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Abstract
To estimate the daily suspended sediment load (SSL), it is necessary to understand its nonlinear and complex nature and to 
use the nonlinear models for prediction. Heavy rainfall, precipitation, river discharge patterns, and tropical climate are a few 
of the major parameters that are responsible for the complex nature of river SSL. Nonlinear machine learning models are 
capable enough to handle these types of complex nature and nonlinearity in river SSL datasets. Therefore, this study presents 
novel machine learning–based nonlinear random vector functional link (RVFL) model embedded with boundary corrected 
maximal overlap discrete wavelet transform (MODWT) for river SSL prediction. The proposed model known as boundary 
corrected wavelet RVFL (BCWRVFL) is trained on the river SSL datasets that have been gathered from the Tawang Chu 
river basin and Pare river basin in Arunachal Pradesh, India. The performances of the BCWRVFL models are validated 
using several performance indicators. BCWRVFL’s prediction performance is compared with the support vector regression 
(SVR), least squares SVR (LSSVR), asymmetric Huber loss SVR (AHSVR), wavelet twin SVR (WTSVR), extreme learn-
ing machine (ELM), and RVFL. It is observed that the proposed BCWRVFL shows impressive results showing root mean 
square error and mean absolute error of 0.034 and 0.015 respectively. The experimental results demonstrate the efficiency 
of the proposed BCWRVFL model for daily SSL in rivers.
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Introduction

Suspended sediment load (SSL) prediction is a complicated 
process in river engineering practices. The method of trans-
porting soil materials through erosive agents is referred to 
as sediment transport (Aksoy et al. 2019). Sediment load 
data is extremely useful for dam construction, measuring 
pollutants in rivers, forecasting territorial risks, planning 

stable channels and estuaries, and so on (Melesse et al. 
2011; Khan et al. 2019). Monitoring and evaluating SSL is 
also important in determining water quality and associated 
hydrologic functions (Peterson et al. 2018a, b). A rise in SSL 
also decreases water visibility and admission to light, limit-
ing plant and algae growth in the primary tropics (Henley 
et al. 2000). Moreover, the deposition of suspended sedi-
ments decreases the flow area, restricting the movement of 
marine life and eventually contributing to a shift in the river 
course. Hence, it is important to estimate the SSL data pre-
cisely. An effective prediction model may play a critical role 
in improving sediment load modeling in rivers. To address 
the issue, several traditional and artificial intelligence-based 
models have been developed to predict the river SSL. In 
general, time series methods assumed linear relationships 
between variables; however, these relationships cannot be 
effortlessly applied to real hydrological data; thus, the analy-
sis could be enhanced by novel artificial intelligence (AI) 
methods (Babanehzad et al. 2020). As compared to con-
ventional methods and other AI methods, SLFNs produce 
appropriate results (Wang et al. 2009). However, a single 

Responsible Editor: Broder J. Merkel

 * Deepak Gupta 
 deepak@nitap.ac.in; deepakjnu85@gmail.com

 Barenya Bikash Hazarika 
 barenya1431@gmail.com

1 Department of Computer Science & Engineering, Koneru 
Lakshmaiah Education Foundation, Vaddeswaram, 
Andhra Pradesh 522502, India

2 Department of Computer Science & Engineering, National 
Institute of Technology Arunachal Pradesh, Jote 791113, 
India

/ Published online: 10 May 2022

Arabian Journal of Geosciences (2022) 15: 966

http://orcid.org/0000-0002-6375-8615
http://crossmark.crossref.org/dialog/?doi=10.1007/s12517-022-10150-1&domain=pdf


1 3

SLFN model is not enough to handle the non-stationarity of 
river SSL datasets. Wavelets are powerful models that can 
handle the nonlinearity as well as non-stationarity in data-
sets. Therefore, hybrid models based on wavelets are needed 
to be developed which can not only handle the nonlinearity 
and non-stationary in datasets but also shows a promising 
prediction performance.

Literature review

There are several AI-based models for SSL prediction. 
Table 1 shows a few recent significant contributions on the 
estimation of SSL using the AI techniques. Banadkooki et al 
(2020) hybridized the ant-lion optimizer with an artificial 
neural network (ANN) for estimating the river SSL. Haz-
arika et al. (2020a) compared the performance of support 
vector machine (SVM) and ANN for SSL estimation. Gupta 
et al. (2020) generated novel Huber loss function-based 
extreme learning machines for SSL prediction. Ghanbar-
ynamin et al. (2020) applied several soft computing models 
for SSL prediction. Salih et al. (2020) explored several data-
mining models for SSL estimation. Ehteram et al. (2021) 
developed a hybrid multi-objective whale algorithm for 
estimating the river SSL. Meshram et al. (2021) developed 
an iterative optimizer base random forest model for river 
SSL prediction. For the same purpose, Panahi et al. (2021) 
developed a black widow optimization-based algorithm-
based adaptive neuro-fuzzy interface system (ANFIS) and 
SVM models. Sharghi et al. (2021) proposed prediction 

interval-based emotional ANN (EANN) with the Bootstrap 
technique for SSL estimation. Mohammadi et al. (2021) esti-
mated the SSL using multilayer perceptron (MLP) hybrid-
ized with particle swarm optimization (PSO) and differen-
tial evolution (DE). Mohanta et al. (2021) used the ANFIS 
model for river SSL estimation. Nourani et al. (2021) applied 
SVM, ANFIS and feed-forward neural network (FFNN), and 
multilinear regressions (MLR) for SSL prediction. Sahoo 
et al. (2021) applied the recurrent neural network as well as 
the conventional SVM for river SSL estimation. Anand et al. 
(2021) prepared a review on deployment of the cohesionless 
sediments over alluvial channel. Talebkeikhan et al. (2021) 
did a comparative analysis of ML-based models for predic-
tion of permeability. Gumgum and Guney (2021) studied 
the effect of sediment feeding on live-bed scour around the 
circular bridge piers. A comprehensive review of AI-based 
models for SSL estimation was presented in Rajaee and 
Jafari (2020) and Gupta et al. (2021).

