure.
Toluene has the capability of removing oil by dissolving.
During this process, toluene could not flush out the oil in the
core because core was saturated under vacuum and soaking
was done under atmospheric condition. After removing the
surface oil, the core was placed in the centrifuge at 3000 rpm
for overnight in surfactant solution. Core was placed in core
holder of contact angle measuring instrument. One drop of
oil from reservoir under study was injected through the nee-

(Anderson 1987). Alkali has a strong role over the altera-
tion of wettability. It changes the wettability from oil wet
to water wet which is desirable for ASP flooding (Samanta
et al. 2012; Das and Gogoi 2015) (Tables 3, 4, and 5).

Relative permeability

Relative permeability of wetting phase and non-wetting
phase can be measured by JBN method. In this method, the
capillary effect is neglected; therefore, in case of low flow,
this method cannot be used. The experimental data was gen-
erated in core flooding instrument made by Gon engineering
works (Core flooding Instrument). The experimental data
generally recorded includes:
Q;= quantity of displacing phase injected.

Ap = pressure differential

Ap,= pressure differential at initial conditions.

Q.= volume of oil produced.

Q,,= volume of water produced.

The above data can be analyzed by the technique
described by Johnson, Bossler and Nauman and are used to
calculate the relative permeability ratio K, /K., the values
of K, and hence K,,,, with respect to water saturation (Lui
et al. 2010). This method is aimed at giving almost constant
outflow values, which is essential for this method. The frac-

tional flow of oil at the core outlet can be calculated by

dSWaV

Jou = do,;

Table 4 Initial core properties

dle. The oil drop makes an angle when it has touched the Property Value
core sample surface. The picture of the oil drop has been .y 1435
taken with the microscope associated with the instrument c (C;) 3'81
and tangent was drawn to find the contact angle. The wetta- Soreq ia (em) 11'84
bility obtained from DSA 100 was validated with the relative > (7”) e
permeability graph obtained from JBN method. In relative ‘"_( ) . '
.. . . Brine Visco (cP) 1.008
permeability curve if the crossover point between non-wet- o
. . . . Qil Visco (cP) 15.07
ting phase and wetting phase is 50% of water saturation (S,,), Keffo at S... (mD 196
then the rock is said to be water wet; otherwise, it is oil wet eff o at S (mb) ’
Table13 C(;lnlt)ac.:t angle of codre Sample Obetween CO and Obetween CO and Obetween CO and
sample with brine, SDS, an 3000 ppm brine (°) SDS +3000 ppm brine (°)  (SDS +Na,CO;) +3000 ppm
Na,CO, oo
23 brine (°)
Cl1 64 73 123
C2 82 98 129
C3 76 94 124
C4 67 89 131
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Table 5 Water—oil relative permeability (JBN method)

SW KI‘W/KI‘O

Flow rate (cc/h)

Fo

AvgS,,

W Inj (%PV)

Q,

Water AP (atm)

Water flow ( cc)

Oil flow (cc)

(% PV)

injected (PV)

