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Abstract
Over the last few years, deep learning (DL) techniques have gained popularity and have become the new standard for data 
processing in remote sensing analysis. Deep learning architectures have drawn significant attention due to their improved per-
formance in a variety of segmentation, classification, and other machine vision applications. In remote sensing, land use and 
land cover (LULC) are critical components of a wide variety of environmental applications. Changes in land use on a spatial and 
temporal scale occur due to accuracy, the capacity to develop, flexibility, uncertainty, structure, and the capability to integrate 
available models. Therefore, LULC modeling’s high performance demands the employment of a wide variety of model types 
in remote sensing, which include dynamic, statistical, and DL models. In this study, we first analysed several key findings and 
research gaps in traditional technology while discussing various software applications used for LULC analysis. Second, the 
fundamental DL and ML concepts applicable to LULC are introduced with their merits and demerits. We employ a comprehen-
sive review of distinct DL architectures and a custom framework to handle the challenging task of detecting changes in LULC. 
Subsequently, a detailed statistical analysis is conducted on the”Scopus database” to ascertain current trends in LULC utilising 
DL methods. This overview encompasses practically all applications and technologies in the field of LULC, from preprocessing 
to mapping. Finally, we conclude with a proposal for researchers to perform future potential using state-of-the-art methodologies.
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Introduction

The growth of the earth’s environment is driven by the 
growth of human beings. The level of resources and their 
consumption are increasing rapidly because of the human 
population. The Earth’s surface has experienced a variety of 

changes in the past 50 years due to human beings’ exploita-
tion. The changing of land areas from arable to built-up and 
the extension of urbanisation change the pattern of Land 
Use and Land Cover (LULC). Land Cover (LC) specifies 
the spatial variation information of the surface of planet 
Earth such as vegetation, soil, and water, whereas Land Use 
(LU) specifies the changes made by human activities or the 
physical changes on the earth’s surface such as deforestation, 
urbanization, built-up areas, drought and floods etc. LULC 
change is an essential part of remote sensing by extracting 
valuable information, image processing, and classification 
of spectral signs of Land Cover.

The spatial–temporal analysis of physical surveys con-
ducted in large-scale landscapes is the most difficult task to 
complete. To alternate the physical survey, modelling tech-
niques were a replacement that could provide the framework 
by understanding the spatial pattern under various condi-
tions. Although the physical model is more reliant on the 
prior knowledge of model parameters, this contributes to 
the model’s poor accuracy. An enormous effort has been 
made over the last few decades to automate the LULC 
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classification. Recent advances in remote sensing images 
allow for large data analysis, image classification, process-
ing, and prediction for future changes. Many modelling 
techniques have been used, such as dynamic, statistical, and 
Neural Network (NN), which provide realistic simulations 
that include spatial–temporal, economic, and social aspects 
(Yuan et al 2020). Machine Learning (ML) modelling has 
the capability to solve the problems of classification, anom-
aly-detection, and prediction in remote sensing images. Tra-
ditionally, ML algorithms have been used to classify images 
using maximum likelihood classifiers, MarkovChain model, 
k-nearest neighbour, Artificial Neural Network (ANN), Sup-
port Vector Machine (SVM) (Aburas et al 2019) etc. With 
the growing number of earth data and the advancement of 
ML modelling techniques, a novel modelling technique has 
been presented that can handle enormous volumes of data 
and better predictive analysis of spatial–temporal aspects 
via deep learning (DL) (LeCun et al 2015).The DL model 
has outperformed traditional models in extracting spatial 
multilevel features extracted from remote sensing images 
and allows them to provide high performance in image 
processing and classification (image classification and 
object classification using Convolutional Neural Network 
(CNN)) (Zhang et al 2016). Our ultimate goal is to develop 
a methodical procedure that includes DL methods and pro-
duces a reliable result to detect LULC change. The motiva-
tion of our study was to conduct an exhaustive survey of 
DL applications in remote sensing images, including LULC 
analysis. Through an exhaustive review, we have analysed 
the research papers of DL approaches in LULC and sum-
marised the main scientific advances in the related work.

Some key findings and research gaps

The main purpose of the review article was to determine the 
gaps in traditional approaches and analyse the new oppor-
tunities in LULC classification. Although in the past years, 
image classification in LULC using machine learning has 
made remarkable progress, there are still certain issues that 
need further study. 1) The ML community has used various 
algorithms to classify images in LULC classification, but as 
of now, the data is increasing tremendously and new tech-
nology with new datasets has introduced these complexities 
of classification that cannot be resolved by machine learn-
ing. A variety of socioeconomic data is readily available, 
providing vital material for urban growth. DL is competent 
to handle that data, which is integrated with socioeconomic 
data. 2) The feasibility and actual use of the methods in 
both the image classifications LU and LC have not been 
explored before, and the features of land use have yet to be 
resolved due to extremely high intraclass heterogeneity and 
inter-class similarity. 3) Most of the truth inference algo-
rithms are domain-dependent, so there is a certain scope 

for creating a domain-independent algorithm. 4) Achieving 
real-time or near-real-time LULC monitoring systems has 
become more complex due to changes in the components 
involved. 5) Forecasting urban land expansion is far more 
difficult than image analysis. By identifying the driving 
mechanisms of urban land cover change, significant factors 
such as the economy, transportation, population, and growth 
provide important insight into how human activities modify 
the urban environment. Therefore, setting the benchmark 
framework in ML model is a challenging task.

Software application for LULC analysis

In the precise study of LULC analysis, we have identified 
some software tools used in LULC analysis for pre-process-
ing images, classification of images, analysing, and predic-
tion analysis using spectral images. Table 1 contains a list of 
the software applications that have been identified and are as 
follows: Google Earth, Pro-ArcGIS, QGIS, ENVI, ERDAS 
IMAGINE, IDRISI, etc.

whereas the structure of the paper consist the “Back-
ground” section which follows the background of this 
work and discusses remote sensing applications in vari-
ous areas using ML and DL in LULC and the most widely 
used Machine Learning model with merits and demerits 
of ML model in LULC. Section 3 highlights the “How DL 
approaches outperformed ML approaches in LULC classifi-
cation”  and the performance evaluation of traditional clas-
sification was improvised by using DL approaches, which 
outperformed classic ML approaches in terms of perfor-
mance. furthermore, the deep learning architecture as well 
as models that can implement an image understanding task 
for LULC classification. The “Deep Learning framework 
for LULC classification” section introduces the framework 
for LULC classification using DL approaches and cutting-
edge techniques in remote sensing applications. The “Dis-
cussion” section emphasises the statistical analysis of the 
LULC classification by providing a conclusion and future 
work outlook.

