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Abstract
Water serves as an essential source for producing hydrological energy and sustainable irrigation systems, and therefore, 
it should be managed effectively. Attempts to manage it through conventional approaches are gradually becoming less 
effective due to the growing population and globally changing weather conditions. Therefore, this research investigates 
the suitability of support vector machine (SVM), M5P, Gaussian process (GP), random forest (RF), and multiple lin-
ear regression (MLR) methods for modeling of infiltration rate of the soil as effective and efficient substitute methods 
and their performances were compared with the empirical model: Kostiakov model. The performance of these models 
was analyzed by looking into performance measuring methods including the Nash–Sutcliffe efficiency coefficient (E), 
coefficient of correlation (R), and the root-mean-squared error (RMSE). The field dataset for this model contained 126 
observations, 70% for the purpose of training and the remaining 30% for testing. In principle, it can be derived that the 
RF-based models perform better than in comparison to Nash–Sutcliffe model efficiency equal to 0.9783 and 0.9223 
for the training and testing stages, respectively. Additionally, another worthy observation is that the GP, SVM, MLR, 
and M5P models give a good prediction performance as well, in comparison to the Kostiakov model which is inferior. 
According to sensitivity analysis, we are able to conclude that the most important parameter in forecasting the soil 
infiltration rate is time (t).
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Introduction

The infiltration is the process by which water is entered 
into the earth's surface (Hillel and Baker 1988, Barua 
et  al. 2021). It is one of the hydrological cycle’s 
dynamic processes. The texture of the soil, moisture 
content, field density, humidity, precipitation intensity, 
and impurity variety all have an impact on the soil’s 
infiltration rate. The amount of infiltrated water into 
the soil as a result of rainfall or irrigation is impor-
tant in water resource management (Sampson et  al. 
2021, Bouatia et al. 2020, Angelaki et al. 2013, Ostad 
et  al. 2017). For accurate surface runoff forecasts, 

the knowledge of infiltration rates is very important 
(Sihag et al. 2017a). The hydraulic qualities of the soil 
must be considered while designing drainage systems 
(Brooks and Corey 1964). Infiltration characteristic is 
one of the most significant considerations in determin-
ing the flooding situation at the catchment level (Bhave 
and Sreeja 2013). The ability of the soil to hold water 
varies depending on the texture and physical proper-
ties of the soil. Sandy soil has a faster infiltration rate 
and a lower water land capacity than clayey soil due 
to its larger pore size (Smith 2006). Additionally, sur-
face runoff estimation is also important for hydraulic 
structure design and water resource development (Al-
Ghobari et al. 2020, Islam and Hasan 2020). Ground-
water regenerates and surface runoff is distinguished by 
the infiltration process from precipitation or irrigation 
water (Haghighi et  al. 2011). The importance of the 
infiltration process in water resource engineering has 
been a good reason to encourage researchers and water 
resource scientists to construct several models (e.g., 
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Sepahvand et al. 2021; Singh et al. 2019, Ostad et al. 
2020, Holtan 1961, Singh and Yu 1990, Kostiakov 1932, 
Horton 1941). The three types of infiltration models are 
empirical models, physical models, and semi-empirical 
models. Mishra et al. (2003) has observed 14 unique 
infiltration models. Information was collected in the 
lab, and field studies were performed in India and the 
United States. The semi-empirical models (Singh-Yu, 
Holtan, and Horton) outperformed the other models. 
All three of these models have site-specific perfor-
mance, but none of the models so far have been flexible, 
whereas Sihag et al. (2017a) compared four infiltration 
models (Kostiakov, modified Kostiakov, SCS, and novel 
model)  for the NIT Kurukshetra campus in Haryana. 
The comparison showed that the data from experien-
tial infiltration aligns better with the proposed model. 
Additionally, some researchers have also used studies 
in the area of soft computing and found success (Sihag 
et al. 2017a, b, c; Pandhiani et al. 2020, Pandhiani 2022, 
Sihag et al. 2017c; Rahmati 2017; Siddiqi et al. 2021).