0.50
0.44
0.27
0.17

0.51

11.84
31.71

180

0.96
0.86
0.53
0.33

0.1

32.05
50.17

20.90

20.20

41.51
18.11

3.000
3.000

0.10
0.40
1.40
2.00
2.70
2.90

2.900
2.600
1.600
1.000
0.300
0.100

0.004617
0.016161
0.023087
0.031168

0.01

180

20.90

41.51

0.058
0.13
0.60
1.93

50.07
61.29
68.24

70.34

180
180
180

61.32
68.29
70.38

20.90
20.90
20.90

11.14

41.51

3.000
3.000
3.000
3.000

6.96
2.09
0.69

41.51

0.051

41.51

0.033476

0.017

0.033 180

71.07

20.90

41.51

1
fOut = k

Ko Bw 4 q
Hy ki

Relative permeability of oil can be calculated by

Core flooding

Core flooding experiment was done to calculate the recov-
ery efficiency by secondary brine flooding (3000 ppm)
and alkali, surfactant, polymer, and combination of these.
Pore volume of the rock sample was calculated by satura-
tion method in vacuum chamber. The core was placed in
the Hassel core holder in core flooding instrument made by
Gon Engineering Works (Core flooding Instrument). Over-
burden pressure of almost 1000 psi was given to the core
to restrict the annulus flow and injection pressure less than
overburden was applied. 3000 ppm brine was flooded until a
steady flow occurs (10 PV). At that stage we get the absolute
permeability of water by collecting the water through outlet
for 60 s,; next, we flood the liquid paraffin of viscosity 15
cp until a steady flow of paraffin occurs at the outlet; at that
stage, we get the initial water saturation (S,,;) and initial
oil saturation (S,;). Secondary brine flooding (5 PV) was
done to recover the oil; this is known as secondary recovery.
This secondary recovery is less than initial oil saturation
volume. To recover the residual oil, we have flooded 5 PV
of formulated alkali, surfactant, polymer, and combination
of these slugs as shown in Table 6. The sequence of flooding
was alkali, surfactant, polymer, AS, SP, and ASP one after
another. Permeability impairment has detrimental effect on
oil recovery. So after each flooding, the core was cleaned in
Soxhlet apparatus and made ready for next flooding.

Results
Interfacial tension (IFT)

IFT study was done to formulate the concentration of sur-
factant and alkali for the CEOR slug. We have selected SDS
and SDBS as surfactant and Na,CO;, NaOH, and NaHCO,
as alkali. The samples were prepared with different salinities
ranging from 1000 to 4000 ppm, because most of the reser-
voir salinity in this basin is in that range. The CMC value
for SDS was determined to be 0.4% (by volume) of 0.1 M
SDS solution (Fig. 2). After fixing the SDS concentration
added alkali further reduces the IFT. Among the three dif-
ferent alkali, Na,CO; shows the best result at concentration

@ Springer
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Table 6 CEOR slug for core

Flooding process
flooding ep

Slug

Alkali (A)
Surfactant (S)

Polymer (P)
AS

Sp

ASP

0.85% (by weight) of Na,CO;

0.4% (by volume) of 0.1 M SDS

0.5% (by volume) of 0.1 M SDBS

1500 ppm PAM

0.4% (by volume) of 0.1 M SDS +0.85% (by weight) of Na,CO,
0.5% (by volume) of 0.1 M SDBS + 1% (by weight) of Na,CO;
0.4% (by volume) of 0.1 M SDS + 1500 ppm PAM

0.5% (by volume) of 0.1 M SDBS + 1500 ppm PAM

0.4% of 0.1 M SDS +0.85% of Na,CO;+ 1500 ppm PAM

0.5% of 0.1 M SDBS + 1% of Na,CO;+ 1500 ppm PAM

of 0.85% (by weight) as shown in Fig. 2. This 0.4% (by
volume) of 0.1 M SDS +0.85% (by weight) of Na,CO; was
selected for core flooding experiment. Similarly for SDBS
the CMC value was determined to be 0.5% (by volume) of
0.1 M SDBS solution as shown in Fig. 3. Again SDBS with
Na,COj; shows the better result among the three alkalis; the
concentration of Na,COj; at lowest IFT was 1% (by weight)
(Tables 7 and 8). Therefore, 0.5% (by volume) of 0.1 M
SDBS + 1% (by weight) of Na,CO; was selected for flood-
ing experiment.