Scope of the study

In this article, we examine state-of-the-art approaches for 
LULC analysis with DL techniques. The main outline of the 
paper is as follows:

•	 The ultimate goal of this article is to provide a roadmap 
for future trends in LULC analysis using DL techniques.

•	 Discuss how DL approaches improve performance over 
the traditional ML approaches.

•	 A detailed, comprehensive review of existing DL 
approaches in remote sensing.
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•	 A generic framework of LULC change analysis using 
DL.

•	 Finally, we outline the statistical analysis of LULC and 
provide a conclusion with future research in LULC anal-
ysis.

According to the review analysis in Table 6, DL mod-
els achieved the best results in terms of classification or 
prediction.

Finally, some new perspectives on how the DL approaches 
can provide efficient work for LULC analysis and insights 
for future research are presented.

Background

Database for earth observation

The selection of image acquisition through a database is 
the most crucial step in LULC analysis. The comprehen-
sive LULC data repository has been expanded to facilitate 
the implementation of many policies related to natural 
resources, food scarcity, deforestation, climate change, agri-
culture, etc. (Barker et al. 2020) (Xu et al 2018). A Big Earth 
Observation (EO) dataset is applied to provide the LULC 
change analysis, and time-series satellite images provide a 
better understanding of agricultural expansion, deforesta-
tion during the particular time period (Petitjean et al 2013). 
Various datasets used by researchers in LULC analysis are 
shown in Table 2.

LULC classification in remote sensing using ML 
and DL models

LULC classification are labelling the pixels in the remote 
sensing images for creating the classified images. LULC 
changes are divided into: a) preprocessing, b) change detec-
tion approach, and c) accuracy assessment. Atmospheric 
corrections, multi-temporal radiometric corrections, topo-
graphic corrections, geometrical rectification, and image 
registration are addressed at the preprocessing step. A cor-
rection is required to minimise the impact of these features 
(Song and Woodcock 2003). It is important to evaluate the 
changing reliance of temporal elements when collecting the 
remote data for LULC (Lunetta et al 2004). Selecting the 
appropriate change detection method is the essential step, 
although several pixel-based and object-based classifica-
tion techniques that give a wider selection range have been 
employed (van der Meer 2011). The pixel-based approach 
provides the classification of a single pixel without consider-
ing the spatial context. It is based on the spectral reflectance 
of a particular LULC category. While comparing medium 
resolution imagery, it has some limited accuracy, which Ta
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leads to the noisy output and maximum interclass variance 
(McRoberts 2014). However, numerous alternative ways 
have been proposed to overcome the pixel-based technique’s 
drawbacks. Over the last decade, object-based image clas-
sification in LULC has been popular to provide identification 
through some physical classes (shape, spectra, and texture). 
It allows the extraction and segmentation of spatial features 
with the integration of vector and raster based processing. 
Image segmentation and extraction work on stacked multi-
temporal images that include one or more than one spectral 
transform, multi-temporal images, multi-spectral waveband 
and texture. Statistical approaches have been used to iden-
tify the changes in LULC (Hussain et al 2013a). Accuracy 
assessment is a conclusive step to measure the remote sens-
ing image classification in LULC.

The Kappa Index is the most commonly used technique 
for accuracy assessment to provide the correctness of the 
image classification. Whereas the overall accuracy assess-
ment is used to validate the classification of images (Fan 
et al 2008). However, other statistical techniques are used 
to test or validate the performance of the model, such as 
the fuzzy similarities measure (FSM). Receiver operating 
characteristic (ROC) analysis is used to assess the simulation 
of change detection approach with prediction, and average 
spatial deviation distance (ASDD) is used to evaluate the 

model’s performance(Almeida et al 2008) (Pal and Ghosh 
2017).

Until now, most of the studies have reviewed the articles 
in different areas, e.g., medical image recognition (Litjens 
et al 2017), prediction in autonomous vehicles (Miglani and 
Kumar 2019), speech recognition (Hinton et al 2012) etc. 
Although several review papers have been published using 
DL application in remote sensing for image classification, 
(Ma et al 2019) (Li et al 2018), data fusion, (Liu et al 2018a), 
atmospheric aerosol, (Di Noia 2018) etc., they ignored the 
other areas of remote sensing, i.e., LULC. Therefore, this 
study explored how DL application on the earth’s surface 
changes the pattern of LULC. Due to the rapid growth in 
the number of related publications, it is required to conduct 
a comprehensive review and have a thorough understanding 
of the DL application in LULC. As shown in the Table 3 
the discussion of various ML/DL models in remote sensing 
applications of LULC.

An overview of ML model merits and demerits

The archive of current remote sensing data is growing at 
an exponential rate in terms of quantity, and the planned 
satellite launches are expected to keep this trend going in 
the future (dlr.de, 2018). The remote sensing sector has 

Table 2   Database and its sources

S.No Dataset Equipment/Sensor Spatial Resolution Sources

1 Landsat 8 1 Operational Land Imager (OLI) VNIR:30 m
TIR:100 m

https://​earth​explo​rer.​usgs.​gov/

2 Landsat 7 Enhanced Thematic Mapper 
(ETM +)

Sensor

VNIR: 30 m
TIR: 60 m

https://​earth​explo​rer.​usgs.​gov/

3 Landsat 4 and 5 Thematic Mapper (TM) VNIR: 30 m
TIR: 120 m

https://​earth​explo​rer.​usgs.​gov/

4 Sentinel 2 Sentinel 2A, sentinel 2B VNIR:B2, 3,4,8: 10 m,
B5,6,7,8A,11,12: 20 m, B1, 9, 

10: 60 m

https://​scihub.​coper​nicus.​eu/

5 Digital Elevation Model (DEM) Space Shutte Radar Topography
Mission (SRTM) and
ASTER(Advanced Spaceborne
Thermal Emission)