Drucker and his team proposed a novel SVM model 
called support vector regression (SVR) (Drucker et  al. 
1997) to solve the regression-type problems. The SVR 
and its variants have been fruitfully implemented for vari-
ous regression-related problems including SSL prediction 
(Lafdani et al. 2013; Hazarika et al. 2021). Despite showing 
high-prediction performance, it lacks in computational cost 
increases exponentially as it solves a quadratic programming 
problem (QPP) for error minimization. In addition to that, 
its prediction performance degrades in the presence of noisy 
data. To improve the computational speed of SVR, a novel 

Table 1  Few recent prominent contributions for SSL estimation using AI models

Sl no Author/authors Continent Models River/basin

1 Ehteram et al. (2021) Asia PSO, whale algorithm, bat algorithm 
(BA), ANN

Goorganrood basin

2 Meshram et al. (2021) Asia Iterative classifier optimizer with ran-
dom forest, pace regression

Seonath basin

3 Panahi et al. (2021) Asia Black widow optimizer with ANFIS 
and SVM

Telar river

4 Sharghi et al. (2021) North America and Asia EANN with bootstrap Upper Rio Grande and Lighvanchai 
river

5 Mohammadi et al. (2021) Asia MLP, PSO, DE Mahabad river
6 Mohanta et al. (2021) Asia ANFIS Indus river
7 Nourani et al. (2021) Africa Neural network ensemble (NNE), 

ANFIS ensemble (AE), weighted 
average ensemble (WAE), and simple 
average ensemble (SAE)

Katar catchment

8 Hazarika et al. (2021) Asia Coiflet wavelet large margin distribu-
tion machine-based regression and 
coiflet wavelet optimization-based 
ELM

Tawang Chu river

9 Banadkooki et al. (2020) Asia ANN-ant lion optimization (ALO), 
ANN-BA, and ANN-PSO(PSO)

Goorganrood basin

10 Ghanbarynamin et al. (2020) North America Soft computing models Little Kickapoo Creek Watershed
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LSSVR model was suggested by Suykens and Vandewalle 
(1999). LSSVR solves a set of linear equations rather than 
solving QPP. Although its computational cost is reduced, 
it still lacks efficiency while dealing with noisy datasets. 
LSSVR has been explored by researchers in various applica-
tion areas including SSL estimation. To enhance the predic-
tion performance of SVR for noisy datasets, a novel AHSVR 
was suggested by Balasundaram and Meena (2019). How-
ever, recently the growing popularity of ELM (Huang et al. 
2004, 2011; Liu et al. 2008) is because of its high generaliza-
tion performance with low computational cost (Huang et al. 
2006; Balasundaram and Gupta 2016; Hazarika et al. 2021). 
ELM has been fruitfully implemented by several research-
ers for SSL estimation. Hazarika et al. (2020b), Gupta et al. 
(2020), and Peterson et al. (2018a) to name a few recent 
applications. One of the widespread types of ANN is feed-
forward networks with random weights which were popu-
larized by Pao and Takefuzi (1992) in their research. They 
proposed novel RVFL networks (Pao and Takefuji 1992; Cao 
et al. 2015; Dai et al. 2017). In RVFL, the inputs and outputs 
can be directly connected, leading toward an exceptional 
generalization ability. The weights between the input and the 
hidden layers can also be generated randomly (Zhang and 
Suganthan 2016a). The RVFL model has been extensively 
investigated in a wide range of applications, including load 
demand forecasting (Ren et al. 2016), time-series analysis 
(Gao et al. 2021; Hazarika and Gupta 2020), visual tracking 
(Zhang and Suganthan 2016b), and others.

The AI-based models that have been developed for SSL 
prediction portray how a selection of different models and 
datasets can be made while developing a forecasting tech-
nique. It is well known that the river SSL datasets consist of 
non-stationary components; hence, it is tricky to come out 
with a decision using one method. This inspired us to suggest 
a hybrid prediction model. In view of this, by embedding the 
advantages of two distinct models, i.e., maximal overlap dis-
crete wavelet transform (MODWT) and the powerful RVFL, 
the newly suggested algorithm eliminates the limitations 
of traditional prediction models. The high-generalization 
capability of RVFL with fast training speed is well known. 
Moreover, to the best of our knowledge, RVFL’s prediction 
performance has never been tested for river SSL prediction 
despite its numerous applications. On the other hand, wave-
lets are very powerful model that can handle the nonlinearity 
as well as non-stationary trends in datasets (Hazarika and 
Gupta 2020). Researchers have suggested various wavelet-
based (WB) hybrid models for sediment load prediction. 
However, a recent study by Quilty and Adamowski (2018) 
presented that the prior wavelet-embedded forecasting stud-
ies generally do not focus on the best and the right practices 
for real-world WB prediction methodologies. Hence, they 
comprehensively studied the right and wrong wavelet-based 
studies. They also explored several boundary conditions 

(BC) that need to be adequately addressed to properly use a 
WB prediction technique in real-world issues and proposed 
a general WB data-driven forecasting framework (WDDFF) 
using MODWT and A-trous (AT). That was also the initial 
study that directly used the MODWT wavelet and scaling 
coefficients for predicting (Quilty and Adamowski 2018). 
Motivated by the idea of Quilty and Adamowski (2018), 
we have innovated a new framework by hybridizing the 
boundary-corrected MODWT algorithm with the fast and 
efficient RVFL model. The major contributions of this work 
are the following:

1. The prediction capacity of the RVFL model for SSL 
estimation has been tested.

2. Inspired by the work of Quilty and Adamowski (2018), a 
boundary-corrected MODWT-based approach has been 
adopted and a new boundary-corrected MODWT-based 
RVFL model is proposed.