The CMC value of SDS is less than SDBS; this may be
due to the high solubility of SDS in the slug than SDBS.
The solubility of surfactant whether it is soluble in aque-
ous or oleic phase will be determined by HLB value. The
higher the HLB value is, the more water-soluble the sur-
factant and the reverse is true for oil soluble. The normal
range of HLB value is from O to 20 (Wang 2009), but
in some cases due to the high solubility of surfactant in

water, this value goes to 40 (Tichelkamp et al. 2014). High
value of HLB favors the formation of o/w emulsions while
low value is for w/o emulsions. Further studies have shown
that the HLB for SDS is 40 (Shukla and Rehag 2008) and
10.6 for SDBS (Hunter 1981). The HLB values are in
agreement with theory, as SDBS has a longer tail than
SDS (more lipophilic than SDS). The type of emulsion
formed by the surfactant can be estimated by Bancroft’s
Rule, which is based on HLB: “When an interfacial active
agent is present along with two immiscible liquids, then
after agitation the liquid that is the better solvent appears
as the continuous phase” (Brown et al. 2016). The type of
emulsion is another criterion for lowering of CMC value.
o/w emulsion is more suitable than w/o emulsion in CEOR
technique because in case of w/o emulsion there is loss of
surfactant and also it changes the system viscosity (Rosen
2004). Critical packing parameter (CPP) is a factor that
affects the CEOR process. CPP determines the shape of

Fig.2 IFT of SDS and different 0.0045 —DW 0.0045 DW
alkalis with N crude 0.004 —=—1000 ppm brine 0.004 —=— 1000 ppm brine
g 0.0035 2000 ppm brine 0.0035 - 2000 ppm brine
> 0003 ——3000 ppm brine £ 0003 ——3000 ppm brine
E 0.0025 4000 ppm brine Z 00025 —=—4000 ppm brine
Z 000 g 0002 P
& 0.0015 = 00015 N
0.001 = 0001
0.0005 0.0005
0 0
0 0.2 0.4 0.6 0.8 0.5 1 L5
Concentration in % Concentration in %
SDS SDS+ Na2COs
0.005 —DW 0,005 ——DW
—=— 1000 PPM brine : —=— 1000 PPM brine
g 0004 2000 PPM brine 0.004 2000 PPM brine
> ——23000 PPM brine E : S —+—3000 PPM brine
Z 0003 —«—4000 PPM brine Z 0003 —=—4000 PPM brine
=
o= =
g 0.002 = 0002
=] =
=
0.001 0.001
0
0
0 0.5 o 15 05 : s
Concentration in % Concentration in %

@ Springer

SDS+ NaHCO3

SDS+ NaOH




Arab J Geosci (2022) 15: 984

Page70f12 984

Flg. 3 IFT of SDBS and differ- 0.01 —+—DW 0.0085 ——DW
ent alkalis with N crude —=—1000 ppm brine 0.008 N —=—1000 PPM brine
0.009 2000 ppm brine 0.0075 2000 PPM brine
3000 ppm brine c ——3000 PPM brine
E 0.008 . E 0.007 —<—4000 PPM brine
% —*—4000 ppm brine é 0.0065
= 0.007 s
£ = 0.006
£ 0.006 & 0.0055
0.005
0.005 0.0045
0.004 0.004
0 0.2 0.4 0.6 0.8 0 0.5 1 1.5
Concentration in % Concentration in %
SDBS SDBS+Na:2COs3
——DW ——DW
0.0085 —=—1000 PPM Brine 0.009 —=— 1000 PPM brine
0.008 2000 PPM Brine 0.0085 2000 PPM brine
0.0075 =>¢=3000 PPM Brine 0.008 ——3000 PPM brine
£ 0007 —+—4000 PPM Brine % 0.0075 ——4000 PPM brine
Z 0.007
E 0.0065 £ 00065
£ 0.006 = 0006
B 0.0055 = 0.0055
0.005 0.005
0.0045 0.0045
0.004
0.004 0 05 15 0 0.2 04 0.6 0.8
Concentration in % Concentration in %
SDBS+ NaHCO3 SDBS+NaOH
Table7 EOR by ASP flooding Core sample ~ Secondary S, Alkali  Surfactant Polymer AS SP ASP recovery%
(SDS, Na,CO;, PAM) recovery % recovery %
Cl1 45.3 54.7 8.4 13.4 23.2 14.5 20.1 33.25
C2 49.54 5046 7.4 11.5 19.6 13.7 235 30.27
C3 47.1 529 7.8 10.4 19.3 147 245 342
C4 52.7 473 9.2 13.4 21.8 153 2231 294
Table§ EOR by ASP flooding Core sample Secondary S, Recovery efficiency (%)
(SDBS, Na,CO;, PAM) recovery %
Alkali Surfactant Polymer AS SP ASP
Cl1 453 54.7 8.4 12.4 23.2 14.1 19.7 32.8
Cc2 49.54 50.46 7.4 11.1 19.6 12.9 23.2 29.5
C3 47.1 52.9 7.8 9.7 19.3 14.3 23.9 322
C4 52.7 47.3 9.2 13.1 21.8 14.2 224 27.7

