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Abstract
Groundwater vulnerability assessment plays a vital role in earmarking the regions into several zones of the different vulner-
ability of contamination, thereby helping in proper land use management and groundwater monitoring. DRASTIC is the most 
widely used model for the assessment of the vulnerability of groundwater to contamination. The research gap associated 
with the DRASTIC model is that the weights and ratings of the parameters associated with the DRASTIC model are based 
on Delphi network technique which is subjective. The present work tries to optimize the weights and ratings of DRASTIC 
parameters with multi-criteria decision analysis (MCDA) techniques and fuzzy logic. Further, we compare the optimized 
values of weights and ratings of different parameters of the DRASTIC model arrived via different MCDA techniques and 
fuzzy logic and recommend that fuzzy logic provides the most reliable values of weights and ratings for DRASTIC parameters 
to be employed in the vulnerability assessment because it removes the human subjectivities inherent in MCDA techniques. 
The fuzzy model gives quite reliable values of DRASTIC parameters as it includes the fuzziness of continuous input values. 
However, there is a need to find out the one universal technique which should be applicable in any surface area, including 
all kinds of nonlinearity, and it possesses the self-learning ability to bring results as accurately as possible.

Keywords Groundwater vulnerability index · DRASTIC · Analytic hierarchy process · Analytic network process · Fuzzy 
logic · MCDA

Introduction

Groundwater is an essential resource on earth for water 
requirements. Its quality and quantity are decreasing day by 
day; as a result, it is being polluted and has entered a dan-
gerous state (Kumar et al. 2014, 2016a, 2016b). It is getting 
contaminated for many reasons, for instance, natural and 
human-caused pollution such as industrial, agricultural, and 
urban pollution (Karkra et al. 2016, 2017). The contami-
nated groundwater affects all the living organisms on earth 

directly or indirectly and causes several health issues and 
even death. Also, the treatment of groundwater against pol-
lution is quite costly and clumsy. The pollution of ground-
water in cultivation areas is having a global concern these 
days. Its availability as a crop irrigation resource is decreas-
ing year by year. The organic and inorganic contaminants 
existing in groundwater used for irrigation can cause soil 
fertility loss and many health issues for humans and animals. 
Groundwater contamination is a topic that has gotten atten-
tion in recent years. The contamination of groundwater is a 
common problem all over the world.

Some countries tragically affected by this are Bangla-
desh, India, China, the USA, etc. (Islam 2007, Rodríguez-
Lado et al. 2013; Adimalla et al. 2018; Rajmohan 2020). 
In Bangladesh, the condition is the worst in the history of 
groundwater poisoning from arsenic contamination. Some 
Indian states also have groundwater pollution issues such as 
Assam, West Bengal, Bihar, Jharkhand, Chhattisgarh, and 
Karnataka (Lalwani et al. 2004; Ckakraborty et al. 2007; 
Ghosh and Singh 2009; Umar et al. 2009; Gorai and Kumar 
2013). Being the long-term use of these toxic contaminants, 

Responsible Editor: Broder J. Merkel

 * Prashant Kumar 
 prashantkumar@csio.res.in

1 Indian Institute of Engineering Science & Technology, 
Shibpur, Howrah 711103, India

2 CSIR-Central Scientific Instruments Organisation, Sector 
30-C, Chandigarh 160030, India

3 Indian Institute of Remote Sensing (ISRO), 
Dehradun 248001, India

/ Published online: 18 May 2022

Arabian Journal of Geosciences (2022) 15: 1007

http://crossmark.crossref.org/dialog/?doi=10.1007/s12517-022-10034-4&domain=pdf


1 3

humans and other living beings face several problems such 
as hypertension, skin cancer, skin lesions, cardiovascular 
diseases, pulmonary diseases, neurological effects, and dia-
betes (Saha et al. 1999, Kile and Christiani 2008, Hendryx 
2009). Therefore, it is necessary to check the vulnerability 
level of groundwater by producing vulnerability maps, pro-
tecting, and preserving groundwater from all kinds of con-
tamination. By knowing the contamination level of ground-
water at different places through a vulnerability map, the 
distribution of the areas for distinct purposes will be easy 
and very useful. For example, highly contaminated regions 
will not be used for agricultural purposes not to be affected. 
It will be less harmful to living beings, after knowing which 
area is rich in what kind of minerals the crop which has a 
high need of those minerals will be used there. Some rem-
edies can also be applied in highly contaminated areas to 
reduce the pollution level as much as possible. Monitoring 
groundwater is a very scrupulous job, and also it is pretty 
pricey to represent a geographical degree of pollution satis-
factorily on a large scale (Bai et al. 2012). So, groundwater 
vulnerability assessment must be economical and rapid to 
guard the resources and the land use management (Kumar 
et al. 2012; Shrestha et al. 2016).

