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Abstract
Wetland conservation is crucial in arid areas on account of the high dependence of life on these ecosystems. Quantifying the 
effects of drought on wetlands is the initial step toward conservation action under drought condition. In this study, the ability 
of Synthetic Aperture Radar (TerraSAR-X and Sentinel 1 images) to detect the drought impacts on wetlands in arid areas was 
investigated. Synthetic Aperture Radar signals (SAR) acquired in dry and wet periods at two wavelengths (X-band ~ 3 cm, 
C-band ~ 6 cm), three polarizations (HH, VV, and VH), and three incidence angles (22°, 34°, and 53°) were applied. Pri-
marily, the discrimination ability of each SAR data was assessed using the Transformed Divergence and Bhattacharyya 
Distance. The best image to create the wetland cover classes during wet and dry conditions was determined accordingly. The 
SAR images were classified employing the Support vector machine method and the classified images were assessed using 
n-folds cross-validation. Degradation in wetland cover classes as an index of drought-induced damage in the wetland was 
determined using a comparison between the flooded and dry conditions. Based on the findings of this paper, Sentinel-1 (C 
band) is of the ability to determine the degradation of wetland cover classes since it is capable of quantifying the increase 
in dead plants and bare lands. This study illustrated the potential of SAR data as a tool in arid land studies and could also 
promote the application of SAR data in wetland management. Free access to Sentinel-1 data and the 6-day overpass makes 
these data favorable images for wetland research.
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Introduction

Wetlands are valuable ecosystems that support biodiversity, 
regulate the water cycle, and decrease the negative effects of 
natural hazards, such as flooding (Hong et al. 2010). The role 
of wetlands is even more pivotal in arid areas where water 
scarcity is the most important limitation. Climate change, 
drought, human-induced changes, and water limitation over 
the recent years have led to widespread degradation in the 
wetlands of arid areas (Ye and Grimm 2013; Zhang et al. 
2013; Zhao et al. 2016). Drought is a natural hazard that 

has affected a large part of the world (Minckley et al. 2013; 
Downard et al. 2014; Nikraftar et al. 2021). The vanishing 
of wetlands caused by drought has fiercely negative effects 
on local communities and wildlife (Saha et al. 2021; Hoque 
et al. 2020). People of such areas have to deal with various 
problems, including unemployment, poor harvesting, starv-
ing, immigration, and respiratory diseases caused by dust 
storms (Miri et al. 2019; Dikshit et al. 2022). Moreover, 
habitat loss due to water limitation threatens wildlife in these 
areas. Mitigation of drought risks necessitates a comprehen-
sive drought management plan (Saha et al. 2021).

To protect all kinds of life against the negative effects 
of water limitation, the damages caused by drought should 
be investigated and estimated (Vicca et al. 2016). Narrow 
boundaries between the land cover types turn wetland map-
ping and investigation into a challenge (Gallant 2015). Thus, 
identification of the changes and harms in these ecosystems 
could be difficult (Klemas 2013; Gallant 2015; Hyde et al. 
2006). An efficient tool for studying the changes in the wet-
lands is remote sensing (Zhang et al. 2013) since it provides 
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accurate repeated data with spatial situation, which are 
useful for detection of the changes over dry period. These 
advantages make remote sensing an applicable tool for 
dynamic and vast area investigation. The drought impacts 
are always investigated by change in NDVI or other optical 
indices (Peng et al. 2011; Wang et al. 2015; Cunha et al. 
2015). Meanwhile, owing to the advantages of SAR data, 
including penetration ability, sensitivity to soil and vegeta-
tion parameters, and its ability to provide data in all weather 
conditions, active remote sensing and SAR sensors have 
been widely utilized in recent wetland studies (Gallant 2015; 
Hyde et al. 2006; Klemas 2013; Touzi et al. 2007; Brisco 
et al. 2011). Toyra and Pietroniro (2005) mentioned that 
varying degrees of SAR penetrations are useful to detect the 
flooded area. White and Fennessy (2005) reported the water-
saturated nature of the soil in wetlands to be effective in 
the high reflection of SAR transmitted energy. Additionally, 
several authors have emphasized both specular effects and 
double bounce scattering as beneficial characters of SAR 
data for wetland mapping (Bourgeau-Chavez et al. 2005). 
In fact, in SAR images, the specular effect results in the 
appearance of water as dark-colored patches, and double 
bounce scattering leads to the depiction of flooded vegeta-
tion as light-colored areas (Maleki et al. 2020). The contrast 
between the dark appearance of water and the light appear-
ance of flooded vegetation ensures the optimal discrimina-
tion between land cover classes in wetlands (Grings et al. 
2006; Henderson and Lewis 2008). However, SAR data are 
rarely applied in drought damage detection while the reduc-
tion in SAR backscatter in the dead plants due to the change 
in the water content of plants is valuable to map the effects 
of water limitation on plants (Corcione et al. 2016).