SRTM: 30 m and
ASTER: B1,2:15 m,
B4,5,6,7,8,9:30 m,
B10,11,12,13,14: 90 m

http://​www.​bhuvan.​com/ and 
https://​earth​explo​rer.​usgs.​
gov/

6 LISS-III (Linear Imaging
SelfScanning System—III)

Resourcesat1/ Resourcesat-2 23.5 m; 70 m http://​www.​bhuvan.​com/

7 MODIS (Moderate Resolution
Imaging Spectroradiometer)

NASA Terra Band 1–2: 250 m,
Band 3–7: 500 m,
Band 8–36: 1000 m

http://​earth​data.​nasa.​gov/ and 
https://​earth​explo​rer.​usgs.​
gov/

8 REIS (Rapid Eye Earth
Imaging System)

Rapid Eye Satellite Sensors (5 m) 6.5 m and 5 m https://​earth.​esa.​int

9 Quick Bird BGIS-2000 (Ball Global
Imaging System 2000)

2 to 8 m http://​www.​digit​alglo​be.​com/

10 IRS-P3 Wide Field Sensor (WIFS)/
Modular Opto-electronic Scanner
(MOS)

188 m(WiFS);
1500 m/520 m/550 m(MOS)

https://​www.​isro.​gov.​in/​Space​
craft/​irs-​p3
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quickly adopted machine learning for a variety of applica-
tions. Furthermore, there is a continuing attempt to build 
an automated system for mapping LULC. The majority of 
research so far has supported supervised learning tech-
niques, with the notion that LULC is more likely to hap-
pen in situations similar to those that produced previous 
occurrences. Most of the ML algorithms are classified into 
two groups: supervised, unsupervised, or reinforcement 
learning. These classifications are based on data types and 
the requirements of the project, respectively. While work-
ing with labelled data, supervised learning methods are 
often performed in order to forecast the values whereas 
the values of a continuous set could be predicted using 
regression, while the category of a discrete set can be 
predicted using classification. A sample’s value or clas-
sification can be predicted using the K-nearest neighbours 
(kNN) algorithm, which uses the sample’s nearby neigh-
bours in the feature space. In the case of regression, pre-
diction results are calculated by taking an average of the 
k nearest neighbours’ values. For classification applica-
tions, take the class with the highest number of appear-
ances obtained (Altman 1992). For each class, the goal 
of parametric classification should be to characterise the 
usual subspace values or distribution associated with that 
class. Instead, SVM concentrates entirely on the train-
ing samples that seem to be closest to the ideal bound-
ary between two classes in terms of their location in the 
feature space. In SVM, the goal is to determine the ideal 
border that maximises the distance, or margin, between 
the support vectors while minimising the support vectors 
numbers. SVMs were first developed for the purpose of 
determining a linear class limit (i.e. a hyperplane) (Cortes 
and Vapnik 1995) (Pal and Foody 2012). One of the most 
basic and simple classifiers is the Decision Tree (DT). 
A DT is a mechanism for recursively splitting the input 
data. The tree like structure is used to illustrate the general 
framework of tress splits into the branches while splits are 
represented by branches that show the paths between them, 
and leaves that represent the final objective values. Clas-
sification trees have leaf values that indicate categories of 
data, whereas regression trees have leaf values that repre-
sent one continuous variable after another. Segmentation 
can be done based on the frequency in a given band which 
exceeds or falls below a predetermined threshold (Pal and 
Mather 2003). The weakness of DT is that it decreases the 
accuracy of the classified training data while pruning the 
tree. To overcome the limitations of DT, a random clas-
sifier (RF) is used to give the final class to each unknown 
parameter (Belgiu and Dr˘agu¸t 2016). While a single 
tree may not be the ideal solution, integrating many trees 
can result in a global optimal solution that overcomes the 
DT problem. The concept is further developed: each tree 
is trained by randomly selecting a subset of the training Ta
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data and employing the corresponding subset of variables. 
The conjunction of decreasing training data as well as a 
decreasing number of variables individually can provide 
the least accuracy of the tree. So the less correlated, the 
better, making the group more dependable as a whole. 
The relative relevance of each band may be calculated 
by comparing the evaluation of trees. In RF, tree pruning 
isn’t required because of the existence of multiple trees. 
Regression techniques such as linear, polynomial, and so 
on are widely used in other areas, but when it comes to 
classification problems, the logistic regression (LR) and 
naive Bayesian (NB) classifier have been widely used for 
a longer time. The NB classifier is used to compute con-
ditional probabilities based on previous probability and 
the probability is updated based on the ability to do the 
subsequent task. To normalise the anticipated values, the 
LR employs the sigmoid function, which calculates the 
likelihood of an event occurring and compares it to a pre-
determined value (typically 0.5) can create the projected 
binary results (Ng and Jordan 2001).

Unsupervised learning methods are frequently used to 
identify the inherent properties and principles of unlabeled 
sample data. It has been used in the reduction of dimension-
ality, grouping, and detection of anomalies. Principal com-
ponent analysis (PCA) is a technique for generating uncor-
related variables from correlated data. PCA seeks to uncover 
the most fundamental characteristics of a dataset or to con-
struct a new feature which can represent the novel dataset, 
hence reducing the dataset dimensionality and increasing 
its generalization ability while keeping information loss to 
a minimum level (Jolliffe and Cadima 2016). The basic PCA 
technique might be used as a simple framework for develop-
ing a more operative feature extraction technique. The claim 
is made that PCA may not be applicable to HSI categoriza-
tion (Cheriyadat and Bruce 2003; Uddin et al 2021). Due to 
the HSI’s global variance, it may be unable to extract subtle 
information from some data distributions. KMeans cluster-
ing analysis is a popular technique used widely. It separate 
the dataset into K distinct, non-overlapping subgroups (clus-
ters), each of the K clusters has a single data point in each 
of them. It aims to create the data points within a cluster 
and also to make it as distinct as feasible (Likas et al 2003). 
The non-linear clustering algorithm that have been used in 
spatial and non-spatial data are known as Self Organizing 
Map (SOM). An n-dimensional feature vector is assigned 
to a neuron in the output layer of this neural network, which 
has no hidden layers and n weight. The input feature factor is 
first measured with the similarity index to find out the most 
similar neurons, and then the nearby and activated neurons’ 
weights are adjusted with the input vector which is identi-
cal. Each feature vector in the input set is subjected to this 
method. Lastly, it organises the neurons spatially in a one, 
two, or three-dimensional region where different units are 

further apart whereas K-means use the nearest neighbour 
distance, whereas SOM employs the distances between all 
coupled neurons(Kohonen 2012). Table 4 summarize the 
merits and demerits of machine learning models in LULC.

How DL approaches outperformed ML 
approaches in LULC classification

Deep learning image classification

Pixel-based classification task involves the semantic seg-
mentation of images which assign the classes to the indi-
vidual pixels in an image (For example, road, grass, built-up 
area, etc.). The objective of pixel-based classification is to 
cluster the pixels of the image that correspond with specific 
perceptual items are included in that image, hence provid-
ing context for the pixels. According to the great degree of 
similarity in spectral across classes and the heterogeneity 
within classes, the pixel-based technique does not provide 
a desirable outcome. In traditional schemes, remote sens-
ing images using pixel-based classification and consider 
the pure label pixel among the natural targets. On the other 
hand, object-based classification is a novel paradigm for 
segmenting remotely sensed images that outperforms pixel-
based classification. The spectral information about object 
is aggregated, whereas textural and contextual information 
is gathered for classification of image using object-based 
(Hussain et al 2013b). In the remote sensing domain, new 
DL models have gained significance over older models. DL 
approaches outperform almost all other remote sensing tech-
niques in a wide range of applications.