Soft computing methods such as SVM, Gaussian pro-
cess, M5 model tree, and random forest have been incor-
porated in civil and hydraulics applications in recent years 
and found to be very successful (Singh et al. 2017, 2021; 
Tiwari et al 2017). In the search of finding out the potential 
of soft computing techniques, Singh et al. (2021) examined 
that random forest is the most accurate technique in pre-
dicting the infiltration rate of the soil. Additionally, Singh 
et al. (2021) also examine a technique for the prediction of 
cumulative infiltration and infiltration rate bringing light to 
tree-based-soft computing. The research concludes that the 
random forest is the technique which is the superior out of 
Random Tree and M5P tree. However, Singh et al. (2019) 
managed to use soft computing techniques on a dataset of 
132 observations which led to the conclusion that the M5P 
model tree is the best suitable model which can be used 
in the prediction of infiltration rate. Even earlier, four soft 
computing techniques were explored to predict infiltration 
rate by Sihag et al. 2018, the Gaussian process (GP), gene 
expression programming (GEP), and generalized neural 
network (GRNN). As a result of the comparison that was 
made, out of the four soft computing techniques, ANN 
achieved the first rank (correlation coefficient value 0.9816 
and 0.9133 for the preparing and testing data respectively). 
SVM is the most accurate soft computing technique in the 
prediction of infiltration rate according to Vand et al.’s 
(2018) performed experiments in Iran.

To summarize, there is a substantial quantity of research 
on soil infiltration rates in literature, but just a few pub-
lications examine soft computing approaches utilized in 
making infiltration estimations. As a result, the primary 
objective of this article is to examine the possibilities of 
artificial intelligence methods (SVM, M5P, GP, and RF) 

in predicting infiltration rates. The efficiency of these arti-
ficial intelligence techniques was also compared to those 
of traditional methods.

Support vector machine

SVM is a type of supervised machine learning technique that 
may be used to address problems like classification and regres-
sion; however, it is primarily used to solve classification prob-
lems. Based on statistical machine learning theory, in recent 
years, the most useful tool for forecasting was introduced by 
Boser et al. (1992).

The SVM method’s main concept is to employ a lin-
ear platform to create nonlinear class borders, which are 
then used to show the input image in a high-dimensional 
feature space via nonlinear mapping. In the latent space, 
the linear model developed in the new space will reflect a 
nonlinear decision boundary. SVM is a learning method 
for classification and regression that aims to reduce clas-
sification and fitness function errors in general. In contrast 
to empirical risk minimization, the SVM is based on a 
structural risk minimization training technique. In 1998, 
Vapnsik presented a concise overview of the theory of sup-
port vector regression.

The purpose of SVR is to evaluate a g(P) function for train-
ing patterns (P) that is as far away from the training target 
values as possible (Q). To put it another way, SVR is a model 
for fitting a tube with a radius of data, resulting in the test 
dataset having the least amount of error. Assume that when 
a training set (S) is compared to its projection values, the fol-
lowing occurs:

where Pi is an n-dimensional vector with each element cor-
responding to a different decision variable. In the above 
question, m represents the number of samples, and Qi is the 
equivalent output variable. According to Vapnik, to decrease 
the test error, the term displaying the complexity of a group 
of functions must be minimized (1). As a result, the SVR 
technique uses linear functions in the classical sense such 
as g(P) = w. N + b (i.e., b and w are bias value and weight 
vectors, respectively) for the forecasting.

The predictions differ from the measurements statistically, 
and in some circumstances, error levels less than � are impos-
sible to consider. In conclusion, the deviation from the slack 
variable ( �+

i
 and �−

i
 ), known as � , is defined. The following 

Eq. (2) is then used to minimize the error value and maxi-
mum margin necessitates the elimination of the weight vector's 
norm:

(1)
S = {(P1,Q1), (P2,Q2),………… .(Pn,Q)},Q ∈ IRn,P ∈ IR

Testingerror ≤ Trainingerror + Completexityofsetofmodels
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where C adjusts the deviation error more than � and the 
radius � defines the estimated tube range, where both, C and 
� , are above zero.