3. Two different activation function has been used for the 
proposed boundary-corrected RVFL model.

4. Comparative analysis is shown with SVR, AHSVR, 
LSSVR, WTSVR, ELM, and RVFL models.

5. Additionally, the autocorrelation plots are also presented 
for the SSL datasets.

The next section elaborates the related studies. In the 
third section, the new BCWRVFL model is described. The 
experimental analyses are elaborated in the fourth section. 
In the last section the conclusion of this work is explained 
in brief.

Materials and methods

The RVFL

RVFL (Pao et al. 1994; Zhang and Suganthan 2016a) is a 
widely accepted single-layer feed-forward network (SLFN) 
where the output weights are chosen as an adaptable 
parameter (Tang et al. 2018). In RVFL networks the input 
and the output layers can be directly linked. In addition to 
the input node and hidden layer node, there also exists an 
enhancement node (EN) which consists of the hidden layer 
of the RVFL network (Shi et al. 2021).

Let an SLFN with training samples T  such that 
X =

{(
xi, yi

)}T

i=1
 , where xi ∈ ℜd and yi ∈ ℜe are input 

vector and output vector with d and e dimensions, respec-
tively. Let � = ℜ

Ng×e indicates the output weight matrix 
and Y = ℜN×e is the output target matrix. l is the output 
of hidden layer. The regularized form of RVFL model can 
be expressed as
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where Z = [GX] is the augmented matrix of input layer and 
hidden layer. � is the tradeoff parameter. The hidden layer 
output matrix L ∈ ℜN×Ng can be expressed as

The weights of the hidden layer are created at random. 
Only the output layer weight vector � must be learned. By 
deriving (1) with respect to � and further equating to zero, 
we obtain

Here,I is an identity matrix with appropriate dimension.
For any new input sample, x ∈ Rn the regression function 

of RVFL can be obtained as

The MODWT

The MODWT serves as a preprocessing model. The general 
advantage of the model is that it can handle the non-station-
arity issue in time-series (TS) data. The non-stationarity is 
handled by decomposing the input samples into high pass 
filters (HPF) and low pass filters (LPF) that yield in wavelet 
coefficient ( Vj,i ) and scaling coefficient ( Uj,i ), respectively. 
The HPF and LPF are shown in Fig. 1 and can be denoted as 
(Al-Musaylh et al. 2020; Percival and Walden 2000)

(1)
min

�
‖Z� − Y‖2 + C‖�‖2

(2)L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l1
�
xi
�

… lNg

�
x1
�

l1
�
x2
�

… lNg

�
x2
�

∙ ∙

∙

∙

l1
�
xN

�
∙

∙

…

∙

∙

∙

lNg

�
xN

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)� = (ZZ + CI)−1ZtY

f (x) = ([l(x)x]�)

where Z is the input data with N;j = 1, 2,… , J , where J indi-
cates the level of decomposition at the time i The jth level 
Vj,i and Uj,i filters are denoted by tj,l and sj,l Lj is the width of 
the jth level filter.

Finally, the additive reconstruction property can be used 
for reconstruction as (Maheswaran and Khosa 2012)

Proposed boundary‑corrected wavelet 
random vector functional link (BCWRVFL)

It is very necessary to correctly use the Vj,i and Uj,i . Hence, 
they should be boundary corrected (BC). BC indicates that 
the Vj,i and Uj,i should not suffer from any boundary con-
ditions while prediction. Therefore, firstly the future data 
problem should be properly handled (Quilty and Adamowski 
2018).

The data prediction problem and its solution

The data prediction problem takes place while a wavelet 
transform (WT) (e.g., AT-multiresolution analysis (MRA) 
and MODWT-MRA) needs TS observations that exist ahead 
of time t to perform a WT on a TS data at time t . Hence, WT 
must not use future data in real-world TS data forecasting. 
However, as per Quilty and Adamowski (2018), the solu-
tion to the problem is simple. One should use the causal 

(4)Vj,i =

l=Lj−1∑
l=0

tj,lZi−1modN

(5)Uj,i =

l=Lj−1∑
l=0

Sj,lZi−1modN

(6)Xt = Uj,i + Vj,i

Fig. 1  Diagram of MODWT decomposition
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MODWT algorithm rather than the non-causal MODWT-
MRA. However, in real-world forecasting problems, the 
decomposition level (DL), wavelet filters (WF), training, and 
testing should be properly chosen. The width of the filters Lj 
can be chosen correctly as (Bašta 2014; Maslova et al. 2016)

Additionally, the DL and WF selection is a 3-step 
procedure.

1) select MODWT or AT for wavelet decomposition,
2) chose the DL and WF,
3) eliminate the first Vj,1 and Uj,1 using (7) that results in a 

BC Vj,1 and BC Uj,1

The model development stages of the proposed 
BCWRVFL are portrayed in Fig. 2. The normalized SSL 
data is given as an input to the MODWT model. The 
MODWT decomposes the data into some Vj,1 and Uj,1 using 
HPF and LPF, respectively. The Vj,1 and Uj,1 are BC in the 
next stage. The BC-MODWT data is given as an input to 
RVFL. Finally, the output is evaluated using five different 
performance indication measures.