To estimate the vulnerability level of groundwater, many 
models have been established as process-based models, sta-
tistical models, and index-based models. Index-based mod-
els are the most suitable ones as they do not lack proper 
data monitoring; they also use weights instead of parameter 
coefficients. In overlay and index models, the combination of 
spatial distributions of specific feature data (geology, depth 
to water, etc.) with maps gives an assigned numerical score 
for each feature. They are combined to produce a vulner-
ability score (Gogu and Dassargues 2000; Kumar et al. 2015; 
Lad et al. 2019; Rajasekhar et al. 2019). Among all index-
based models, the DRASTIC model is the highly used model 
which was developed in 1987 (Aller et al. 1987). It is effort-
less and a rapid regional assessment tool to estimate the 
hydrogeologic parameter’s weights and ratings (Puri et al. 
2014; Rana et al. 2014; Krishna et al. 2015; Muhammad 
et al. 2015; Neh et al. 2015; Pacheco et al. 2015; Hamutoko 
et al. 2016; Tiwari et al. 2016). However, the DRASTIC 
model has some limitations as weights are fixed here, and 
they do not need to meet the particularities of all the differ-
ent study areas; also, it has human subjectivity issues as it 
uses the Delphi technique for assignments of weights and 
ratings that is why vulnerability indices estimated by this 
model are doubtful. Many distinctive factor weighting tech-
niques have been developed to overcome this problem.

The weight of a parameter illustrates the significance 
of that parameter compared with the others. To eliminate 
the subjectivity of parameter weights and ratings, many 
modifications have been done in the fundamental DRAS-
TIC model. Such methods are single-parameter sensitivity 

analysis (Pacheco et al. 2015), correlation analysis between 
parameter ratings and the nitrate concentrations of the 
study region (Panagopoulos et al. 2006), logistic regres-
sion method, or weight of evidence method (Antonakos 
and Lambrakis 2007). These methods were developed to 
calibrate the DRASTIC parameter weights and ratings, 
but they also had limitations and disadvantages. Another 
method of optimizing the DRASTIC weights and ratings 
was to use multi-criteria decision analysis techniques with 
a fundamental DRASTIC approach (Thirumalaivasan et al. 
2003; Sener and Davraz 2013; Neshat et al. 2014; Kumar 
et al. 2019). Many MCDA techniques are developed like 
the analytic hierarchy process and analytic network process. 
These techniques give much better and optimized results 
than the above models, reducing subjectivity in some man-
ner. Another modification is the inclusion of fuzzy logic in 
the approach to consider the uncertainty associated with the 
input data of study regions so that it can give us more realis-
tic vulnerability maps (Shouyu and Guangtao 2003; Dixon 
2005; Afshar et al. 2007; Pathak and Hiratsuka 2011; Rezaei 
et al. 2013). It sets the parameters as membership functions 
and assigns values between 0 and 1 instead of categorical 
variables with integer values in the interval 1–10. Many 
researchers have tried to optimize the weights and ranking 
of DRASTIC parameters using individual MCDA methods. 
There are very few studies wherein MCDA techniques have 
been compared vis-à-vis the optimized values of DRASTIC 
parameters.

This work aims to demonstrate the implementation of 
MCDA techniques for the optimization of weights and rank-
ing of DRASTIC parameters and presents a critical analysis 
of most suitable method to get the most reliable values of 
DRASTIC parameters which can further be integrated with 
GIS to develop the groundwater vulnerability maps for any 
region. The analysis of the different models uncovers the 
impacts on vulnerability resulting from differences in the 
principles underlying the various weight adjustments.