Gaussian process regression

The Gaussian process regression method shows how to gen-
eralize nonlinear and compound function mapping contained 
in data sets using a probabilistic, multivariate supervised 
learning technique. The GP regression is also commonly 
used in other engineering and scientific fields, where it is 
sometimes referred to as kriging, especially in cases where 
there are not many parameters. Originally, the method was 
developed to interpolate sparse data points between two 
dimensions in geostatistics. Now, it is widely used in two- 
and three-dimensional spatial mapping in the geological and 
meteorological fields. Recent developments in the commu-
nity of statistics and machine learning have used this method 
and those similar to it to solve higher order problems. In 
GPR models, training data is used to predict new input based 
on probabilistic models. In order to model the outputs, y, in 
terms of input parameters, x, we use Eq. (4), where h(x) and 
β are a set of basis functions, and f(x) is a Gaussian process 
with zero mean and covariance function k(x, x′).

Basis functions are obvious functions of parameters at a 
given point and are most commonly polynomials, whereas 
covariance functions are relationships between the required 
parameter point and training data away from the basis func-
tion Kuss (2006).

The basis function represents the exact relationship 
between the parameters at one point, which is usually a 
simple polynomial, while the covariance function defines 
the relation between the required parameter point and the 
training data points away from the basis function. There is 
zero mean in the covariance function, and it varies around 
the values of the parameters derived from the basis func-
tion. To determine the model parameters, the model must 
be fitted to the data. These are the coefficients of the basis 
function, the covariance function, and the noise level in the 
data Rasmussen and Williams (2006). The GP regression 
model, according to Rasmussen and Williams (2006), works 

(2)Minimize ∶
1

2
(w.w) + C

∑n

i=1
(�+

i
and�−

i
)

(3)

Constraints ∶

⎧
⎪⎨⎪⎩

w.Mi + a − Ni ≤ � + �+
i
i = 1, 2, 3,…… , n

Ni −
�
w.Mi + a

�
≤ � + �−

i
i = 1, 2, 3,…… , n

�+
i
≥ 0,�−

i
≥ 0i = 1, 2, 3,…… , n

(4)y = h(x)T� + f (x) ∼ GP(0, k(x, x
�

))

because adjoining observations can communicate evidence 
about each other. It is the process of defining a prior across 
function space in real-time. The Gaussian distribution’s 
mean and covariance are both vectors and matrices, and the 
Gaussian function is just over the function. The predictive 
distribution that is equal to the test input is recognized by 
the GP regression model. The GP technique is a set of ran-
dom variables with a joint multivariate Gaussian distribution 
for any finite number. Consider P�Q denote the input and 
output domains, respectively, from which n pairs ( Pi,Qi) are 
distributed independently and identically. For regression, 
letN ⊆ ℜ ; then, a GP on � is defined by a mean function 
� ∶ � → ℜ and a covariance functionk ∶ � × � → ℜ . 
In addition, Kuss (2006) is a good resource for additional 
information on GP regression with various covariance 
functions.

Model tree (M5P)

Model trees were first proposed by Quinlan (1992), and 
then, Wang (1997) rebuilt and enhanced the concept in 
the M5P system. An M5P model tree is an effective learn-
ing strategy for predicting real values. The large datasets 
benefit from model trees. The M5P model tree algorithm 
starts by recursively dividing the instance space to cre-
ate a regression tree. The separating parameter is chosen 
to reduce intra-subset inconsistency in the values as they 
proceed from root to branch to node. The inconsistency 
is evaluated by determining the predicted error decrease 
as a result of testing each characteristic at a similar node, 
and then via the branch, derive the node from the root 
using the value of standard deviation. The feature with the 
largest anticipated error decline is chosen. When the total 
number of cases reaching a node is relatively low, or only 
a few other cases remain, the unbearable comes to an end. 
Equation (5) is used to calculate the standard deviation 
reduction (SDR):

where P is fixed of patterns that enter the node, Pi is the sub-
section of patterns with the jth prospective set conclusion, 
and the standard deviation is denoted by sd (Wang 1997).