Experimental setup and dataset description

The simulations have been undertaken in a Windows 7 
system with 8 GB RAM and ROM of 1 TB embedded with 
an Intel i5 processor. The MATLAB-2019 was used for 
conducting the simulations. The 70–30 approach has been 

(7)Lj =
(
2
J − 1

)
(L − 1) + 1

used for the training–testing split. Moreover, the tenfold 
cross-validation is applied for the selection of the optimal 
parameters. The datasets are also normalized by taking 
xlm =

xlm−x
min
m

xmax
l

−xmin
m

 , x is the input value and xlm is the normalized 
value of xlm . xmax

l
 and xmax

m
 are the maximum values as well 

as the minimum values, respectively. Zhang and Suganthan 
(2016a) found that the hardlim and sign activation function 
degrades the whole performance of the RVFL model while 
the radbas activation function always leads to good gener-
alization performance. Therefore, the radbas activation 
function and the popular multiquadric activation function 
have been selected for ELM, RVFL, and BCWRVFL mod-
els. The radbas and multiquadric activation functions can 
be symbolized as:

a) Radbas: f (a, x) = exp
(
−(x − a)2

)
,

b) Multiquard: f (a, x) =
√‖x2 − a2‖,

where f (a, x) indicates the output for x anda . ‖.‖ refers 
to the Euclidean norm. As per the selection of the kernel 
in the SVR, AHSVR, WTSVR, and LSSVR models, the 
popular Gaussian kernel has been used. To authenticate 
the efficiency of the proposed BCWRVFL model, five dif-
ferent performance evaluators, i.e., root mean square error 
(RMSE), correlation coefficient (R), mean absolute error 
(MAE), normalized absolute error (NAE), and the ratio 
of sum of squared error to the total sum of squares (SSE/
SST). Their definitions can be given as:

R =

N∑
i=1
(zi−zi)(ei−ei)

�
N∑
i=1
(zi−zi)

2

�
N∑
i=1
(ei−ei)

2

Fig. 2  BCRVFL model development stages
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RMSE =

�
1

N

N∑
i=1

�
zi − ei

�2  

MAE =
1

N

N∑
i=1

��zi − ei
��  

NAE =

1

N

N∑
i=1
(zi−ei)

1

N

N∑
i=1

zi

  

SSE∕SST =

1

N

N∑
i=1
(zi−ẑi)

1

N

N∑
i=1
(zi−zi)

  

where

e  estimated values

to 92°28ʹ00ʺ, respectively (Panda et al. 2014). The mon-
soon season takes place between May and September or 
early October. A detailed description of the datasets is pre-
sented in Hazarika et al. (2020b) and Gupta et al. (2020). 
The study area is portrayed in Fig. 3. We have named the 
datasets from 2013 and 2015 as SSLD1 and SSLD2. In 
addition to that, to ensure the efficiency of the proposed 
models, we have also used a dataset that has been collected 
from the Pare river, India. The Pare river has a catchment 
area of 824 sq km. We name the dataset Pare SSLD. The 
statistics of the two datasets are presented in Table 2.

Results and analysis

Experiment on SSL datasets

The daily observed SSL data for SSLD1 is exhibited in 
Fig. 4 and 5. Very low SSL rates can be observed from Janu-
ary 2013 to mid of March 2013. The increasing trend can be 
observed from May 2013 to September 2013. This is because 
of the monsoon season and the trend gradually decreases 
from mid-September 2013 until December 2013. This is 
because of the decrease in rainfall during the winter season.

Fig. 3  Study area for SSLD1 and SSLD2 (Panda et al. 2014)

ê  predicted value of e
e  mean of e
z  original values ẑ  
z    mean of z
ẑ     predicted value of z
max  peak value
N  total samples

The SSL dataset is accumulated from the Tawang Chu 
river with a catchment area of 2737 sq km and latitude 
and longitude of 27°30ʹ00ʺ to 28°24ʹ00ʺ and 91°47ʹ00ʺ 
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In case of the SSLD2 dataset, high SSL rates can be 
observed from May to Sepetember 2015. During the period 
several spikes can be observed; this is due to irregularity 
in rain and wind speed. However, negligible SSL can be 
noticed in between January to April and October to Decem-
ber (winter season).

The experimental outcomes of SVR, LSSVR, AHSVR, 
WTSVR, ELM multiquard (ELM M), ELM radbas (ELM 
R), RVFL multiquard (RVFL M), RVFL radbas (RVFL R), 
and the proposed BCWRVFL multiquard (BCWRVFL M) 
and BCWRVFL radbas (BCWRVFL R) are presented in 
Table 3. Various performance indicators, viz., RMSE, MAE, 
SSE/SST, NAE, and R, have been used to evaluate the mod-
els. Generally, the R index directly compares the observed 
value and the predicted value. It is observed that (a) for 
SSLD1, there is a 5.3443%, 6.4344%, 5.7246%, 6.3415%, 

11,1111%, 5.4934%, 9.6843%, and 9.4501% increase in R 
value for the proposed BCWRVFL M model compared to 
SVR, LSSVR, AHSVR, WTSVR, ELM R, ELM M, RVFL 
R, and RVFL M.

(b) For SSLD2, there is a 10.4244%, 12.8325%, 
13.7213%, 11.1511%, 18.9818%, 8.9612%, 5.7537%, and 
26.1948% increase in R value for the proposed BCWRVFL 
R model compared to SVR, LSSVR, AHSVR, WTSVR, 
ELM R, ELM M, RVFL R, and RVFL M.

(b) For Pare SSLD, there is a 20.1167%, 29.0193%, 
29.6871%, 26.5539%, 17.7851%, 16.4982%, 84.7979%, and 
28.4154% increase in R value for the proposed BCWRVFL 
R model compared to SVR, LSSVR, AHSVR, WTSVR, 
ELM R, ELM M, RVFL R, and RVFL M.