the surfactant aggregate structure whether it is spherical
(CPP< 1) orrod (CPP > 1) in the emulsions. The value of
the CPP has been found by Wang and Mittal, for SDS it is
1/3 and for SDBS it is nearly 1.

Contact angle and wettability
Contact angles of N core samples saturated with N crude

were determined in KRUSS DSA100. In all the cores, it
was observed that the contact angle was more than 50°.

Which shows that the reservoir is towards water wet. Con-
tact angles between cores saturated with same crude and
SDS 43000 ppm brine were found to be more than initial
contact angles. Added alkali has further increased the con-
tact angles. This shows that using Na,CO; the reservoir has
changed the wettability from intermediate wet to strongly
water wet. This is essential for enhanced oil recovery (Saikia
et al. 2018). Contact angles of core sample with brine, SDS,
and Na,CO; are shown in Table 3.
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SO,*" ion of NaC;,H,5S0O, (SDS) can enhance the sur-
face hydrophilicity of sandstone reservoir, thus enhancing
the imbibition capacity of sandstone reservoirs (Rezaeidoust
et.al. 2009). pH of the injected CEOR slug determines the
presence of chemical groups on the porous media and the
polar groups of organic acids and bases (Hua et al. 2015),
and then the adsorbing capacity of counter ions on the rock
surface and crude oil/CEOR slug interface. The forces
responsible for alteration of wettability are mainly Van der
Waals’ force, hydrogen bond, Coulomb force, and surface
force between groups of rock surface and crude oil. The neu-
tral groups (=Si—OH) translate into electronegative groups
(=Si—O0O —) on rock surface on the addition of Na,CO;. The
protonation and deprotonation process of organic acids and
bases are controlled by pH. The increase of pH that is addi-
tion of Na,COj; to the injected CEOR slug can induce pro-
ton transfer reaction. Increase in pH reduces the attractive
interaction between the polar groups and rock surface; also,
it reduces the Coulomb force between organic bases and
rock surface (Austad et al. 2010). Hydrogen-bond interaction
between organic acids of crude oil and rock surface trans-
lates into electrostatic repulsive force. In due course, hydro-
philicity of the rock surface increases due to the desorption
of the organic acids and bases from rock surface and hence
alters the wettability from less water wet to strong water wet
(Al-Khafaji and Wen 2019).

Relative permeability

Relative permeability calculation was done by using the JBN
method. Based on the data generated from the relative per-
meability studies under water—oil system for the core plug
of Cl1, it has been observed that, for this sample, the value
of residual oil saturation is 33.38% and value of irreducible
water saturation is 24.73%. This indicates that the high value
of irreducible water saturation is attributed to the low value
of residual oil saturation. The reservoir rock is water wet
because the two curves intersect each other at a water satura-
tion of about 63% (beyond 50%). The total oil recovery with
brine flooding is about 55.3%. The oil recovery at 0% water
cut is 29.4%. Oil recovery is about 43.53% with negligible
water cut. So, water flooding is very efficient for this par-
ticular core plug. The effective permeability of any reservoir
rock to a fluid is a function of the reservoir fluid saturation
and the wetting characteristics of the formation. The wet-
ting properties of a reservoir rock that is wettability have a
marked effect on the wetting and non-wetting phase relative
permeability characteristics of the rock. When both wetting
and a non-wetting phases flow together that is at steady state
flow condition through porous media, each phase follows
separate and distinct paths. Because of attractive forces and
the action of capillarity, the wetting phase fluid (water in
this case) will preferentially cover the entire solid surface