Methodology

The paper deals with optimizing weights and ratings of 
DRASTIC parameters by using some modification tech-
niques to make comparisons of the different models and see 
their accuracy levels. The novelty of the work lies in the 
fact that the authors have optimized both the ratings and 
the weights of the fundamental DRASTIC by using very 
comprehensive multi-criteria evaluation techniques for bet-
ter accuracy assessment and fuzzy logic approach to include 
the fuzziness, i.e., the uncertainty of inputs. The schematic 
of the methodology is shown in Fig. 1.

The DRASTIC model is an index-based model pro-
posed by Aller et al. (1987) to assess the vulnerability of 
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groundwater to contamination. It is a rapid regional assess-
ment tool. It is an acronym of seven important hydro-geolog-
ical parameters, namely depth to water, net recharge, aquifer 
media, soil media, topography, impact of vadose zone, and 
hydraulic conductivity. It takes these parameters in terms 
of contamination as input and assigns weights and ratings 
to these parameters with the help of the Delphi network 
technique (Aller et al. 1987). The weights of parameters are 
fixed according to Aller et al., but the ratings may vary from 
region to region. After calculating weights and ratings, the 
final vulnerability index is calculated by using the below 
formula:

Wi and Ri represent the weight and relative ratings, respec-
tively, assigned to the ith factor of the DRASTIC formula.

The parameters, their weights, different ranges of each 
parameter, and their ratings established by Aller are shown 
in Table 1.

There are many limitations in the DRASTIC model in 
terms of accuracy, such as lack of scientific basis, its per-
formance significantly depending on local environmental 
conditions, and the assignment of weights and ratings being 
subjective based on Delphi technique. Thus, groundwater 
vulnerability assessment through the DRASTIC model does 
not give realistic results.

To improve DRASTIC’s performance, many modifica-
tions have been made to it; one uses multi-criteria deci-
sion analysis (MCDA) techniques. MCDA techniques are 

(1)Vulnerability Index =
∑7

i=1
W

i
∗ R

i

a constructive tool for solving complex decision problems 
(Malczewski 1999; Machiwal et al. 2011; Thokala et al. 
2016; Jhariya et al. 2017; Salo et al. 2021). These techniques 
are helpful for complex problems where the solution to the 
problem depends on the number of criteria. It solves com-
plex problems by breaking them into a hierarchy of smaller 
sub-problems shown in Fig. 2, which are way easier to 
understand and solve. It then analyzes each part and, in the 
end, integrates all the parts to build a meaningful solution 
to the problem (Malczewski 1999). The hierarchy structure 
of MCDA techniques is shown in Fig. 2. Its purpose is to 
operate a synthesis of the general contradictory features of 
objects, achieve a goal like choosing between the objects, 
rank wise ordering the objects or alternatives, organizing 
them into categories, etc. There are many MCDA techniques 
available such as AHP (analytic hierarchy process), ANP 
(analytic network process), best worst method (BWM), 
Brown-Gibson Model, etc. In this work, some MCDA tech-
niques are used to optimize the weights and ratings of the 
DRASTIC parameters by employing experts’ knowledge of 
the particular field.

Optimization of DRASTIC parameters using AHP

Analytic hierarchy process (AHP) is a multi-criteria decision 
analysis technique given by Thomas L. Saaty (Saaty 1990a) 
for solving complex problems which are based on several 
criteria by splitting them into sub-problems (Saaty 1990b, 
1994, 2000, 2001, 2008). AHP is a famous approach to solv-
ing many complex problems such as conflict resolution and 

Fig. 1  Methodological steps of the research process
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Table 1  DRASTIC weights and 
ratings by Aller (1987)

Parameter Assigned 
weights

Parameter value/types Relative ratings

Depth to water 5 0–1.524 (m) 10
1.524–4.572 (m) 9
4.572–9.144 (m) 7
9.144–15.24 (m) 5
15.24–22.86 (m) 3
22.86–30.48 (m) 2
 > 30.48 (m) 1

Net recharge 4 0–0.0508 (m) 1
0.0508–0.1016 (m) 3
0.1016–0.1778 (m) 6
0.1778–0.254 (m) 8
 > 0.254 (m) 9