Further, the average rank based on the performance indi-
cators is also tabulated in Table 4. One can notice from 

Table 2  Details of the SSL 
datasets (g/L)

Data Mean Variance Median Skewness Kurtosis Standard deviation

SSLD1 0.057079 0.005658 0.0216 1.7825743 2.384103 0.075219
SSLD2 0.078412 0.00798 0.01685 2.2445329 6.922579 0.099389
Pare SSLD 0.134505 0.006293 0.118754 1.0147154 1.66322 0.079327

Fig. 4  Observed daily sediment 
(g/L) for the SSLD1 dataset
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Fig. 5  Observed daily sediment 
(g/L) for the SSLD2 dataset
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Tables 3 and 4 that the proposed BCWRVFL model shows 
better or comparable prediction performance. To portray the 
relationship between the observed and the predicted values, 
the observed versus prediction values of the models along 
with their R2 values are also shown in Figs. 6 and 7 for the 
SSLD1 and SSLD2 datasets, respectively. From Fig. 6 it 
is observed that the proposed BCWRVFL M showed bet-
ter R2 value (0.6724) compared to SVR, LSSVR, AHSVR, 
WTSVR, ELM R, ELM M, RVFL R, and RVFL M models. 
Moreover, from Fig. 7, one can notice that the proposed 
BCWRVFL R showed better R2 value (0.8013) compared to 
SVR, LSSVR, AHSVR, WTSVR, ELM R, ELM M, RVFL 

R, and RVFL M models. The following implications can be 
derived from Table 2, Table 3, Fig. 6, and Fig. 7:

a) It is noticeable from Table 3 that the BCWRVFL mul-
tiquard model shows best MAE, SSE/SST, NAE, and R 
values for SSLD1 dataset.

b) For SSLD2 dataset and SSLD3, the BCWRVFL multi-
quard model shows best NAE and R values, respectively.

c) Moreover, the proposed BCWRVFL radbas model shows 
best RMSE values for all datasets.

d) In addition to that, the BCWRVFL with radbas activa-
tion function shows the best SSE/SST and R values for 
SSLD2 and best NAE value for SSLD3.

Table 3  Performance of the models on the SSL time-series datasets

Dataset Evaluator SVR LSSVR AHSVR WTSVR ELM R ELM M RVFL R RVFL M BCWRVFL R BCWRVFL M

SSLD1 RMSE 0.0291 0.0328 0.0326 0.0313 0.128 0.1011 0.0338 0.0376 0.0273 0.035
MAE 0.0165 0.0181 0.018 0.0171 0.0271 0.0242 0.0213 0.0211 0.0187 0.0155
NAE 0.4102 0.4489 0.445 0.4242 0.5275 0.411 0.5283 0.5243 0.4637 0.3845
SSE/SST 0.4053 0.5139 0.4947 0.4696 0.5166 0.5211 0.5467 0.6772 0.5871 0.3583
R 0.7784 0.7705 0.7756 0.7711 0.738 0.7773 0.7476 0.7492 0.7176 0.82

SSLD2 RMSE 0.0383 0.0411 0.0418 0.0416 0.0852 0.0848 0.0379 0.0526 0.0315 0.0484
MAE 0.0148 0.0174 0.0168 0.0175 0.0173 0.0155 0.0178 0.0228 0.017 0.0195
NAE 0.4824 0.5672 0.544 0.5712 0.5415 0.4962 0.581 0.7454 0.5565 0.2854
SSE/SST 0.3412 0.3943 0.4069 0.4032 0.8337 0.8904 0.3347 0.6446 0.2311 0.4172
R 0.8106 0.7933 0.7871 0.8053 0.7523 0.8275 0.8464 0.7093 0.8951 0.7882

Pare SSLD RMSE 0.2062 0.2082 0.2107 0.2082 0.2258 0.2134 0.2702 0.2455 0.203 0.2072
MAE 0.1236 0.1323 0.1322 0.1298 0.0439 0.0422 0.1811 0.1627 0.1361 0.1394
NAE 0.5769 0.6175 0.6081 0.6061 0.6683 0.55 0.8457 0.7596 0.5107 0.5231
SSE/SST 0.8325 0.8491 0.8301 0.8495 1.2214 1.3967 1.4294 1.1799 1.0603 1.1037
R 0.4797 0.4466 0.4443 0.4553 0.4892 0.4946 0.3118 0.4487 0.5439 0.5762

Table 4  Ranks based on performance indicators for the reported models

Dataset Evaluator SVR LSSVR AHSVR WTSVR ELM R ELM M RVFL R RVFL M BCWRVFL R BCWRVFL 
M

SSLD1 RMSE 2 5 4 3 10 9 6 8 1 7
MAE 2 5 4 3 10 9 8 7 6 1
NAE 2 6 5 4 9 3 10 8 7 1
SSE/SST 2 5 4 3 6 7 8 10 9 1
R 2 6 4 5 9 3 8 7 10 1

SSLD2 RMSE 3 4 6 5 10 9 2 8 1 7
MAE 1 6 3 7 5 2 8 10 4 9
NAE 2 7 5 8 4 3 9 10 6 1
SSE/SST 3 4 6 5 9 10 2 8 1 7
R 4 6 8 5 9 3 2 10 1 7

Pare SSLD RMSE 2 4.5 6 4.5 8 7 10 9 1 3
MAE 3 6 5 4 2 1 10 9 7 8
NAE 4 7 6 5 8 3 10 9 1 2
SSE/SST 2 3 1 4 8 9 10 7 5 6
R 5 8 9 6 4 3 10 7 2 1
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Fig. 6  Observed versus pre-
dicted SSL of SVR, LSSVR, 
AHSVR, ELM radbas, ELM 
multiquard, RVFL radbas, 
RVFL multiquard, BCWRVFL 
radbas, and BCRVFL and 
BCRVFL multiquard in SSLD1 
dataset
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e) Fig. 6 shows the observed versus prediction plots of the 
reported models for SSLD1. One can notice that the 
proposed BCWRVFL multiquard model is highly cor-
related.