Random forest

The random forests, also known as random decision 
forests, are a form of collective learning method for 
classification, a regression that uses a combination 
of tree estimators to create each tree, with each tree 

(5)SDR = sd(P) −
∑ |||Pj

|||
|P| sd

(
Pj

)

Page 3 of 11    1068Arab J Geosci (2022) 15: 1068



1 3

being produced using a random vector that is indepen-
dently tested from the input vector. The tree estimator 
applies arbitrary numerical values to the class labels 
of the random forest classifier in regression (Breiman 
1999). Random forest regression is also utilized in 
this study to expand a tree by employing an arbitrar-
ily chosen variable or a combination of variables at 
each node. There is a tree estimator’s plan that necessi-
tates the selection of a variable choice metric. Various 
techniques to deal with the variable’s choice for tree 
acceptance are proposed in the records, with the major-
ity explicitly giving a quality metric to the variable. 
The information gain ratio criteria and the Gini index 
are the most commonly used variable choice measures 
in tree induction. (Quinlan 1992; Breiman et al. 1984).

Variables at each node (n) need to be recognized to con-
struct a tree along with the total number of trees that are 
to be built (k); Breiman (1999) provided these two user-
defined parameters for random forest regression. Only a 
certain number of variables can be established at each node 
in order to obtain the best split. In conclusion, it is up to 
the consumer to define the number of trees (k) for which 
the random forest regression has to be developed and the 
output values of the random forest–based regression are 
numeric.

Empirical models

Using the least-square technique on training data sets, 
regression coefficients were derived for the Kostiakov and 
multilinear regression models that are known as empirical 
models.

Multiple linear regression

MLR is a well-known technique for predicting the values 
of each independent variable. MLR also calculates the rel-
evance of a variable by looking at the connection between 
infiltration and environmental variables. Multiple predictor 
parameters are evaluated to MLR. The structure of the con-
ventional MLR model is:

where M is the standard value expressed as a function of the 
number of independent parameters, and n is the number of 
independent parameters a1, a2, a3, …, an, in which the values 
of coefficients, c0, c1, c2, c3, …, cn, are unknown. The least-
square method (LSM) is used to evaluate these values, which 
correspond to the actual performance.

(6)M = c0a1
c1a2

c2a3
c3a4

c4 ……………… an
cn

Kostiakov model

The following observed model was proposed by Kostiakov 
(1932) for estimating the soil infiltration rate:

In the above mentioned Eq. (7), where t is denoted by the 
time of infiltration (T), g(t) is the rate of infiltration at time 
t(LT − 1), and p and q are dimensionless observed constants.

Methodology and data set

All of the experiments were carried out in a hydraulics labora-
tory at the National Institute of Technology in Kurukshetra, 
India, using a mini-disk infiltrometer. The mini-disk infiltrom-
eter consists of two chambers. The first is a reservoir of water, 
and the second is a bubble. Through a Mariotte tube, both are 
connected. An ideal water pressure head of 0.05 to 0.7 kPa can 
be achieved with this tube. A sintered steel disk is incorporated 
into the bottom part of the instrument, which has a diameter 
of 4.5 cm and a thickness of 3 mm. Both chambers are filled 
with water, so water moves into the soil from the flat surface. 
The reservoir chamber was measured at specific intervals by 
recording the amount of water in it. The soil used to calcu-
late the infiltration rate contains varying amounts of sand (S), 
clay (C), and fly ash (F) (Fa). A proctor of volume 1000 cm3 
was selected for the compaction of samples. All of the initial 
requirements, such as moisture content (Mc) and dry density, 
were planned ahead of time. The parameters of the soil sam-
ples are shown in Tables 1 and 2, as well as data on how soil 
samples are mixed and their moisture contents.

(7)g(t) = pt−q

Table 1   Properties of the material selected for experimentation

Properties S Fa C

Specific gravity 2.48 2.07 1.59
D50 0.438 0.180
C
u

3.1290 2.7333
Color White Gray Brown-

ish 
yellow

Table 2   Information of the soil samples with their moisture content

S (%) C (%) Fa (%) Mc (%)

45 45 10 2,5,10,15,20
40 40 20 2,5,10,15,20
35 35 30 2,5,10,15,20
30 30 40 2,5,10,15,20
25 25 50 2,5,10,15,20
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Dataset