Aquifer media 3 Massive shale 1–3
Metamorphic/igneous 2–5
Weathered Metamorphic/igneous/thin-bedded 

sandstone, limestone
3–5

Shale sequences 5–9
Massive sandstone 4–9
Massive limestone 4–9
Sand and gravel 4–9
Basalt 2–10
Karst limestone 9–10

Soil media 2 Thin or absent 10
Gravel 10
Sand 9
Peat 8
Shrinking or aggregated clay 7
Sandy loam 6
Loam 5
Silty loam 4
Clay loam 3
Muck 2
Non-shrinking or non-aggregated clay 1

Topography 1 0–2(%) 10
2–6(%) 9
6–12(%) 5
12–18(%) 3
 > 18(%) 1

Impact of vadose zone 5 Silt/clay 1–2
Shale 2–5
Limestone 2–7
Sandstone 4–8
Bedded limestone, sandstone, shale 4–8
Sand and gravel with significant silt and clay 4–8
Metamorphic/igneous 2–8
Sand and gravel 6–9
Basalt 2–10
Karst limestone 6–10
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any such issue, depending upon various criteria for unique 
alternatives. AHP is also helpful in calculating the vulner-
ability index of the DRASTIC model by optimizing the cri-
teria weights and relative ratings. It also tries to eliminate 
the human subjectivity problem of the Delphi network tech-
nique used in the DRASTIC model in two ways:

a) It does subjective and comparative evaluation (compari-
son matrices) of qualitative and quantitative views of all 
the existing criteria.

b) It estimates and excludes inconsistencies in subjective 
valuation by calculating consistency ratios.

To calculate weights and ratings of different criteria and 
sub-criteria, a pairwise comparison matrix is created with 
comparable judgment scores obtained using “Saaty’s scale 

of importance,” and then the normalized principal eigenvec-
tors are calculated. The “Saaty’s scale of importance” ranges 
from 1 to 9, where different levels have different meanings. 
The scale is represented in Table 2.

Table 1  (continued) Parameter Assigned 
weights

Parameter value/types Relative ratings

Hydraulic conductivity 3 1–100 (GPD/FTP2P) 1

100–300 (GPD/FTP2P) 2

300–700 (GPD/FTP2P) 4

700–1000 (GPD/FTP2P) 6

1000–2000 (GPD/FTP2P) 8

 > 2000 (GPD/FTP2P) 10

Fig. 2  Hierarchy structure of MCDA techniques

Table 2  Saaty’s scale of importance

Importance scale Meaning

1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance
2,4,6,8 Intermediate values
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The whole hierarchy structure of the AHP-DRASTIC 
model has a goal, criteria, and sub-criteria shown in Fig. 3.

Here the consistency of relative weights and ratings is 
calculated by two terms, namely consistency index and con-
sistency ratio. If any inconsistency remains, then reassign-
ment of judgment values is performed.

where �max is principal eigenvalue and n size of the com-
parison matrix.

It is acceptable if the estimated consistency ratio is less 
than or equal to 10%. Otherwise, it needs to revise the rela-
tive judgment of the criteria and sub-criteria. The consist-
ency ratio is obtained as:

where RCI is standard random consistency index.

(2)Consistency Index =
(

�max − 1
)

∕(n − 1)

(3)Consistency Ratio = CI∕RCI

Implementation of AHP‑DRASTIC model

First, a pairwise comparison matrix is obtained from all the 
criteria (for weights) and determines this matrix’s consist-
ency index and ratio shown in Table 3.

Further, pairwise comparison matrix and consistency 
indices are calculated for all the criteria’s sub-criteria as 
shown in tables (Appendix 1: Table 3a,  b, c, d, e, f, and g).