Deep neural network architecture in LULC

Deep neural network architectures like VGGNet, GoogleNet, 
AlexNet, ResNet, and DensNet have attained tremendous 
popularity in image classification and semantic segmenta-
tion. Using feature extraction in DL techniques, these archi-
tectures are very popular and often used for image classifica-
tion in Table 5.

AlexNet

(Krizhevsky et al 2012) proposed the AlexNet, which is 
the first deep CNN architecture for image classification and 
recognition tasks. The learning capacity of ALexNet has 
been increased by performing different strategies of param-
eter optimization. For diverse categories of image dataset, 
the AlexNet depth has been increased from 5 to 8 layers, 
which improves the resolution of images. To improve the 
performance and solve the problem of gradient vanishing, 
a ReLu activation function has been employed. To increase 
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generalisation by avoiding over-fitting, overlapping sub sam-
pling and local response normalisation were also used.

ZfNet

(Zeiler and Fergus 2014) proposed multi-layer de-convolu-
tion neural network, which is known as ZfNet. It was created 
to analyse the network performance statistically. ZfNet dem-
onstrated that only a limited number of neurons are active, 
in the first layer some of the neurons are in dormant phase, 
while in the second layer, the filter size and stride are low-
ered to the optimum amount of features. It resulted in the 
improvement of CNN topology to enhance the performance.

VGGNet

(Simonyan et al 2014) suggested a simple and comprehen-
sive design paradigm for CNN architectures that reduced the 
number of parameters and resulted in a 19-layer deep and 
3 × 3 filter architecture with the added benefit of low com-
puting complexity. It achieves superior outcomes when used 
to solve image classification and localisation challenges.

GoogleNet

(Ioffe and Szegedy 2015) proposed architecture, called 
Inception-VI, was designed with the primary purpose of 
providing great accuracy at a minimal computing cost. In 
GoogleNet, convolutional layers were replaced by small neu-
ral network layers in each layer. These small layers have dif-
ferent filters (1 X 1, 3 X 3, 5 X 5) to gather the spatial infor-
mation, whereas it uses the sparse connection to avoid the 
problem of redundant information and remove the featured 
map if it is not important. However, rather than employing 

a fully linked layer as the final layer, global average pooling 
was employed to decrease the connection density.

ResNet

(He et al 2016) developed the notion of residual learning in 
CNN, a highly effective technique for deep network training. 
The computational complexity of ResNet is lower than that 
of prior proposed networks. ResNet required less computa-
tional time and its depth is 20 and 8 times that of AlexNet 
and VGG, respectively. ResNet excels at image identification 
and localisation problems. To visualize the recognition task, 
spatial depth has been demonstrated in ResNet.

DenseNet

(Huang et al 2017) presented a solution to the problem of 
vanishing gradients. DenseNet overcame this issue by re-
purposing cross-layer connectivity. It connected each pre-
ceding layer to the subsequent layer in a feed-forward fash-
ion; hence, as specified in Eqs. 1 and 2, the feature-maps 
of all preceding layers were used as inputs to all successive 
layers.

whereas, Fmk
2
 and Fmk

l
 are the resultant feature map for 1st 

and l − 1th layer respectively, and fk is a function that enables 
the cross-layer connection by concatenating the informa-
tion from preceding layers before to assigning it to the new 
transformation layer l. Due to this reason, it gains the ability 
to explicit on distinguishing between information which is 
contributed to the network.

(1)Fmk
2
= fc(Ic, k1)

(2)Fmk
l
= fk(Ik, ..,Fm

k
l−1

)

Table 5   Deep neural network architecture in LULC

References Architecture Year Main Finding Parameter Input Size Depth Error Rate

(Krizhevsky et al 2012) AlexNet 2012 Uses ReLu,
dropout and overlap pooling

60 227 × 227 × 3 8 16.4

(Zeiler and Fergus 2014) ZfNet 2014 Middle-layer visualisation concept 60 224 × 224 × 3 8 11.7
(Simonyan et al 2014) VGGNet 2014 Reduce the filter size, increased the depth 138 224 × 224 × 3 16, 19 7.3
(Ioffe and Szegedy 2015) GoogLeNet 2015 Increased the depth, introduce the block 

concept and various filter sizes
4 224 × 224 × 3 22 6.7

(He et al 2016) ResNet 2016 Residual learning, symmetry mapping-
based skip linkages

25.6 224 × 224 × 3 152 3.57

(Huang et al 2017) DensNet 2017 Layers are connected with each other 25.6 224 × 224 × 3 201 3.46
(Woo et al 2018) Convolutional

Block Attention
Module

2018 Uses both spatial and feature-map data 48.96 32 × 4d – 5.69

(Arun et al 2019) CapsuleNet 2018 Certain connections between characteristics 6.8 28 × 28 × 1 3 0.00855
(Wang et al 2020) HRNetV2 2020 High-resolution representations – 224 × 224 × 3 – 5.4
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Convolutional block attention module

(Woo et al 2018) proposed a new type of CNN that is 
based on attention, termed the Convolutional Block 
Attention Module (CBAM). CBAM combines average 
and maximum pooling operations, resulting in a robust 
spatial attention map. The author has demonstrated that 
max-pooling may reveal information on object properties 
that differentiate them, whereas global average pooling 
can infer feature-map attention. These revised featuremaps 
improved a feature-capacity map’s ability to be expressed. 
Due to the protocol’s simplicity, it can be simply inte-
grated into any CNN design.

CapsuleNet

(Arun et al 2019) the proposed technique involves a spe-
cific neuron called a capsule that has the ability to deter-
mine the face as well as other related information. Many 
specific capsules combine to create a capsule network 
called CapsuleNet which has three layers of capsule nodes 
at the each encoding part. Whereas, 28 × 28 images with 
256 filters, and a size of image is 9 × 9 with stride 1. This 
input is given to the first layer of capsule to produce the 
vector image rather than a scalar image. Since then, Cap-
suleNet has performed the accumulation of the preceding 
layer’s weighted features, which is significantly important 
in the detection and segmentation processes.

HRNetV2

(Wang et al 2020) proposed architecture, which represents 
the high resolution for vision tasks. HRNet has two main 
features. First, a parallel connection is made between the 
convolution series of high-to-low resolution. Second, 
information is transmitted frequently throughout resolu-
tions. The benefit attained is a more exact representation 
in the geographical domain and an extraordinarily rich 
semantic domain.