@ Springer

of the reservoir rock and will be held (or tends to occupy) in
the smaller pore spaces of the rock. On the other hand, the
non-wetting phase (light paraffin) will tend to be expelled/
repelled from contact with the surface of the rock. Thus,
at small saturations non-wetting phase will tend to collect
in the larger pore openings of the reservoir rock. The wet-
ting phase tends to occupy the smaller pore spaces at small
saturation, and these small pore spaces contribute a very lit-
tle towards total flow; it follows that the non-wetting phase
relative permeability has been affected a little extent by the
presence of small wetting phase saturation (Heaviside et al.
1987). On the other hand, non-wetting phase occupies the
central or large pore spaces which contribute majority to
flow through the porous media; smaller non-wetting phase
saturation will drastically reduce the wetting phase perme-
ability (Land 1968; Johnson et al. 1958). This is evident
from the water—oil relative permeability curve as shown in
Fig. 4 as well as from Table 5. The average core and fluid
properties of the reservoir under study are shown in Table 4.
Same core sample was used for different flooding processes.
Core samples were cleaned in the Soxhlet Apparatus for 48 h
by liquid-liquid extraction. Toluene and xylene were used to
dissolve oil, water, and salt present in the core sample. The
Soxhlet apparatus consists of an extraction glassware unit
and a heating mantle with thermostatic controller. The core
samples are placed in the extractor and cleaned by reflux-
ing solvent. The solvent is heated and vaporized in boiling
flasks and cooled at the top by condenser. The cooled solvent
liquid falls into the extractor chamber. The cleanliness of
the sample is determined from the color of the solvent that
siphons periodically from the extractor. This reflux process
is continued until no more color change can be seen in the
condensed solvent mixture.

Wettability can be interpreted from the relative perme-
ability vs saturation curve. The crossover point between the
two relative permeability curves intersects at S, > 50% as
shown in Fig. 4, which indicates that it is water wet (Craig
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1971). When the end point relative permeability of water at
S, was determined, it was found to be S, slightly greater
than 30% which can be considered mixed wet or slightly
water-wet; initial water saturation (S,,;) after the drainage
process for the samples was found to be in between 15 and
30% which can again be considered mixed wet (Craig 1971).

Core flooding

In core flooding experiment, after the core being saturated
with oil first brine was flooded to recover the oil, which
is similar to secondary oil recovery process. The second-
ary recovery percentage was calculated and is tabulated
in Tables 7 and 8. After secondary flooding, the core was
flooded with alkali, surfactant, polymer, AS, SP, and ASP
slug one after another. Two surfactant SDS and SDBS, one
alkali Na,CO; and PAM as polymer were selected for core
flooding operation. Since only one alkali and one poly-
mer were selected for flooding operation, in Table 7 and
8, the recovery percentages for alkali and polymer were
the same. Since comparison study of recovery was done
in this paper by taking two surfactant SDS and SDBS, so
in Tables 7 and 8 same recovery percentage for secondary
recovery, alkali flooding and polymer flooding was taken.
Permeability reduction during the flooding process was
not studied because after each flooding (individual slug)
the core was cleaned in Soxhlet apparatus. Since most of
the reservoir salinity of Upper Assam basin is in the range
of 3000-4000 ppm, so we selected 3000 ppm as the brine
salinity for all the slugs. During flooding operation alkali
changed the wettability from intermediate to strongly water
wet and also reduced IFT. Ultra low IFT was observed in the
range of 10mN/m when it was measured in between res-
ervoir crude and surfactant. Surfactant increases the micro-
scopic sweep efficiency of the reservoir. Polymer enhances
the recovery by increasing the macroscopic displacement
efficiency of the reservoir (Needham and Doe 1987). During
secondary flooding, we have obtained mobility ratio of about
5 but in case of polymer flooding it was 0.5; hence, macro-
scopic sweep efficiency was enhanced by polymer flooding
(Table 9). Both microscopic displacement efficiency and
macroscopic sweep efficiency increase in ASP flooding.
The slugs selected for the CEOR core flooding are shown
in Table 6.