In this study, the experiments were held in the NIT 
Kurukshetra laboratory, where 126 datasets were pro-
duced. According to our definitions, 88 datasets were 
randomly selected from a total of 126 for model training, 
while the leftover 38 datasets were selected for model 
testing. The input dataset includes time (t) in seconds, 
clay (C) in percent, sand (S) in percent, fly ash (Fa) in 
percent, bulk density (Bd) in gm/cc, and moisture con-
tent (Mc) in percent, while the output dataset includes 
infiltration rate (g(t)) in mm/h where Table 3 details the 
characteristics of the experimental data, where descrip-
tive statistics were for testing the data validity. The pro-
cess of model construction entails splitting data into two 
sections expending the trial-and-error technique. The 
complete data was split into two categories: training 
(70%) and testing (30%). The first 70% of data from the 
entire data set were used to train the network to obtain 
the parameters model, and the remaining 30% was used 
for testing purposes to verify the descriptive statistics. 
Table 3 shows descriptive statistics for the infiltration 
rate and six subsets, such as mean (μ), standard deviation 
(Sx), the coefficient of variation (Cvx), skewness coeffi-
cient (Csx), and range (maximum and minimum values). 
It seems from the table observed infiltration rate shows a 
highly skewed distribution (Csx = 2.12 m2/h). In the train-
ing infiltration rate data, the mean, range information 
(5.77 m2/h-0.541 m2/h-30.659 m2/h) is higher than the 
testing stage data (4.82 m2/h-0.573 m2/h-24.604 m2/h), 
respectively. Table 3 also shows that the training data-
set has more uncertainty and variability than the testing 

dataset, based on the result of standard deviation (Sx), 
variance, and skewness coefficient. The study’s flow-
chart is shown in Fig. 1.

The accuracy of the proposed model

The strength of the proposed models was measured 
using three well-known performance measuring meth-
ods, the coefficient of correlation (R), root-mean-
square error (RMSE), and Nash–Sutcliffe model effi-
ciency. Coefficient (E) values were calculated using 
training on the testing dataset. In both modeling and 
forecasting, the criteria for judging the best model are 
based on minimum RMSE values and the maximum R 
and E values.

where in the above equation, n is nuber of observation, p 
is the value of the independent variable (observed value), 
and q is the value of a dependent variable (predicted value).

(8)
R =

∑�
p − p

��
q − q

�
��∑�

p − p
�2��∑�

q − q
�2�

(9)RMSE =

�
1

n

∑n

i=1
(pi − qi)

2

(10)E = 1 −

∑n

i=1
(pi − qi)

2

∑n

i=1
(pi − q)

2

Table 3   Pertinent information 
for infiltration rate and six 
subsets data

Variable Units Range μ Sx Cvx Csx

Training data set
  t sec 87.62–9916.11 2163.18 2128.46 0.98 1.49
  C % 25–45 34.15 7.24 0.21 0.14
  S % 25–45 34.15 7.24 0.21 0.14
  Fa % 10–50 31.705 14.48 0.46  − 0.14
  Bd gm/cc 1.37–1.91 1.63 0.14 0.09  − 0.09
  Mc % 2–20 9.99 6.17 0.62 0.23
  f(t) mm/h 0.541–30.659 5.77 6.19 1.07 2.12

Testing data set
  t s 92–8568.19 2282.03 2036.12 0.89 1.46
  C % 25–45 33.46 7.27 0.22 0.30
  S % 25–45 33.46 7.27 0.22 0.30
  Fa % 10–50 33.08 14.54 0.44  − 0.30
  Bd gm/cc 1.37–1.90 1.628 0.147 0.09  − 0.11
  Mc % 2–20 10.54 6.84 0.65 0.17
  f(t) mm/h 0.573–24.604 4.82 4.77 0.99 2.31
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Implementation of machine learning 
methods

As for performance evaluation parameters, three standard 
statistical measures were selected: R, RMSE, and E. These 
measures judged the accuracy of the machine learning 
models and the Kostiakov model. The primary parameters 
were tested manually several times to determine the optimal 
value. The model’s better prediction accuracy is indicated by 
higher values of R, E, and lower values of RMSE. Random 
forest regression involves growing the trees (k) in the for-
est and selecting the features or variables (m) to be applied 
at each node to create each tree. Model calibration in M5P 

is done by changing the value of the number of instances 
allowed at each node (m). There are multiple kernel func-
tions in GP and SVM, deciding which one is best is also a 
research subject on its own. Nevertheless, in this research, 
the radial basis kernel (RBF) and the Pearson VII function 
kernel (PUK) are used.