DL approaches outperformed ML approaches 
in LULC classification

Table 6 highlights many examples of DL algorithms for 
simulating the LULC that outperformed in picture classi-
fication, object recognition, semantic analysis, and image 
segmentation. Allowing for multidimensional analysis 
in the LULC classification may be important to meet the 
expanding number and accessibility of remote sensing 
data. The current studies of remote sensing applications 
evaluate the effectiveness of DL approaches that employ 

a variety of data sets with a high spatial resolution and a 
large number of parameters to achieve a higher degree of 
accuracy than ML models.

Deep learning framework for LULC 
classification

Deep learning for remote sensing is actively being studied 
and has a lot of potential. Between 2016 and 2021, signifi-
cant improvements in DL performance were often observed 
in Fig. 7. This graph illustrates the growth of published jour-
nals of DL in remote sensing. As there is no requirement for 
human aid in modelling the future LULC analysis, the basic 
framework for LULC modelling using the DL model performs 
modelling automatically as shown in Fig. 1. When it comes to 
learning hierarchical characteristics, DL models offer a wide 
variety of advantages. LULC categories are primarily expan-
sions or abstractions of the current terrain or landscape. Tradi-
tional ML models have been replaced by DL models because 
they outperform standard models in terms of performance, 
interpretability, data interpretation, and processing.

The design of the overall DL model divides the prob-
lem into different modules. 1) Data acquisition: Selecting 
an appropriate dataset is the most critical step in LULC 
analysis. The quality of data is necessary for generating a 
precise result when simulating the LULC. In general, the 
most relevant data for analyzing land-use change are physi-
cal, statistical, dynamical and spatiotemporal data. The HSI/
MSI includes aerial images, satellite images, ancillary data, 
Google Maps, topographical maps, and maps for urban plan-
ners and land use. 2) Preprocessing the data-set: The pre-
processing stage contains sub-tasks like feature engineering 
and classifier training, where the input data is prepared for 
denoise, eliminating irrelevant information from the data, 
synchronize, fusion of data, reducing its dimensionality, 
image re-sampling, clipping vector and raster images, buff-
ering and geo-referencing. 3) Train model: After obtaining 
high-quality training data, it is possible to use this data to 
train a DL model using the feature extraction technique. 4) 
Validation and Evaluation: In order to ensure that the trained 
model is accurate, the model is evaluated and updated as 
needed. 5) Labelled sub-images and post-processing: Fol-
lowing the labelling of the sub-images, post-classification is 
a procedure that eliminates noise, corrects misclassifications, 
and improves overall accuracy. 6) LULC maps: Predicting 
LULC maps can assist urban planners and land resource 
management in taking appropriate action on the land cover.

In this section, we discuss the most commonly used net-
works like Convolutional Neural Networks (CNN), Fully Con-
volutional Network (FCN), and Autoencoder (AE) are the three 
major framework for LULC classification in remote sensing.
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Table 6   DL approaches for simulating the remote sensing applications

References DL Model Dataset Spatial Resolution Parameters Accuracy Metrics

(Li et al 2014) DBN Houston 2.5 m 14.7 K Overall Accuracy
(Castelluccio et al 2015) CNN UC Merced Land Use – 5 M Overall Accuracy
(Hu et al 2015b) CNN Indian Pines 20 m 80.6 K Overall Accuracy
(Zhou et al 2015) SAE

(Stacked Autoencoders)
UC Merced 1ft 51.6 K Average Accuracy

(Ghamisi et al 2016) CNN Indian Pines and Pavia 
University

20 m 188 K Overall Accuracy

(Zhao et al 2017) SAE Indian Pines 20 m 30.2 K Overall Accuracy
(Sun et al 2017) SAE Indian Pines 20 m 107 K Overall Accuracy
(Ding et al 2017) CNN Indian Pines 20 m 380 K Overall Accuracy
(Paoletti et al 2018) CNN Indian Pines 20 m 96 M Overall Accuracy
(Zhang et al 2018a) CNN ISPRS Postdam 5 cm 17 K Overall Accuracy
(Liu et al 2018b) CNN

(Transfer Learning)
ISPRS (International Society 

for
Photogrammetry and
Remote Sensing) Postdam

5 cm 481 M Overall Accuracy

(Marcos et al 2018) CNN Vaihingen and Zeebruges data 5 cm 430 K Overall Accuracy
(Huang et al 2018) CNN other 1.24 m 39 M Overall Accuracy
(Rezaee et al 2018) CNN other 5 m 53.9 M Overall Accuracy
(Pashaei et al 2020) DL (Deep Learning)

Networks
UAS hyper-spatial imagery – – Overall Accuracy + 

Training,
Overall accuracy + valida-

tion
(Zhang et al 2019) JDL (Joint

DeepLearning) Model
Southampton and Manchester 50 cm 10 K Overall Accuracy

(Alhassan et al 2020) FCN
(Fully Convolutional
Network)

Landsat 5/7 Manitoba, Canada 1.32 m 2 M Global Accuracy

(Papadomanolaki et al 2019) FCN (ISPRS WGII/4) – 1.1 M Overall Accuracy,
Precision,
Recall and F1 score

(Azarang et al 2019) AE QuickBird, Pleiades-1A, 
GeoEye-1

2.44–2.88 m, 0.5 m, 0.46 m 0.5 M Average Performance

(Liu and Lee 2019) 3DADCNN (3-D atrous
denoising convolution neural 

network)

HSI SPECIM Finland Image 1.34 m Overall Performance

(Zhong et al 2019) 1D-Conv, LSTM and
XGBoost

USGS 30 m — Overall Accuracy, F1-score

(Simonyan and Zisserman 
2014)

CNN ILSVRC — 144 M Validation, Error rate

(Liu et al 2021) Multi-task
Deep Learning

Pavia University 1.3 m — Overall Accuracy and Map-
ping Error

(Bittner et al 2018) FCN WorldView-2 58.37 m,
24.66 m (Height)

— Overall Accuracy

(Hu et al 2021) AE Viareggio 2013 0.6 m 127 M ROC
(Shi et al 2021) CNN Howland Dataset 1 m 15 M Kappa Coefficient
(Mei et al 2019) 3D Convolutional

Autoencoder
Indian Pine 17 m — Overall Accuracy

(Li et al 2021) Deep CNN Gaofen-2 satellite 3.2 m — Average Accuracy
(Sun et al 2020) DL Model AVIRIS images 1-4 m — Overall Accuracy
(Xu et al 2021) CNN ISPRS (Vaihingen and Pots-

dam) P
— — Overall Accuracy, Kappa 

Coefficient and F1-Score
(Yang et al 2019) CNN ISPRS (Vaihingen and 

Potsdam)
9 cm — Overall Accuracy
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Convolutional neural network