In all the flooding experiments, we have seen that the recov-
ery was maximum for ASP slugs (Tables 7 and 8). If we com-
pare SDS and SDBS, we have observed that SDS shows better
result. Therefore, the best slug for this oil field is 0.4% of 0.1 M
SDS +0.85% of Na,CO5;+ 1500 ppm PAM. The initial core
properties are shown in Table 4.

Maximum recovery of about 34% initial oil in place was
observed for C3 sample. Both the surfactants are anionic in

nature. When a charged particle is present in a formulated
chemical slug containing large amount of ions, the ions in
the slug orient themselves around the charged particle in
such a way that they tend to neutralize the electrostatic force.
Oppositely charged ions are accumulated as a layer closest to
the charge particle. On the other hand, further out from the
charged particle both same and opposite ions will accumulate
in a layer. The size of the outer layer is larger than the inner
layer. The system of formation of two layer around a charge
particle is known as electrical double layer (EDL) (Berg 2009,
Hunter 1981, Shukla and Rehage 2008). The EDL formed
between two SDS or SDBS monomers of same charge at the
interface will repeal each other. When NaCl and Na,CO; were
added to the slug, positive and negative ions interact with the
double layer and due to the attraction of opposite charges the
size of the EDL decreases (Brown et al. 2016). The size of
EDL is directly proportional to the CMC as well as IFT of the
slug. This is the reason why CMC and IFT values decrease in
a chemical slug containing surfactant when salt and alkali are
added to the system and hence increase the recovery efficiency.

Discussion

The results of the experimental work highlighted the suc-
cessful application of the synergic combination of alkali,
surfactant, and polymer for improving recovery of residual
oil after secondary recovery. In CEOR flooding, water wet
condition is more favorable. This is because both capillary
and gravity force aid in oil recovery in water-wet pores during
CEOR recovery, thus explaining the higher recovery rate. The
higher the pH of the slug, the quicker the alteration from less
water wet to more water wet condition. The reservoir under
study was initially intermediate wet and after alkali flooding
it was altered to strongly water wet condition. The primary
function of surfactant flooding is to reduce the IFT and hence
increase the microscopic displacement efficiency. The selec-
tion of surfactant has prime importance in surfactant flooding.
Since the reservoir under study is anionic in nature, anionic
surfactant is suitable for the study (Hazarika and Gogoi 2021).
This will reduce the adsorption of surfactant during flooding
and increase the efficiency of the process (Sarmah et al. 2019).
In this study comparison was done between SDS and SDBS
as two anionic surfactants. For both the surfactants, ultra-low
IFT in the range of 10~ mN/m was achieved, but during core
flooding experiments, SDS showed better result than SDBS.
Ultra-low IFT was achieved due to the formation of spherical
shape aggregation. Hydrophile—lipophile balance (HLB) value