1.	 RBF = (e−�|pi−qj|2)
2.	

PUK = 

�
1∕

�
1 +

�
2
�

‖pi − qj‖
2√

2(1∕�) − 1 ∕�

�2
���

,

Fig. 1   Flow chart of the 
research
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The above kernel function specified well-known param-
eters like � , � and � , where C is a parameter on regulariza-
tion and the error-insensitive zone’s size � are needed for 
SVM, while the amount of noise is required for GP regres-
sion. Both GP regression and SVR used the same kernel-
specific parameters. Table 4 shows the best user-defined 
parameter values for different approaches.

Result and discussion

The Kostiakov model and MLR are both experiential mod-
els. Using the least-square methodology, the training data-
set was used to drive regression equation coefficients in the 
Kostiakov and MLR models.

Kostiakov model:

MLR:

A comparative analysis of experimental results with the 
results obtained from the Kostiakov model is described in 
Fig. 2. The Kostiakov model produces poor forecasts, as 
shown in Fig. 2. In contrast to the measured and predicted 
infiltration rate values obtained from the model MLR for 
training and testing, samples are depicted in Fig. 3. Predicted 
infiltration rate values obtained from the model MLR is in 
closer agreement with the experimentally observed infiltra-
tion rate values.

Comparisons between the actual infiltration rate and the 
predictions obtained from different artificial intelligence-
based models for training and testing samples are depicted in 
Figs. 4, 5, 6 and 7. According to these figures, the predicted 
infiltration rate values obtained from artificial intelligence-
based models are in good agreement with the, experimen-
tally obtained, actual infiltration rate values.

Table 5 shows that the RF model outperforms other mod-
els during the training and testing period. SVM and GP-
based models work well for the training period but in the 

(11)f (t) = 900.23t−0.7958

(12)f (t) = 4.112t−0.615C0.74S−0.064Fa
0.962Bd

−4.75Mc
0.39

testing period, their performance is poor. Figure 7 indicates 
that the M5P model predicts some negative values in the 
training and testing period. Table 5 suggests that MLR also 
works better than SVM, GP, M5P, and Kostiakov models. 

Table 4   User-defined parameters SVM, GP, M5P, and random forest 
regression

Approaches RBF kernel PUK kernel

SVM C = 10, � = 2 C = 10, � = 0.1, � = 6
GP noise = 0.01, � = 2 noise = 0.01, � = 0.1, � = 6
M5P m = 2
RF m = 2, k = 10, I = 100
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Fig. 2   Comparing the actual and predicted infiltration rates from the 
Kostiakov model for training and testing data
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Fig. 3   Comparing the actual and predicted infiltration rates from the 
MLR model for training and testing data
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For the comparison of different artificial intelligence tech-
nique–based models, MLR and Kostiakov model’s graph 
is plotted in Fig. 8. The line of the perfect agreement for 
the random forest regression model predicted values were 
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Fig. 4   Comparing the actual and predicted infiltration rates from the 
GP model for training and testing data
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Fig. 5   Comparing the actual and predicted infiltration rates from the 
SVM model for training and testing data
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Fig. 6   Comparing the actual and predicted infiltration rates from the 
MP5 model for training and testing data
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Fig. 7   Comparing the actual and predicted infiltration rates from the 
RF model for training and testing data
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very close, as can be seen in Fig. 8. Figure 9 shows a graph 
between the number of test data sets and relative error, which 
reflects the random forest regression model’s improved per-
formance. This graph shows that the random forest–based 
regression model has the least error between observed and 
expected values.

Figure 10 allows us to compare techniques, on basis of 
the correlation coefficient, mentioned earlier in the follow-
ing studies: Singh et al. (2017), Sihag et al. (2018), Vand 
et al. (2018), and Singh et al. (2021), with the current 
study. As can be observed, the value of R for Singh et al. 