Among deep learning methodologies, the convolutional 
neural network (CNN) is the most effective and powerful 
framework network. CNNs have been frequently utilised to 
classify remote sensing data due to their ability to classify 
complicated contextual images. These techniques are usually 
not needed to complete an output image prediction. CNNs 
are feed-forward neural networks that employ spatially local 
correlation to make decisions by imposing a local connec-
tion pattern between neurons in neighbouring layers of the 
network. Their structure is comprised of a variety of convo-
lutional layers, a maximum pooling layer, and fully linked 
layers (Zhang et al 2017). Each layer of convolution com-
putes the weighted sum of the preceding feature, calculated 
using a filter, and then sends the result via an activation 
function to obtain the final result. When using this approach, 
the kernel size is calculated in order to find local correla-
tions while maintaining invariance for each location inside 
the data array. The resultant feature map is generated with 
invariance down to the lowest feasible units. Finally, a fully-
connected neural network is used to link all of the various 
phases of convolution or pooling layers together in a cohe-
sive unit (LeCun et al 2015). The following is an example 
of a convolution operation:

fnk
l
(x, y) = XXic(a,b)ek

l
(s,t)

c a,b

Fk
l
=
[

fnk
l
(1, 1),… , fnk

l
(x, y),… , fnk

l
(X, Y)

]

Once the features are extracted, next is pooling or down-
sampling operation used to extract the combination of features 
that are insensitive to translational shifts and minor distortions.

Similarly, Pkl denotes the pooling feature-map of the lth layer 
for the Kth input feature-map, and gp denotes the pooling opera-
tion. In CNN (He et al 2015) pooling formulas include max, aver-
age, L2, overlapping, and spatial pyramid pooling. To increase 
the learning process and provide a decision function for a con-
volved feature-map are called as activation function. These acti-
vation functions speed-up the learning rate and also provide the 
non-linearity of features. Activation function like ReLu, sigmoid, 
tanh, maxout and SWISH has same functionality to provide non-
linearity and overcome the problem of vanishing gradient.

In the above equation, ga denotes the activation function 
and Fkl denotes the convolution output, whereas tkl denotes 
the transformed output. (Nwankpa et al 2018).

Training and optimization of CNN are the major design 
choices that provide the best performance and address the over-
fitting problem. As the volume of data increases, the number 
of additional challenges for training the data tends to grow as 
well. It is challenging for the model when an unseen or new 
dataset is introduced. This problem causes overfitting, which 
can be addressed by dropout and batch normalization. At the 
end of each round of the training phase, the dropout mechanism 
is used to deactivate many nodes. The primary goals of batch 
normalisation are to enforce a zero mean and a one standard 

Pk
l
= gp

(

Fk
l

)

tk
l
= ga

(

Fk
l

)

Fig. 1   An overall framework of DL model in LULC
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deviation for all activation functions in the specified layer and 
for each small batch, in order to increase overall accuracy, 
make the network more resistant to overfitting, and accelerate 
the convergence of the gradient descent process. Finally, the 
fully connected layer connects each layer with another layer to 
classify, which is the end part of the CNN model as shown in 
Fig. 2. It collects information from the feature extraction stage 
and performs analysis on the output of all previous levels. As 
a result, data classification is achieved by connecting selected 
features in a nonlinear manner (Rawat and Wang 2017).

Fully convolutional neural network

(Ronneberger et al 2015) was first introduced for biological 
image segmentation, but it is currently used in a variety of 
remote sensing applications, where it produces promising 
results in high resolution images (Wurm et al. 2019). Fully 
Convolutional Neural Network (FCNN) is a widely used net-
work for semantic image segmentation. Various segmenta-
tion approaches involve the encoder-decoder framework in 
FCNN, as shown in Fig. 3, whereas the first part extracts the 
feature encoding information into a condensed vector known 
as the encoder, and the second component is the decoder, 
which decodes the vector data by upsampling it to the spatial 

resolution (Long et al 2015a). As a result, combining com-
pletely encoded and decoded with skip connections helps to 
prevent the loss of accuracy as shown in Fig. 4 (Badrinaray-
anan et al 2017). The major operations involved in FCNN are:

1)	 Convolution Block: The current base networks are con-
figured to accept inputs of the size (H ∗ W ∗ nchannels) 
required for remote sensing images with three channels 
(RGB) of Red, Green, and Blue. Each convolution layer 
has a kernel size and to keep the input’s height and width 
zero-padding is used.

2)	 Pooling: By removing the feature from the feature map, 
the pooling function reduces the size of the input pic-
ture.

3)	 Concatenation: In this layer, the preceding layer’s 
output encoder part is concatenated with the decoder 
part by up-sampling the output with the dimensions 
(H ∗ W ∗ nup)and the concatenated output becomes 
(H ∗ W ∗ nup ∗ nconv).

4)	 Up-sampling: This layer doubles the height and width of 
the image to change the number of pixels with the same 
value to the same number of pixels.

5)	 Transpose Convolution: This layer transposes the con-
volution by switching the dimensions to increase the 
output.

Fig. 2   Spatial feature extraction by using CNN model

Fig. 3   Spatial feature extraction by using FCNN model (Badrinarayananet al 2017)
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6)	 6) Deconvolution: This layer performs the inverse 
of the convolution function, whereas the deconvolu-
tional layer’s forward pass equals the convolutional 
layer’s backward pass, and vice versa. Deconvolu-
tions are used to drive the model to learn more accu-
rate outputs.

Autoencoder

An autoencoder (AE) is a key approach for deep learn-
ing to feature in a hierarchical manner. Its architecture is 
composed of three layers: an input layer (encoded layer), 
a hidden layer, and a reconstruction layer (decoded layer). 
In comparison to the input and reconstruction layers, the 
hidden layer contains fewer units. Both the encoded and 
decoded data have the same number of units, and between 
each pair of layers, a non-linearity function is applied in 
the Fig. 4.

It converts an input layer xinRn to a hidden layer hinRh 
with a latent representation. whereby W is the input’s weight, 
beta is the hidden layer’s bias vector, and g() is the activation 
function.

Following that, the latent representation h is used to reverse 
map yϵRn where,

y denotes the output layer, theta denotes the weight 
matrix from the hidden layer to the output layer, and 
gamma is the output layer’s bias vector. The training 
procedure’s objective is to reduce the reconstruction 

h = g(Wx + �)

y = g(�h + �)

error j(x,y) between x and y. If the reconstruction error 
is smaller than a certain value, the latent representation 
can be employ to minimize the number of features. A lot 
of AE are piled together to lower the error rate. These 
hidden layers are sent into the subsequent layer, resulting 
in the stacked autoencoder pattern (SAE). These arrange-
ments may gradually generate deep features and train 
each additional layer using a greedy technique. After each 
layer, a pooling process compresses the features of suc-
cessively bigger input regions into smaller ones, which 
can aid in a variety of classification or clustering tasks 
(Shin et al 2013).