Table 9 Mobility ratio calculation for polymer flooding
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is another one most useful parameter for selecting surfactant in
CEOR. HLB value gives an idea about the solubility of the sur-
factant in aqueous and oleic phase (Housaindokht and Nakhaei
2012). Higher HLB value refers to more water soluble and the
reverse is true for oil soluble. o/w emulsions can be achieved
with high HLB value surfactant while the reverse favors for
w/o emulsions. It has been observed that the HLB for SDS
is 40 (Kim and Allee 2001). SO42‘ ion of SDS can enhance
the surface hydrophilicity of sandstone reservoir rock, thus
enhancing the imbibition capacity of sandstone reservoir and
improving the recovery efficiency (Rezaeidoust et.al. 2009).
The experimental results tabulated in Tables 7 and 8 show the
comparison between different chemical injection processes
and their recovery efficiencies. From the abovementioned
table and Fig. 5, it is clear that the recovery efficiency is high-
est for ASP flooding. This may be due to the combined effect
of the microscopic displacement efficiency (Ep,) of the sur-
factant, and macroscopic sweep efficiency of polymer (Patel
et al. 2019). SDS proved to be more efficient than SDBS; this
was earlier observed in the scientific literature by Bera et al.
(2011; Yu et al. 2011). Though the primary function of alkali
flooding is to alter the wettability of the reservoir, alkali can
also enhance the microscopic displacement efficiency similar
to co-surfactant (Yu et al. 2011). This was reflected in Tables 7
and 8. In this study, an attempt was done to compare three
different alkalis with respect to change in wettability and IFT.
The effect of Na,CO; was found to be more effective com-
pared to NaHCO; and NaOH in terms of IFT (Figs. 2 and 3)
and wettability (Table 3). Addition of alkali further reduced
the IFT values due to the less adsorption of surfactant on res-
ervoir rock. Alkali can alter the adsorption mechanism from
multilayer adsorption to monolayer adsorption (Hazarika et al.
2018). Further alkali can produce in situ surfactant by react-
ing with naphthenic acid which will further reduce the IFT
(Aveyard et al. 1986). Na2CO3 solutions are less corrosive to
sandstone. Na2CO3 buffering action can reduce alkali reten-
tion in the rock formation. Low tensions required for EOR by
alkaline flooding can be achieved with alkaline solutions at
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pH< 11 (Sheng 2010). When two surfactant monomers with
the same electrical charge of the head group are present at an
interface, their EDL will interact and repel each other. How-
ever, when alkali or salt is introduced to the system, opposite
electrical ions will interact with the double layer, decreasing
the length of the EDL, and hence the repulsion between the
two monomers will reduce (Brown et al. 2016). This is the
reason why CMC and IFT as well as microscopic displacement
efficiency increase in a surfactant-containing system when
alkali is introduced to the system (Hazarika and Gogoi2019).
The only polymer used in this study was PAM as PAM was
found to be effective in EOR recovery in earlier studies by
Raffa et al. (2016; Maia et al. 2009). This may be due to the
improvement of the macroscopic sweep efficiency (Eg) during
the ASP flooding (Mandal 2015). Salinity is one of the most
important parameters in chemical flooding; ASP slug salinity
should be compatible with reservoir salinity. Interestingly the
reservoirs of Upper Assam showed low salinity; in this study,
it was found to be 3000 ppm.

Conclusion

Upper Assam basin is one of the most oil-producing prov-
inces in India. It is a good candidate for CEOR. The results
of the experimental findings highlighted the successful
implementation of the synergic combination of alkali,
surfactant, and polymer for improving recovery efficiency
of CEOR process. One interesting fact observed was the
coincidence of the alteration of wettability from less water
wet to more water wet and lowest 0il-CEOR slug IFT val-
ues due to the addition of alkali to the slug. Ultra-low IFT
in the range of 10~>mN/m was observed with SDS and
SDBS. Maximum recovery of about 34% initial oil in place
was obtained by ASP flooding. The best suited chemical
slug for this reservoir is 0.4% of 0.1 M SDS+0.85% of
Na,CO; + 1500 ppm PAM. The higher recoveries by CEOR
slug could be attributed to the reduction of IFT, alteration
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of wettability, reduction of mobility ratio, enhancement of
macroscopic sweep efficiency and microscopic displacement
efficiency, etc.
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