(2017) is 0.915, Sihag et al. (2018) is 0.9133, Vand et al. 
(2018) is 0.9022, and Singh et al. (2021) is 0.9300, which 
are all inferior when compared to the value that is of the 
current study (0.9788). Thus, it can be concluded that the 
comparison validates the model of the current study as the 
best one amongst those which have been put forward in 
previous studies as successful soft computing techniques.

Table 5   Performance indicators 
of the GP, SVM, M5P, RF, 
MLR, and Kostiakov models

Approaches Training data set Testing data set Ranking

R RMSE E R RMSE E

GP_PUK 0.9988 0.3043 0.9976 0.7939 4.0522 0.4263 7
GP_RBF 0.9696 1.5078 0.9400 0.8212 2.7327 0.4916 5
SVM_PUK 0.9589 2.0214 0.8922 0.8095 2.7982 0.4669 6
SVM_RBF 0.9250 2.5178 0.8328 0.7839 2.9829 0.3942 8
M5P 0.9459 2.1743 0.8753 0.9006 2.1068 0.6978 3
RF 0.9907 0.9070 0.9783 0.9788 1.0681 0.9223 1
MLR 0.9715 1.5006 0.9406 0.9638 1.2918 0.8864 2
Kostiakov model 0.8796 2.9292 0.7736 0.9025 2.2058 0.6688 4
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Fig. 8   Comparison of the actual and predicted infiltration rate values 
using various artificial Intelligence techniques based models and Kos-
tiakov model for training and testing data
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Sensitivity analysis

Sensitivity analysis allows the examination of how influen-
tial each of the individual parameters is to the model’s ability 
to predict the soil’s infiltration rate. The analysis of the mod-
els began after the model structure was adjusted to define 
the most useful parameters. In the absence of each input 
parameter, indicators such as R and RMSE were employed to 
assess the models’ performance. The performance changed 
when one of the input parameters was removed and the effect 
of each parameter was then further investigated based on the 
degree of variation it caused in performance. In Table 6, the 
results of the sensitivity analysis of the most accurate mod-
els, RF and MLR, have been presented. As can be observed, 
a lack of time (t) results in a substantial decrease in model 
accuracy; therefore, we gather that the most essential param-
eter for predicting the soil infiltration rate was time (t).

Conclusion

Observations made in this article address the inability of 
conventional methods to provide comprehensive results in 
the prediction of soil infiltration rates. In order to achieve 
better results, we make use of AI-based, MLR, and tree 
algorithm applications. The performance of five different 
machine learning methods for the regression problem is ana-
lyzed and compared in this paper to compare responses in 
soil infiltration rate modeling. The results demonstrate the 
applied methods are suitable techniques to predict infiltra-
tion rate values. Our five model methods are multiple lin-
ear regression (MLR), support vector machines (SVM), a 
Gaussian process (GP), M5P, and random forests (RF). The 
experimental data of infiltration rate is observed on fly ash, 
clay, and sand mixed samples. Furthermore, on the given 
data set, the experiments compared the performance of tree 
models (M5P and random forests) with non-tree models 
(Gaussian process, support vector machines, and multilin-
ear regression). It was found that the obtained results of our 
machine learning methods compared to the conventional 

model lead to better infiltration rate errors in estimation. 
The obtained results indicate that the RF model performs 
at best to forecast the infiltration rate of soil for the given 
data set, with the MLR model close behind, but both models 
outperforming the SVM, GP, M5P, and Kostiakov models 
considerably. Hence why, from the findings of this article 
we conclude that the presented models, RF and MLR, are 
the most reliable and could perform as one of the most sta-
ble models available at present as far as the experiments 
conducted in this article. In addition, it is also worth noting 
that according to the sensitivity analysis, the most important 
parameter in determining the soil infiltration rate is time 
(t). Lastly, to build upon this article and its findings, in the 
future, work can be done to investigate how the capabilities 
of these AI models can be enhanced so they can be used to 
train a general model to predict the infiltration process which 
can then be successfully implemented in the other areas of 
studies along with providing even more accurate forecasts 
in the area discussed in the article.
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