The necessity of conservation measures during drought 
periods further highlights the importance of applying appro-
priate data and methods for drought damage detection. This 
study used the advantages of SAR data to investigate drought 
impacts on Hamoun-e-Hirmand in Iran. Since SAR data are 

rarely used in arid areas, this research provided valuable 
information about the potential of SAR data to study drought 
impacts. The study area is a wetland dealing with prolonged 
drought which has led to degradation of different land cover 
classes. The degradation in the wetland cover in the dry 
period was assigned as an index of drought impact. The 
drought-associated impacts on the wetland were determined 
using the comparison between the wetland covers of flooded 
and dry conditions. This study provided further details on 
SAR data application and its results could be beneficial to 
future research on drought effects.

Study area and database

Study area

The study area was selected in Hamoun-e-Hirmand in the 
east of Iran, close to the Afghanistan boundary (Fig. 1); it 
was located between 30° 25′–31° 27′ E and 60° 56′–61° 43′ 
N. Previous studies have introduced Hamoun-e-Hirmand 
as the most important habitat for waterbirds’ nesting and 
feeding in the east of Iran (Maleki et al. 2016; Behrouzi-
rad 2009; Rahdari et al. 2012). Under normal conditions, 
the Hamoun ecosystem is fed by the Helmand River which 
raises from Afghanistan mountains. Nonetheless, this region 
is dealing with unprecedented drought which has caused a 
great crisis in the east of Iran. Over the recent years, due to 
the drought and the blockage of water flow by Afghanistan, 
Hamoun is dried out completely in a long period of the year. 
Poor harvesting, starving, and respiratory diseases caused 
by dust storms have put local communities through serious 
crisis (Shamohammadi and Maleki 2011; Beek and Meier 
2006). On the other hand, local and migratory waterbirds 
have missed the only water resource in a vast desert. Mean-
while, before the drought, this ecosystem was the source 
of life; the Ramsar Convention introduced a large part of 

Fig. 1  The study area in Hamoun-e-Hirmand in the east of Iran
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Hamoun as a protected area, following which it was intro-
duced as a world heritage (Ramsar 2016).

Field data

When Hamoun-e-Hirmand is flooded, three major wetland 
cover classes, namely open water, flooded vegetation, and 
bare lands, are formed (Maleki et al. 2016; Behrouzi-rad 
2009; Rahdari et al. 2012). Figure 2 (a–c) presents this wet-
land in the wet period while Fig. 2 (d–f) illustrates it in the 
dry period. During the dry period, the plants dry out in a 
large part of the wetland and bare lands develop throughout 
the study area.

Field data were collected under both flooded and dry con-
ditions of the wetland based on satellite overpass in 2019. 
All the samples were collected based on the stratified ran-
dom sampling method. During the flooded period, 210 sam-
ples were collected from all the three wetland cover classes 
and the geolocation of each field observation was registered 
using the Global Positioning System (GPS). Taking into 
consideration the effect of the neighbor classes, all the data 
were collected in a homogeneous area. The characteristics 
of each sample, including vegetation type, vegetation cover 
percentage, and inundation condition, were recorded. These 

samples were re-evaluated under the drought conditions and 
the same data were recorded.

Satellite data

Since the majority of the plants in Hamoun-e-Hirmand are 
herbaceous, short-wavelength (X and C band) images were 
selected for this study. Considering the effects of incidence 
angle and polarization on the detection ability of SAR data, 
TerraSAR-X images at two incidence angles and Sentinel-
1(S-1) images at two polarizations were applied (Table 1).