Like Fig. 6, in Fig. 7 where the observed versus predicted 
values are shown for SSLD2, the proposed models show 
high correlation.

Moreover, the autocorrelation (ACF) as well as par-
tial ACF functions are also presented in Figs. 8 and 9 
for SSLD1 and SSLD2, respectively. The partial ACF 
removed the dependence on intermediate elements. 
Partial ACF identified how strongly the SSL data is 
correlated.

The model performances based on different indicators 
are plotted in Figs. 10 and 11 for SSLD1 and SSLD2 
datasets, respectively. It can be noticed from Fig. 10 
that the proposed BCWRVFL M shows the best NAE, 
SSE/SST, MAE, and R values while the BCWRVFL R 
shows the best RMSE value. Moreover, from Fig. 11 one 
can conclude that the proposed BCWRVFL R shows the 

Fig. 7  Observed versus predicted SSL of SVR, LSSVR, AHSVR, 
ELM radbas, ELM multiquard, RVFL radbas, RVFL multiquard, 
BCWRVFL radbas, and BCWRVFL multiquard in SSLD2 dataset

◂

Fig. 8  Autocorrelation and partial autocorrelation function for SSLD1

Fig. 9  Autocorrelation and partial autocorrelation function for SSLD2

Page 11 of 14    966Arab J Geosci (2022) 15: 966



1 3

best NAE score, while the BCWRVFL M shows the best 
RMSE, SSE/SST, and R values.

Experimental analyses on a real‑world time‑series 
dataset

Moreover, to further check the applicability of the pro-
posed BCWRVFL model on real-world TS datasets, we 
have conducted an experiment on a TS dataset named 
“POPULATION,” which is the data of the total population 
in India during the time period of 1961 to 2019. The data-
set is downloaded from https:// data. world bank. org/ and 
has been recently used by Hazarika and Gupta (2020). The 
experimental results of BCWRVFL are compared with the 
traditional SVR, LSSVR, AHSVR, WTSVR, ELM, and 

RVFL models. The results are portrayed in Table 4. It can 
be noted that the BCWRVFL shows excellent prediction 
performance for the “POPULATION” dataset. Table 5.

Conclusion

A novel hybrid model was developed and used to predict 
the SSL in this study. It is well known that the river SSL 
datasets contain non-stationary components, making it 
difficult to decide using a single method. This prompted 
us to propose a hybrid prediction model. The newly pro-
posed algorithm eliminates the limitations of traditional 
prediction models by incorporating the benefits of two 

Fig. 10  Visualization of the 
evaluators for the SSLD1 
dataset
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Fig. 11  Visualization of the 
evaluators for the SSLD2 
dataset
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Table 5  Prediction performance of the reported models on “POPULATION” dataset (best result is bolded)

Indicators SVR LSSVR AHSVR WTSVR ELM R ELM M RVFL R RVFL M BCWRVFL R BCWRVFL M

RMSE 0.0476 0.0148 0.047 0.0209 0.0486 0.0264 0.0038 0.0046 0.0036 0.0023
MAE 0.0427 0.009 0.0367 0.0184 0.0014 0.0062 0.0031 0.0038 0.003 0.0013
NAE 0.0491 0.0104 0.0419 0.0212 0.078 0.0368 0.0036 0.0043 0.0034 0.002
SSE/SST 0.0761 0.3702 0.3287 0.0587 0.0695 0.5198 0.0019 0.0028 0.0019 0.0007
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distinct models, namely, the maximal overlap discrete 
wavelet transform (MODWT) and the powerful RVFL. 
The boundary-corrected MODWT is combined for this 
purpose to create the hybrid model known as BCWRVFL. 
Experiments are performed on two SSL datasets that are 
accumulated from the Tawang Chu river, India, and an 
SSL dataset that is collected from the Pare river, India. 
The proposed BCWRVFL models are compared with SVR, 
LSSVR, HSVR, WTSVR, ELM, and RVFL models and 
evaluated using five performance indicators. The experi-
mental outcomes reveal the importance and potential of 
the BCWRVFL model for SSL estimation as it shows 
close agreement with the observed records. The proposed 
BCWRVFL model can be applied on several real-world 
time-series applications such as wind speed prediction, 
price forecasting, energy consumption prediction, and oth-
ers. However, the main limitation of the study is that we 
consider only the SSL data. In the future, some other cli-
matological parameters like rainfall intensity, wind speed, 
and evaporation are needed to be considered along with 
the SSL values. It is suggested that the model be tested 
in areas/countries with more seasons and variability in 
weather conditions in the future to determine its predictive 
strength. Moreover, it would be fascinating to develop a 
wavelet-based deep RVFL network for SSL prediction in 
the future.

Acknowledgements We acknowledge the help of NHPC LTD, Tawang 
Basin Project for providing us the datasets.

Data Availability The datasets that have been used in this study are 
available from co-author on reasonable request.

Declarations 

Conflict of interests Authors declare that they have no competing in-
terests.