Discussion

Statistical analysis and meta‑analysis

The LULC literature reviewed comprises research that 
uses the DL technique to classify land cover. A system-
atic literature search was conducted to locate the arti-
cles in Scopus database about LULC in image processing 
using DL. A systematic review has been done to ana-
lyze the research paper related to the literature and to 
achieve the objectives of our research based upon Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) (McInnes et al 2018) and the recom-
mendation for systematic review for prediction model 
(CHARM model)(Moons et al 2014).

Search strategy

SCOPUS was used as databases, whereas to verify the valid-
ity and quality of the result, we limited the search results in 

Fig. 4   Spatial feature extraction by SAE
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journals, conference and book articles. A title and keyword 
search in the SCOPUS database (search date: 13 January, 
2022) using the search query”remote sensing” AND”Deep 
Learning” to identify the 413 published articles and 25 
from other database. After eliminated some articles, several 
form of information retrieved like”application of remote 
sensing”,”ML and DL model used in LULC” from 56 
relevant articles which were obtained by using the search 
query”Deep Learning” AND”LULC” which include the 
journals, conferences and books. A flow diagram of inclu-
sion criteria is depicted in Fig. 5

Various inclusion factors and exclusion factors included 
to validate the studies based on the motivation of this paper. 
The exclusion factors are as follows:

•	 Non-English language articles.
•	 Remote sensing dataset were not included in the articles.
•	 Full-text does not provided by the publisher.
•	 Studies without an outcome measures.
•	 The inclusion factors are as follows:
•	 The number of articles focusing on sub-areas of remote 

sensing applications using ML and DL model.
•	 Use cases between the years 2015–2021.
•	 Peer-reviewed article, journals, conferences and books.

A total of 438 studies has been identified using SCO-
PUS and other database, 9 were identified as duplicate 
studies while 330 were determined as irrelevant to this 
meta-analysis. The database contained the record of 
remaining 89 articles which was further screened by using 
the qualitative and quantitative analysis. The final data-
base of 56 articles were accepted in this meta-analysis.

A concise interpretation of the findings

To identify the articles in the Scopus database, type “deep 
learning” and “remote sensing” into the search box (search 
date: January 13, 2022). Based on the query, we retrieved 
the 438 publications from 2015 to 2021 using the Scopus 
database in Fig. 6 that identifies the frequency of publica-
tions in journals, which was further filtered by refining the 
articles in the search window by article title, keywords, and 
abstract. For the statistical analysis, we identified various 
articles in”DL” and”LULC” queries, which were refined to 
create the database on different DL models used in LULC, 
and the number of publications increased during the period 
(2015–2021) in Fig. 7.

As shown in Fig.  8, distribution of the publication 
increased during the period of 2015–2021. Most of the 

Fig. 5   Flow diagram of the 
search and inclusion factors 
using PRISMA AND CHARM 
model
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journal articles focus on remote sensing applications in 
various fields. As of 2021, the number of journal articles 
exceeds the number of conference papers, reviews, and 
notes, which reflects the industry’s growth in LULC. This 
demonstrates that DL has a wide range of applications in 
remote sensing. In Fig. 9, it summarize the statistical analy-
sis of DL approach which provides the increasing frequency 
of articles from 2015 to 2021. It is predicted that the scope 

of the article will increase in upcoming years. However, the 
remote sensing community has shifted its interest in recent 
years to DL models in light of the remarkable success of DL 
models in the majority of state-of-the-art approaches for a 
diverse range of applications.

As shown in Fig. 10, the LULC analysis using the DL 
model, CNN is the most often used for classifications, 
followed by AE, FCN, and RNN during the period of 

Fig. 6   Identified journals with 
frequency of publications from 
2015–2021

Fig. 7   Number of publications 
increases from (2015–2021) in 
the “Scopus database”
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Fig. 8   Distribution of publica-
tions (Conference Paper, Arti-
cle, Review and Note) increases 
during the period (2015–2021)

Fig. 9   Prediction and scope of 
the publication will increase in 
upcoming year

Fig. 10   Distribution of DL 
models used in LULC from 
(2018–2021)
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2018–2021. Due to the higher popularity of CNN and its 
unique qualities, which make it ideal for processing HSI/
MSI remote-sensing images with regularly ordered pixels. 
The CNN model is capable of obtaining high-level spatial 
characteristics, which are useful for various analysis tasks 
in remote sensing.

Analysis of remote sensing images in LULC utilising 
DL methods is summarised in this paper, which shows the 
graphical representation of the higher-frequency of articles 
in 2021. According to the analysis, Fig. 10, represents the 
CNN model, which is more popular than other DL models. 
By studying the current techniques and literature review, we 
conclude that DL in LULC classification of images is still at 
a young age and a lot of scope is available.

Advantages and disadvantages of various DL model 
in LULC

In remote sensing applications, sampling a large number of 
labeled classes of interest is challenging and error-prone, 
and most of the DL model is based on the number of labeled 
training samples that are required to optimize the weight in 
each iteration. Therefore, such a model requires a lot of time. 
(Novelli et al. 2017) has shown that a pre-trained model with 
fine-tuning provides better accuracy. However, many DL 
models are not generalized as they cannot accept more than 
three colors (RGB) per channel, which may not be ideal in 
the LULC classification. As remote sensing images always 
require extra information, Fu et al (2018). As a result, these 
models need to be rebuilt and redesigned from the initial 

Table 7   Advantages and disadvantages of DL model in LULC

DL Model Advantages Disadvantages

CNN 1. Weight sharing, parameter sharing capabilities
2. Good accuracy in image recognition
3. Multi-source and multi-spectrum information to the CNN 

based model in RS provides the better accuracy Zhang et al 
2018b

4. To reducing the complexity, cost of training and efficient 
RS image classification can achieved by using pertained 
CNN model Weng et al 2017

5. CNN-ELM model provides the excellent result in scene 
classification

6. Relatively high detection speed, end-to-end object detec-
tion by using the Faster R-CNN model Ren et al 2017

1. Calculations will be repeated as a result of feature extrac-
tion

2. Complex training process
3. A significant number of unnecessary computations Song 

et al 2019
4. Lack of spatial homogeneity Wu et al 2018

FCN 1. To predict the dense pixel label prediction
2. It requires less memory consumption
3. FCN used for semantic segmentation to explore the multi-

level context information Long et al 2015a, b
4. In deconvolutional layer, up-sampling is used to recover 

the spatial information while also creating the forecast of 
each pixel Jiang et al 2019