Methods

The degradation of wetland cover in the dry period is an 
index of drought-induced damage. Hence, in this paper, 
with the advantage of SAR data to detect the wetland cover 
classes in dry and flooded periods, the drought-induced 
damage in a wetland was estimated. To provide information 
about the SAR backscattering from wetland cover classes in 
the dry and flooded periods, the behavior of SAR data was 
first assessed under both dry and flooded conditions. Sub-
sequently, the best image to separate the classes was tested 

Fig. 2  The study area in flooded 
(a–c) and dry period (d–f)
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using TD and BD, and the wetland cover maps of dry and 
flooded conditions were created. The accuracy of the cre-
ated maps was assessed with n-folds cross-validation. The 
decline in vegetation and water body were utilized as the 
index of drought-induced damage. These steps are described 
below.

Image preprocessing

SAR calibration was performed to calculate the real radar 
backscatter. Calibration is of great necessity for compar-
ing SAR images to different characteristics (Niculescu et al. 
2020). Orthorectification was then conducted to produce an 
image with topographical variations as close to real surface 
topography as possible (Small and Schubert 2008). Since 
speckles reduce the quality of SAR images, the Lee filter 
(5*5) was applied to minimize the speckle noise. The Senti-
nel Application Platform (SNAP) was used in the preproc-
essing steps.

Backscattering analysis

To provide complete information on the capability of C- 
and X-band to differentiate the changes in the wetland cover 
classes within the dry and flooded conditions, the backscat-
tering of these bands was analyzed in both flooded and dry 
conditions. As mentioned in the “Field data” section, during 
the field surveys under the dry conditions, the location of 
each wetland cover class was registered. Using the field sur-
vey data, the polygons corresponding to each wetland cover 
class were generated. The mean backscattering of polygons 
for each class was calculated and the backscattering graph 
was created. Moreover, through the same method, SAR 
backscatters were analyzed under the flooded condition.

Separability analysis

TD and BD are used to investigate the separability between 
classes. The TD measure is a widely employed statistical 
separability criterion, which is simpler than the BD measure 
(Huang et al. 2016).

Both TD and BD separability measures are bounded 
between 0 and 2, where 0 shows no separability between 
the signatures of two classes, and 2 shows the complete 
separation. The larger the values, the better the final clas-
sification results (Dabboor et al. 2014). The following rules 
were mentioned by the previous literature for each range of 
separability values ‘x’:

 <  ×  < 1.0 (very poor separability)
 <  ×  < 1.7 (poor separability)
1.7 <  ×  < 2.0 (good separability)

The distance between the class means and the distribu-
tion of values from the means are used to calculate these 
measures that are provided by the covariance matrices of the 
classes (Ghoggali and Melgani 2009; Dabboor et al. 2014).

TD and BD measures are calculated as follows (Swain 
and Davis 1978; Dabboor et al. 2014; Huang et al. 2016):

where:

• TD(i,j) = Transformed Divergence between classes i and 
j

• D(i,j) = divergence between classes i and j
• D(i,j) = 0.5*T[M(i)-M(j)]*[InvS(i) + InvS(j)]*[M(i)-

M(j)] + 0.5*Trace[InvS(i)*S(j) + InvS(j)*S(i) -2*I]

where:

• M(i) = mean vector of class i, where the vector has 
Nchannel elements (Nchannel is the number of channels 
used)

• S(i) = covariance matrix for class i, which has Nchannel 
by Nchannel elements

• InvS(i) = inverse of matrix S(i)
• Trace[] = trace of matrix (sum of diagonal elements)
• T[] = transpose of matrix
• I = identity matrix

(1)
��

TD(i, j) = 2∗[1 − exp(−D(i, j)∕8)](Huangetal.2016)

Table 1  Satellite data used in 
this study

Date
(dd/mm/yyyy)

Sensor SAR incidence 
angle (°)

SAR polarization Pixel spacing
(m × m)

Wet/dry
period

24/05/2019 S-1 34 VV, VH 10 × 10 Wet
19/05/2019 TerraSAR-X 53 HH 10 × 10 Wet
20/05/2019 TerraSAR-X 22 HH 10 × 10 Wet
11/11/2019 S-1 34 VV, VH 10 × 10 Dry
30/10/2019 TerraSAR-X 22 HH 10 × 10 Dry
01/10/2019 TerraSAR-X 53 HH 10 × 10 Dry
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where:

• BD(i,j) = Bhattacharyya Distance between class i and j
• a(i,j) = 0.125*T[M(i)-M(j)]*Inv[A(i,j)]*[M(i)-M(j)] + 0.5 

*ln{det(A(i,j))/SQRT[det(S(i))*det(S(j))]}

where:

• T, M, S, and Inv are as defined for TD measure
• A(i,j) = 0.5*[S(i) + S(j)]
• det() = determinant of a matrix
• ln{} = natural logarithm of scalar value
• SQRT[] = square root of scalar value

Image classification

Supervised classification method using Support vector 
machine (SVM) algorithm (Cortes and Vapnik 1995) was 
used to map the wetland covers. In this method, the train-
ing samples are employed to obtain a linear separating 
hyperplane in a multi-dimensional feature space. The SVM 
algorithm works based on minimizing the error risk and 
maximizing the margins between the separating hyperplane 
and the closest training samples (Bigdeli et al. 2013). In the 
SVM algorithm, the kernel function is applied as a nonlin-
ear transformation of input data (Pal 2005; Pelletier et al. 
2016; Bousbih et al. 2019). The wetland cover maps under 
the flooded and dry conditions were created. The classes 

(2)
��

BD(i, j) = 2∗[1 − exp(−a(i, j))]

with a higher accuracy were extracted from the results of 
TerraSAR-X-22°-53° and Sentinel 1-VV-VH classification 
and combined in order to create the wetland cover map. For 
the dry condition, Sentinel 1-VV-VH was applied.

Wetland cover classification accuracy assessment

Validation assures that the obtained classes have been cor-
rectly assigned to a wetland cover class (Bai et al. 2015). In 
this paper, fivefold cross-validation was applied to assess 
each image classification. The fivefold cross-validation 
method involves dividing the field samples into 5 folds, 
training the classification algorithm by 5–1 portions, and 
the remaining partition to evaluate the result. This process 
is repeated five times, each time using a different fold as 
the test set and the remaining partitions as the training data 
(Mccauley and Goetz 2004). Overall, Kappa and accuracy 
were applied to assess the accuracy of maps.

Wetland drought‑induced damage detection

Using the post-classification method (Yadav and Ghosh 
2019), the changes under the dry and flooded conditions 
were investigated. In this method, the wetland cover maps 
of both conditions, which have an acceptable accuracy, are 
overlaid. An acceptable level of accuracy, based on previous 
studies, has been defined as an accuracy higher than 80% 
(Kantakomar and Neelamsetti 2015(. The changes in each 
class within the flooded and dry periods were assigned as 
the drought-induced damage. The area of each wetland cover 
class was extracted from the created wetland cover maps 

Fig. 3  The backscattering of 
TerraSAR-X and S-1 data 
over water, flooded vegetation 
and bare land in the flooded 
condition of wetland (Error 
bar = Standard deviation)
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under the flooded and dry conditions. Then, the change rate 
for each class was calculated using Eq. (3).

Results

Backscattering analysis

Figure 3 illustrates the SAR backscattering of wetland cover 
classes. As seen, the highest backscattering belonged to 
the flooded vegetation in both C and X bands, including 
S1-VV and -VH, and TerraSARX -22° and 53° incidence 
angles, which is due to the double-bounce effect (Lang and 
Kasischke 2008). According to the comparisons between 
the backscattering of the wetland cover classes (flooded 

vegetation, open water, and bare lands), the water body has 
the lowest backscattering due to its smooth surface and the 
consequent specular reflection (Henderson and Lewis 2008). 
There is an insignificant difference between the backscat-
tering of the water and bare lands in S-1-VH. Meanwhile, a 
significant difference was observed concerning VV polariza-
tion where the backscattering of the bare lands was 12 dB 
higher than that of water. In X-band, the backscattering of 
TerraSAR-X-53° from the bare lands was higher than that 
of water (9 dB).

(3)Change rate class X = [Class X area (flooded condition) − Class X area (dry condition)]∗100

Figure 4 represents the backscattering of TerraSAR-X and 
S-1 data over the green plants, dead plants, and bare lands 

when the wetland is dried out. As shown, although the green 
plants were not flooded and the wetland was dry, the S1-VH-
VV and TerraSARX-22°-53° backscattering from the green 
plants were higher than those from the dead plants and bare 
lands. The highest backscatter from the green plants was 
achieved via S1-VV.