References

Aksoy H, Mahe G, Meddi M (2019) Modeling and practice of ero-
sion and sediment transport under change. Water 11(8):1665

Al-Musaylh MS, Deo RC, Li Y (2020) Electrical energy demand 
forecasting model development and evaluation with maximum 
overlap discrete wavelet transform-online sequential extreme 
learning machines algorithms. Energies 13(9):2307

Anand A, Beg M, Kumar N (2021) Experimental studies and analysis 
on mobilization of the cohesionless sediments through alluvial 
channel: a review. Civil Eng J 7(5):915–936

Babanezhad, M., Behroyan, I., Marjani, A., & Shirazian, S. (2020). 
Artificial intelligence simulation of suspended sediment load 
with different membership functions of ANFIS. Neural Comput 
Appl 1–15.

Balasundaram S, Gupta D (2016) On optimization based extreme 
learning machine in primal for regression and classification 

by functional iterative method. Int J Mach Learn Cybern 
7(5):707–728

Balasundaram S, Meena Y (2019) Robust support vector regres-
sion in primal with asymmetric Huber loss. Neural Process Lett 
49(3):1399–1431

FB Banadkooki M Ehteram AN Ahmed FY Teo M Ebrahimi CM 
Fai …A El-Shafie 2020 Correction to: suspended sediment load 
prediction using artificial neural network and ant lion optimiza-
tion algorithm Environ Sci Pollut Res 27 30 38117 38119

Bašta M (2014) Additive decomposition and boundary conditions in 
wavelet-based forecasting approaches. Acta Oeconomica Pra-
gensia 22(2):48–70

Cao F, Ye H, Wang D (2015) A probabilistic learning algorithm for 
robust modeling using neural networks with random weights. 
Inf Sci 313:62–78

Dai W, Chen Q, Chu F, Ma X, Chai T (2017) Robust regularized 
random vector functional link network and its industrial applica-
tion. IEEE Access 5:16162–16172

Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V (1997) Sup-
port vector regression machines. Adv Neural Inf Process Syst 
9:155–161

M Ehteram AN Ahmed SD Latif YF Huang M Alizamir O Kisi …A 
El-Shafie 2021 Design of a hybrid ANN multi-objective whale 
algorithm for suspended sediment load prediction Environ Sci 
Pollut Res 28 2 1596 1611

Gao, R., Du, L., Yuen, K. F., & Suganthan, P. N. (2021). Walk-
forward empirical wavelet random vector functional link for 
time series forecasting. Appl Soft Comput 107450.

Ghanbarynamin S, Zaremehrjardy M, Ahmadi M (2020) Application 
of soft-computing techniques in forecasting sediment load and 
concentration. Hydrol Sci J 65(13):2309–2321

Gumgum F, Guney MS (2021) Effect of sediment feeding on live-bed 
scour around circular bridge piers. Civil Eng J 7(5):906–914

Gupta D, Hazarika BB, Berlin M (2020) Robust regularized extreme 
learning machine with asymmetric Huber loss function. Neural 
Comput Appl 32(16):12971–12998

Gupta D, Hazarika BB, Berlin M, Sharma UM, Mishra K (2021) 
Artificial intelligence for suspended sediment load prediction: 
a review. Environ Earth Sci 80(9):1–39

Hazarika, B. B., & Gupta, D. (2020). Modelling and forecasting of 
COVID-19 spread using wavelet-coupled random vector func-
tional link networks. Appl Soft Compu 106626.

Hazarika BB, Gupta D, Berlin M (2021) A coiflet LDMR and coiflet 
OB-ELM for river suspended sediment load prediction. Int J 
Environ Sci Technol 18(9):2675–2692

Hazarika, B. B., Gupta, D., & Berlin, M. (2020a). A comparative 
analysis of artificial neural network and support vector regres-
sion for river suspended sediment load prediction. In First Int 
Confer Sustain Technol Comput Intell (pp. 339–349). Springer, 
Singapore.

Hazarika BB, Gupta D, Berlin M (2020b) Modeling suspended sedi-
ment load in a river using extreme learning machine and twin 
support vector regression with wavelet conjunction. Environ Earth 
Sci 79:1–15

Henley WF, Patterson MA, Neves RJ, Lemly AD (2000) Effects of 
sedimentation and turbidity on lotic food webs: a concise review 
for natural resource managers. Rev Fish Sci 8(2):125–139

Huang GB, Chen L, Siew CK (2006) Universal approximation using 
incremental constructive feedforward networks with random hid-
den nodes. IEEE Trans Neural Netw 17(4):879–892

Huang, G. B., Zhou, H., Ding, X., & Zhang, R. (2011). Extreme learn-
ing machine for regression and multiclass classification. IEEE 
Trans Syst, Man Cybernet Part B (Cybernetics), 42(2), 513–529

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004, July). Extreme learning 
machine: a new learning scheme of feedforward neural networks. 

Page 13 of 14    966Arab J Geosci (2022) 15: 966



1 3

In 2004 IEEE Int Joint Confer Neural Netw (IEEE Cat. No. 
04CH37541) (Vol. 2, pp. 985–990). IEEE.

Khan MYA et al (2019) Artificial neural network simulation for predic-
tion of suspended sediment concentration in the River Ramganga, 
Ganges Basin. India Int J Sediment Res 34(2):95–107

Lafdani EK, Nia AM, Ahmadi A (2013) Daily suspended sediment 
load prediction using artificial neural networks and support vector 
machines. J Hydrol 478:50–62

Liu, Q., He, Q., & Shi, Z. (2008, May). Extreme support vector 
machine classifier. In Pacific-Asia Confer Knowl Discov Data 
Min (pp. 222–233). Springer, Berlin, Heidelberg.