5. Discontinuities caused by patch boundaries are eliminated, 
and the execution time at inference is reduced Maggiori 
et al. 2016

1. Challenging to obtain the accurate boundary localization
2. Problem of class balancing Liu et al. 2017
3. Loss of spatial information
4. Since it reduce the parameters, it may loss the flexibility of 

the model

SAE 1. Reduce the dimensionality of data
2. They are more useful in some application where it 

required learning feature or extracting feature
3. Main advantage of AE are de-noising and anomaly detec-

tion
4. It takes shorter prediction time for large scale mapping in 

LULC Li et al 2016
5. AE do not required labelled sample to construct the model 

as they train unsupervised model Chalapathy and Chawla 
2019

1. It takes longer sample training time
2. If the bottleneck layer is too narrow, then algorithm may 

loose important dimension
3. AE are specific to the data-set, so it may cause difficulties 

in scaling
4. Since AE capture more information due to dense layer 

which may not be relevant information Lawton 2020

Other DL models 1. RNN model can use with CNN to extend the effective 
pixel neighborhood

2. In order to build an ANN, it require less formal statistical 
training

3. GAN approach based on RS is the novel effective way to 
calculate the thickness of thin clouds

4. GAN approaches are basically provide the super resolution 
Zhang et al 2020

1. RNN consist gradient and vanishing problem
2. ANN increased computational capacity
3. GAN based RS approach require massive data sets as well 

as high-power computing capabilities
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which requires sufficient training data (Novelli et al. 2017). 
Table 7 discusses the advantages and disadvantages of vari-
ous DL models in LULC.

In this section, we compare the quantitative result 
of three DL model (CNN, FCN and SAE) using spec-
tral features, spatial features respectively by comparing 
their result metrics overall accuracy(OA) and average 
accuracy(AA). The dataset from ISPRS, Indian Pines and 
Pavia University has been used for quantitative compar-
ison. In terms of classification results based upon the 
spectral-feature achieved best performance analysis in 
the given Table 8 and the graphical representation of 
classification accuracy shown in the Fig. 11.

As seen in the Fig. 11, CNN, FCN and SAE models 
used for various dataset. CNN based classification model 
performs better than other models in Pavia university 
dataset. However, statistically it appears that most of the 
papers published using CNN model in remote sensing 
applications as mentioned in the Fig. 10. CNNs are the 
most powerful DL model for image feature extraction. In 
comparison to typical shallow models, DL models built 
using CNNs may hierarchically extract more abstract 
semantic features from the input images. Using scene 
segmentation of RS photos, pre-trained CNN models on 
natural image data sets such as ImageNet (Deng et al 
2009) have shown amazing results (Chen et  al 2014) 
(Firat et al 2014). To generate global feature represen-
tations for a specific application, deep features can be 
directly taken from the intermediate layers of a freely 
accessible CNN architecture, such as AlexNet (Kriz-
hevsky et al 2012) (Simonyan et al 2014) and (Ioffe and 
Szegedy 2015). In (Hu et al 2015a), multi scale CNN 
activation functions are used as feature extractors while 
other coded functions are used for feature encoding 
method. Fine tuning is the option to provide the valu-
able approach when new dataset is sufficiently substan-
tial but not large enough to fully train a new network. 
(Nogueira et al 2017) developed a strategy for finetun-
ing specific high-level layers of the GoogLeNet (Ioffe 
and Szegedy 2015) using the UC-Merced data set (Xia 
et al. 2010) achieved the outstanding result. Although 
supervised deep learning approaches like CNNs and 
its variations may yield amazing image classification 
results, there are some drawbacks since they rely on a 

Table 8   Classification results of different dataset using DL models in 
LULC

Dataset DL model References Evaluation 
metrics

OA AA

ISPRS CNN Yang et al 2019 88.00
FCN Papadomanolaki et al 

2019
88.99

SAE Rahimzad et al 2021 92.86
Indian Pines CNN Ghamisi et al 2016 81.66 89.64

FCN Jiang et al. 2021 99.61 99.81
SAE Mei et al 2019 92.35 92.04

Pavia University CNN Chen et al 2016 99.54 99.77
FCN Zhang et al 2020 79.89 76.60
SAE Chen et al 2014 98.52 97.82

Fig. 11   Classification results of DL models in LULC
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large number of labelled training data. Several feature-
learning models have been successfully used in remote 
sensing and may be layered to create deep unsupervised 
models like SAE, sparse coding, RBMs etc. (Zhang et al 
2014). (Romero et al 2015) proposed the use of deep 
CNNs for RS image classification, by using the unsuper-
vised approach to provide the sparse feature representa-
tion to train the network. The efficiency of DL-based RS 
classification approaches in solving real-world situations 
has been demonstrated in the previous section. Because 
of the growing availability of RS data and computing 
resources, fast progress of DL in remote sensing image 
categorisation is projected in the future years.

Conclusion

LULC analysis is the most emerging research area in remote 
sensing applications like climate change, urban planning, 
disaster management, and ecological change etc. The study 
was motivated by the popularity of the DL approaches in 
remote sensing for land cover prediction. Due to the avail-
ability of various resources, the HSI/MSI imagery and the 
Landsat dataset are the most frequently used for image based 
classification in LULC. We have identified the various data-
sets which will help the researcher to analyse the LULC 
change and time-series satellite images. Subsequently, vari-
ous remote sensing software applications has been identified 
for pre-processing, classification and prediction.

In this research, we employed state-of-the-art DL 
frameworks in our study, to explore the hierarchical char-
acteristics of LU and LC categories and abstractions or 
generalizations of the actual terrain or landscape. This 
study examined the performance of several of the most 
current DL architectures that are extensively used for 
pixel-level labelling in a variety of remote sensing appli-
cations. Some of the key findings and gaps have been 
identified to analyse the new opportunities which outper-
formed the traditional approaches. According to the over-
all accuracy of DL models with different parameters, the 
DL models are superior to ML models in remote sensing 
applications. Furthermore, we have proposed an overall 
framework of the DL model as a solution to new chal-
lenges and discussed the most commonly used approach in 
LULC analysis. However, this study was motivated by the 
exponential growth of DL approaches in LULC, which was 
systematically identified through statistical analysis using 
the scopus database. The recommendations presented in 
this paper seek to greatly benefit researchers by providing 
a uniform approach for presenting architectural setup and 
DL approach in LULC analysis in the future. We conclude 
that DL in LULC classification of images is still at a young 
age and a lot of scopes are available in the future.
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