In both C and X wavelengths (S-1-VV-VH and Ter-
raSARX-22° -53°), the backscattering from the bare lands 
was lower compared to that from the green and dead plants. 
The smoother surface of the bare lands compared to the sur-
faces covered by plants can justify this finding. As Aubert 

et al. (2011) mentioned, a minor part of the pulse that is 
transmitted to a smooth surface, returns to the sensor. There-
fore, smooth areas appear in darker pixels rather than rough 
surfaces. The pixel value of these areas is generally below 
-20 dB (Baghdadi et al. 2008).

SAR discrimination ability

Figures 5 and 6 demonstrate the backscatter groups of the 
three wetland cover classes in the wet and dry periods, 
respectively. These figures were extracted from the polygons 

Fig. 4  The backscattering of 
TerraSAR-X and S-1 data over 
dead plants, green plants and 
bare land in the dry condition of 
wetland (Error bar = Standard 
deviation)
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drawn on each class based on the field surveys. Based on 
Fig. 5, the red group (flooded plants) did not overlap with the 
two other groups in both a (S-1) and b (TerraSAR-X) plots. 
Therefore, the flooded plants were separable from the bare 
lands and water with both S-1 and TerraSAR-X. The yellow 
(bare lands) and green groups (water) slightly overlapped 
in the S-1 plot, but in Terre-SAR-X, there was an overlap 
between these two groups. This overlap causes misclassifica-
tion between water and bare lands. As Fig. 6 shows, in the 
dry period, the three groups, including pink (bare lands), 
yellow (dead plants), and blue (green plants), were com-
pletely separated with S-1. However, these groups showed 
a high overlap with Terra-SAR-X. This overlap leads to low 
accuracy for the separation of the wetland cover classes in 
the dry period.

Tables 2 and 3 show the results of TD and BD under 
the flooded conditions as the index of the separability of 
SAR data to discriminate between the wetland cover classes. 
In these tests, the TD or BD between 0.0 and 1.0 denote 
very poor separability, the TD or BD between 1.0 and 1.7 

Fig. 5  The ability of (a) S-1 
and (b)TerraSAR-X to separate 
the flooded plants from water 
and bare land in flooded period: 
green = water, yellow = bare-
land, red = flooded plants

Fig. 6  The ability of (a) S-1 and 
(b) TerraSAR-X to separate the 
dryplants from bare land and 
green vegetation in dry period: 
pink = Bare land, yellow = dead 
plants, blue = green plants

Table 2  Results of S-1, separability analysis in wet period (separabil-
ity between class1 and class2)

Separability test

Class1 Class2 Bhattacharyya 
distance

Transformed 
divergence

Flooded vegeta-
tion

Water 1.99 1.99
Bare land 1.97 1.98

Water Flooded vegeta-
tion

1.99 1.99

Bare land 1.81 1.83
Bare land Flooded vegeta-

tion
1.97 1.98

Water 1.81 1.83
Pair Separation (least to most)
  Water and Bare land 1.89
  Flooded vegeta-

tion
and Bare land 1.97

  Flooded vegeta-
tion

and Water 1.99
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illustrate poor separability, and TD or BD between 1.7 and 
2.0 represent good separability between two classes. These 
statistics are commonly used for class separability calcula-
tions for hyperspectral and SAR data. Aubert et al. (2011) 
utilized TD and BD for evaluating the ability of TerraSAR-X 
SAR images to distinguish between bare soils, crops, and 
forests. Al-Ali (2011) investigated the separability of water 
bodies in the HH and VV channels of RADARSAT-2 and 
TerraSAR-X SAR via TD. Klein et al. (2004) calculated 
these statistics to test the separability of 10 wetland cover 
classes with Envisat advanced Synthetic Aperture Radar 
(ASAR) data.