Maheswaran R, Khosa R (2012) Comparative study of different wave-
lets for hydrologic forecasting. Comput Geosci 46:284–295

Maslova I, Ticlavilca AM, McKee M (2016) Adjusting wavelet-based 
multiresolution analysis boundary conditions for long-term 
streamflow forecasting. Hydrol Process 30(1):57–74

Melesse AM et al (2011) Suspended sediment load prediction of 
river systems: an artificial neural network approach. Agric Water 
Manag 98(5):855–866

Meshram SG, Safari MJS, Khosravi K, Meshram C (2021) Iterative 
classifier optimizer-based pace regression and random forest 
hybrid models for suspended sediment load prediction. Environ 
Sci Pollut Res 28(9):11637–11649

Mohammadi B, Guan Y, Moazenzadeh R, Safari MJS (2021) Imple-
mentation of hybrid particle swarm optimization-differential evo-
lution algorithms coupled with multi-layer perceptron for sus-
pended sediment load estimation. CATENA 198:105024

Mohanta, N. R., Biswal, P., Kumari, S. S., Samantaray, S., & Sahoo, A. 
(2021). Estimation of sediment load using adaptive neuro-fuzzy 
inference system at Indus River Basin, India. In Intell Data Eng 
Anal (pp. 427–434). Springer, Singapore.

Nourani, V., Gokcekus, H., & Gelete, G. (2021). Estimation of sus-
pended sediment load using artificial intelligence-based ensemble 
model. Complexity, 2021.

Panahi, F., Ehteram, M., & Emami, M. (2021). Suspended sediment 
load prediction based on soft computing models and Black Widow 
Optimization Algorithm using an enhanced gamma test. Environ 
Sci Pollut Res 1–21.

Panda R, Padhee SK, Dutta S (2014) Glof study in Tawang River Basin, 
Arunachal Pradesh, India. Int Arch Photogramm Remote Sens 
Spat Inf Sci 40(8):101

Pao YH, Takefuji Y (1992) Functional-link net computing: theory, 
system architecture, and functionalities. Computer 25(5):76–79

Pao YH, Park GH, Sobajic DJ (1994) Learning and generalization 
characteristics of the random vector functional-link net. Neuro-
computing 6(2):163–180

Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time 
series analysis (Vol. 4). Cambridge university press.

Peterson K et al (2018a) Suspended sediment concentration estima-
tion from landsat imagery along the Lower Missouri and Middle 
Mississippi Rivers using an extreme learning machine. Remote 
Sens 10(10):1503

Peterson KT, Sagan V, Sidike P, Cox AL, Martinez M (2018b) Sus-
pended sediment concentration estimation from landsat imagery 
along the lower Missouri and middle Mississippi Rivers using an 
extreme learning machine. Remote Sens 10(10):1503

Quilty J, Adamowski J (2018) Addressing the incorrect usage of wave-
let-based hydrological and water resources forecasting models for 
real-world applications with best practices and a new forecasting 
framework. J Hydrol 563:336–353

Rajaee T, Jafari H (2020) Two decades on the artificial intelligence 
models advancement for modeling river sediment concentration: 
State-of-the-art. J Hydrol 588:125011

Ren Y, Suganthan PN, Srikanth N, Amaratunga G (2016) Random vec-
tor functional link network for short-term electricity load demand 
forecasting. Inf Sci 367:1078–1093

Sahoo, A., Barik, A., Samantaray, S., & Ghose, D. K. (2021). Pre-
diction of sedimentation in a watershed using RNN and SVM. 
In Commun Softw Netw (pp. 701–708). Springer, Singapore.

SQ Salih A Sharafati K Khosravi H Faris O Kisi H Tao …ZM Yaseen 
2020 River suspended sediment load prediction based on river 
discharge information: application of newly developed data min-
ing models Hydrol Sci J 65 4 624 637

Sharghi E, Paknezhad NJ, Najafi H (2021) Assessing the effect of 
emotional unit of emotional ANN (EANN) in estimation of the 
prediction intervals of suspended sediment load modeling. Earth 
Sci Inf 14(1):201–213

Shi Q, Katuwal R, Suganthan PN, Tanveer M (2021) Random vector 
functional link neural network based ensemble deep learning. Pat-
tern Recogn 117:107978

Suykens JA, Vandewalle J (1999) Least squares support vector machine 
classifiers. Neural Process Lett 9(3):293–300

Talebkeikhah M, Sadeghtabaghi Z, Shabani M (2021) A comparison 
of machine learning approaches for prediction of permeability 
using well log data in the hydrocarbon reservoirs. J Human Earth 
Future 2(2):82–99

Tang L, Wu Y, Yu L (2018) A non-iterative decomposition-ensemble 
learning paradigm using RVFL network for crude oil price fore-
casting. Appl Soft Comput 70:1097–1108

Wang WC, Chau KW, Cheng CT, Qiu L (2009) A comparison of per-
formance of several artificial intelligence methods for forecasting 
monthly discharge time series. J Hydrol 374(3–4):294–306

Zhang L, Suganthan PN (2016a) A comprehensive evaluation of ran-
dom vector functional link networks. Inf Sci 367:1094–1105

Zhang L, Suganthan PN (2016b) Visual tracking with convolutional 
random vector functional link network. IEEE Trans Cybern 
47(10):3243–3253

966   Page 14 of 14 Arab J Geosci (2022) 15: 966


	MODWT—random vector functional link for river-suspended sediment load prediction
	Abstract
	Introduction
	Literature review

	Materials and methods
	The RVFL
	The MODWT

	Proposed boundary-corrected wavelet random vector functional link (BCWRVFL)
	The data prediction problem and its solution

	Experimental setup and dataset description
	Results and analysis
	Experiment on SSL datasets
	Experimental analyses on a real-world time-series dataset

	Conclusion
	Acknowledgements 
	References