Based on Table 2, the separation values between the 
flooded vegetation and both water and bare lands in C and X 
wavelengths (S-1-VV -VH and TerraSAR-X-22° -53°) were 
equal to or over “1.9”. Thus, using these wavelengths, inci-
dence angles, polarizations, along with flooded vegetation 
could be separated from water and bare lands. This finding 
is logical since plants are flooded and most of the energy 
of the transmitted pulse returns back to the sensor (double-
bounce effect) (Kuenzer and Knauer, 2013). This leads to 
the appearance of very light pixels in the flooded vegetation 
area. On the other hand, the smooth surface of water and 
bare lands leads to the specular effect and dark pixels. In 
view of the differences between the backscattering of the 
flooded vegetation and those of the water and bare lands, 
the flooded vegetation became completely distinguishable 
in SAR images. This is the important advantage of SAR 
data, as also reported by studies on wetlands (Baghdadi et al. 
2012; Dabrowska-Zielinska et al. 2014; Huang et al. 2014; 
Klemas 2013; Wilusz et al. 2017; Papa and Frappart 2021).

According to the separation values in Tables 2 and 3, 
to map the bare land and water body, S-1 is the best image 
for distinguishing between these two classes (separabil-
ity = 1.89); in other words, using C-band, bare land and 
water body could be completely separated. Grady et al. 
(2014) mentioned the low ability of the L band in discrimi-
nating between water body and bare land. They concluded 
that the close backscattering of these two classes in the 
L band led to their misclassification. However, based on 
Table 2, S-1 is useful for the bare lands and water mapping.

The results of the TD and BD test under the dry condi-
tion are presented in Tables 4 and 5. Overall, under the dry 
condition, S-1 yielded better results than the X band and 
produced higher separability values for all the three classes 
(green plants, dead plants, and bare lands). It is hence pos-
sible to map green and dead plants and bare lands using S-1 
images. The ability of SAR data to discriminate between 
green and dead plants is of particular importance in drought 

Table 3  Results of TerraSAR-X, separability analysis in wet period 
(Separability between class1 and class2)

Separability test

Class1 Class2 Bhattacharyya 
distance

Transformed 
divergence

Flooded vegeta-
tion

Water 1.99 1.99
Bare land 1.89 1.91

Water Flooded veg-
etation

1.99 1.99

Bare land 1.44 1.61
Bare land Flooded veg-

etation
1.89 1.91

Water 1.44 1.61
Pair separation (least to most)
  Water and Bare land 1.44
  Flooded vegeta-

tion
and Bare land 1.89

  Flooded vegeta-
tion

and Water 1.99

Table 4  Results of TerraSAR-X, separability analysis in dry period 
(Separability between class1 and class2)

Separability test

Class1 Class2 Bhattacharyya 
distance

Transformed 
divergence

Dead plants Green plants 0.22 0.22
Bare land 0.47 0.47

Green plants Dead plants 0.22 0.22
Bare land 0.98 0.98

Bare land Dead plants 0.47 0.47
Green plants 0.98 0.98

Pair separation (least to most)
  Dead plants and Green plants 0.22
  Dead plants and Bare land 0.47
  Green plants and Bare land 0.98

Table 5  Results of S-1, separability analysis in dry period (Separabil-
ity between class1 and class2)

Separability test

Class1 Class2 Bhattacharyya 
distance

Transformed 
divergence

Dead plants Green plants 1.91 1.94
Bare land 1.98 1.99

Green plants Dead plants 1.91 1.94
Bare land 1.99 1.99

Bare land Dead plants 1.98 1.99
Green plants 1.99 1.99

Pair separation (least to most)
  Dead plants and Green plants 1.91
  Dead plants and Bare land 1.986771
  Green plants and Bare land 1.999488
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damage monitoring. In fact, accurate mapping of dead plants 
determines areas that suffer from drought.

Wetland cover mapping

Based on the results of backscattering analysis and separa-
bility tests under the flooded condition, both C and X bands 
are of benefit for mapping flooded vegetation, water, and 
bare lands (Antonova et al. 2016; Jia et al. 2013). Therefore, 
these images were classified using SVM, and the most accu-
rate classes were selected to map the wetland cover classes 
under the flooded condition. Figure 7-a depicts the water 
body, green plants, and bare lands under the flooded condi-
tion of Hamoun-e-Hirmand wetland.

The accuracy of this map was assessed using fivefold 
cross-validation. Table 6 exhibits the results of the accuracy 
assessment. An overall accuracy of 87% and overall Kappa 
coefficient equal to 0.82 were achieved, which confirmed the 
accuracy of the created map. Based on Fig. 7-a, the flooded 
vegetation was well separated from both bare and water 
lands. The bare land and water body were also completely 
distinguished in this figure.

The wetland cover map under the dry condition is pre-
sented in Fig. 7-b. Table 6 demonstrates the results of five-
fold cross-validation. An overall accuracy of 85% and Kappa 
coefficient of 0.80 implied the acceptable accuracy of this 
map. These results confirmed the ability of the C band to 
produce reliable wetland cover maps under the dry condition 
of the wetland and to determine the dead plants.

Detection of drought‑induced damage 
to the wetland

The change in the area of the flooded vegetation and water 
was applied as an index to determine the drought-related 
degradation in the wetland. For this purpose, the area of each 
wetland cover class was extracted from the created wetland 
cover maps under the flooded and dry conditions and the 
change rate for each class was calculated (Table 7). As the 
change rates indicated, 66% of the flooded vegetation and all 
the water body was lost due to drought. Figure 8 illustrates 
the degradation in the wetland ecosystem during the dry 
condition. The reduction in green plants and vanishing water 
imposes critical limitations for all kinds of life in this eco-
system. In an area where life completely depends on water, 
the vanishing of water would lead to a widespread crisis.

Discussion

To provide information about the SAR backscattering from 
wetland cover classes in dry and flooded periods, the behav-
ior of SAR data was assessed under both dry and flooded 

conditions. Since the majority of the plants in Hamoun-e-
Hirmand are herbaceous, short-wavelength (X and C band) 
images were selected for this study.

The obtained results revealed that during the inunda-
tion period, the highest backscatter belonged to the flooded 
vegetation compared to the other two classes, which causes 
complete discrimination of flooded vegetation. On the other 
hand, the water body appeared as dark patches due to the 
lowest S-1 backscattering of water. The results showed a 
12 dB backscattering difference between the water and bare 
lands in VV polarization, which results in better discrimina-
tion between these two classes using S-1-VV.

The SAR backscatter from the dead plants was lower than 
that of the green ones. Corcione et al. (2016) and Maleki 
et al. (2020) reported that a reduction in the water content of 
plants caused the lower SAR backscatter in the dead plants. 
A difference between the dead and green plants was 12 dB, 
achieved via S1-VH. The dead plants had a backscatter close 
to that of the bare lands in S1-VH, but the difference between 
the backscatter of these two classes was 10 dB in S1-VV.

The TerraSAR-X backscatter from the green and dead 
plants showed approximately similar backscattering coef-
ficients. Thus, TerraSAR-X is not an appropriate image to 
separate green and dead plants. For this reason, TerraSAR-X 
could not be recommended for determination of the drought-
induced damage.

The results of discrimination ability under the dry condi-
tion showed that S-1 yielded better results than the X band 
and produced higher separability values for all the three 
classes (green plants, dead plants, and bare lands). It is hence 
possible to map green and dead plants and bare lands using 
S-1 images. The ability of SAR data to discriminate between 
green and dead plants is particularly important in drought 
damage monitoring. In fact, accurate mapping of dead plants 
determines the areas suffering from drought.

The results of the TD and BD test confirmed the abil-
ity of the C band to map the wetland cover classes under 
both flooded and dry conditions. It would thus be possible 
to determine drought damages in the dry period through 
comparison between the wetland cover maps produced under 
dry and flooded conditions.

Based on the results of the backscattering analysis and 
separability test under the dry condition, the C band per-
formed better than the X band in wetland cover mapping. 
The C band’s capability of separating the dead plants was 
valuable for the purpose of this research and drought dam-
age determination. Therefore, the S-1 image was applied 
to create the wetland cover map when Hamoun-e-Hirmand 
was dried out.

Comparison between the created maps under the flooded 
and dry conditions implied that a large part of vegetation van-
ished due to droughts. The water body was also dried out 
completely and the dead plants developed throughout the 
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Fig. 7  Wetland cover map was produced using SAR images acquired in a the flooded condition, and b the dry condition
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study area. Degradation of vegetation and the vanishing of 
water led to an increase in the bare land areas (Maleki et al. 
2018). The created maps showed that although wetland was 
covered by green plants under the flooded condition, it expe-
rienced a widespread degradation under the dry condition due 
to drought. Since this wetland is the only water resource in 
an arid area, loss of water and green vegetation would cause 
widespread problems for both wildlife and the local popula-
tion in the area (UNEP 2002; Debela et al. 2021). The wetland 
cover map under the dry condition confirmed this impending 
crisis and highlighted the parts of the wetland that needed 
emergency conservation measures to save life in the area.

As the change rates indicated, 66% of the flooded vegeta-
tion and all the water body was lost because of drought. Pre-
vious studies have identified the flooded vegetation in this 
area as the most valuable habitat for waterbirds (Maleki et al. 

2016; Rahdari et al. 2012; Behrouzi-rad 2009). Nevertheless, 
66% of the potential habitat of these birds was found to be 
degraded. Furthermore, since flooded vegetation serves as 
the source of forage for farm animals (Shamohammadi and 
Maleki, 2011), this degradation in flooded vegetation would 
lead to food shortage and poverty (Miri et al. 2019). The area 
of bare lands increased by 62% in the dry period, which is a 
widespread degradation triggered by drought.

Conclusion

In this paper, the effects of drought on wetland ecosystem 
were investigated using SAR data. Even though SAR data 
have been applied in several papers, they have not been com-
monly used in drought-concentrated studies. The ability of 
these data to separate green plants from dry ones and the 
potential of detecting vegetation, water, and bare lands is 
valuable in drought damage assessment. Since the penetra-
tion ability of smaller wavelengths is less than that of the L 
band, smaller wavelengths (the C and X bands) can detect 
the vegetation canopy even in a low density. Accordingly, 
the ability of C and X bands was applied in this study to 
detect the damages caused by drought. Furthermore, the 
effect of polarization and incidence angle was considered 

Table 6  Confusion matrices (%) 
for wetland cover map using (a) 
SAR images in the wet and (b) 
the dry periods

(a) Wetland cover class Water Flooded vegetation Bare land Total

Water 85.2 2.2 12.6 100
Flooded vegetation 7.3 89.2 3.5 100
Bare land 10.2 3.1 86.7 100
(b) Wetland cover class Dead plants Green plants Bare land Total
Dead plants 85.2 4.2 11.6 100
Green plants 5.7 86.9 7.4 100
Bare land 8.2 9.2 84.6 100

Table 7  The area of wetland cover classes (ha)

Land cover area in 
flooded condition

Land cover area 
in dry condition

Change rate (%)

Green plants 6031.903 2018.31  − 66.53
Dead plants 0 3837.96  + 100
Water 575.115 0  − 100
Bare land 1194.48 1944.18  + 62.76

Fig. 8  Drought impacts on 
Hamoun-e-Hirmand
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by applying three polarizations (HH, VV, and VH) and three 
incidence angles (22°, 34°, and 53°).

To determine the effect of drought, all the analyses were 
performed in wet and dry periods to compare the changes in 
the wetland covers between these two periods. The change 
in the area of wetland cover was applied as an index to 
determine the extent of drought-related degradation in the 
wetland. The area of change provides a quantitative index 
for destruction. The accuracy assessment of the image clas-
sification confirmed the usefulness of SAR data for wetland 
cover mapping. It shed light on the ability of SAR images 
to map wetland cover classes under both flooded and dry 
conditions.

According to the results of this study, S-1 had a complete 
configuration for the mapping of the bare lands and could 
discriminate between the dead and green vegetation under 
the dry condition. Given the importance of vegetation dur-
ing the dry period in an arid area, it is essential to monitor 
dead and green plants for conservational objectives and S-1 
images are a good choice for this purpose. As the backscat-
tering of S-1 is very low in open water and high in flooded 
vegetation, these images could better differentiate between 
open water and flooded vegetation. Moreover, the double-
bounce effect and specular scattering, as two important 
characteristics of SAR data, were found to be effective in 
satisfying the purpose of this research. The double-bounce 
effect in flooded vegetation and specular reflection of water 
provide contrast between classes. This contrast separates 
wetland cover classes with a higher accuracy, which turned 
SAR data into a favorable tool for mapping the plants in a 
wetland. These findings could be put in use as a reference 
in wetland studies.
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