In AHP, the goal has the value of 1; also, in each level 
of the AHP hierarchy, total sum of criteria/sub-criteria 
values is 1. Here goal weight, i.e., 1, is distributed into 
all the criteria according to their importance, and again 
each criteria value is distributed into its sub-criteria as 
per their importance. Local values represent the impor-
tance of that criteria/sub-criteria with respect to its level, 
but the global values represent the importance of that 
criteria/sub-criteria concerning the goal. Here global val-
ues are calculated by multiplying local values with the 

Fig. 3  Hierarchy structure of AHP-DRASTIC model

Table 3  AHP-DRASTIC 
criteria pairwise comparison 
matrix for optimization of 
weights

Criteria D R A S T I C

D 1 2 5 9 9 1 5
R 1/2 1 2 5 7 ½ 2
A 1/5 ½ 1 3 4 1/5 1
S 1/9 1/5 1/3 1 2 1/8 1/3
T 1/9 1/7 ¼ 1/2 1 1/9 ¼
I 1 2 5 8 9 1 3
C 1/5 ½ 1 3 4 1/3 1

CI =
7.1139−7

6
= 0.0189

CI =
CI

RI

RI = 1.32forn = 7

CR = 0.014381 = 1.4381%
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criteria weight. The final calculated weights and ratings 
of DRASTIC parameters are shown in Table 4.

The limitations of AHP are that it does not include the 
interrelations of several parameters. Because of this, it 
is not much able to provide accurate results; also, it still 
has subjectivity issues in its weight and rating calcula-
tion process. Another limitation of AHP is that to reduce 
inconsistency in parameter weights and ratings, there is a 
need to reassign values in comparison matrices again and 
again to minimize inconsistency below 10%.

Optimization of DRASTIC parameters using ANP

Analytic network process is another MCDA technique that 
can be used in the optimization of DRASTIC parameters. 
ANP is a modified technique of AHP. It gives more rele-
vant results than AHP because it recognizes the indescrib-
able interrelationships and feedbacks between parameters 
and sub-parameters. The analytic network process (ANP) 
is a new concept that broadened the AHP by considering 
the dependence of parameters and the feedback between 
them. It introduced Thomas Saaty’s 1980 book’s super-
matrix approach on the analytic hierarchy process (Wind 
and Saaty 1980, Khorrami et  al. 2018, Thakur et  al. 
2021). ANP incorporates a holarchy structure rather than 
the hierarchy structure of AHP. In a holarchy structure, 
criteria, sub-criteria, and alternatives are all represented 
as nodes in a network of clusters. So, the ANP model has 
the main hierarchy having clusters with several elements, 
interrelations between elements, and among clusters. It 
has two types of feedback; first, feedback is among ele-
ments within the clusters called inner dependence, and 
the second is among clusters called outer dependence, as 
shown in Fig. 4. The cluster of elements can be connected 
to derive the priorities of elements by including the influ-
ence among components, i.e., clusters and elements.

To perform the ANP model, the software is needed. 
It also creates the comparison matrices for criteria and 
sub-criteria based on their connections. After putting 
all these connection influences, a supermatrix is cre-
ated, called an unweighted supermatrix of clusters with 
nodes. After this, the weighted supermatrix is created by 
multiplying the priority weights of their control criteria, 
i.e., normalization. Finally, a limiting matrix is created. 
Each matrix value resembles the connection between two 
nodes/clusters, i.e., priority. ANP shows each element’s 
significance and the complete vulnerability assessment 
on other elements. Here different characteristic matrices 
were obtained to enhance the parameter’s weight and rat-
ing prediction to assess the groundwater vulnerability.

Table 4  Optimized weights and ratings of AHP-DRASTIC

Criteria Weight Sub-criteria Rating

D 0.3221 0–1.524 (m) 0.1070
1.524–4.572 (m) 0.0770
4.572–9.144 (m) 0.0643
9.144–15.24 (m) 0.0435
15.24–22.86 (m) 0.0144
22.86–30.48 (m) 0.0090
 > 30.48 (m) 0.0066

R 0.1604 0–0.0508 (m) 0.0067
0.0508–0.1016 (m) 0.0097
0.1016–0.1778 (m) 0.0152
0.1778–0.254 (m) 0.0466
 > 0.254 (m) 0.0820

A 0.0800 Massive shale 0.0012
Metamorphic/igneous 0.0020
Weathered metamorphic/igneous/thin-

bedded sandstone, limestone
0.0031

Shale sequences 0.0237
Massive sandstone 0.0065
Massive limestone 0.0061
Sand and gravel 0.0062
Basalt 0.0132
Karst limestone 0.0176

S 0.0341 Thin or absent 0.0082
Gravel 0.0076
Sand 0.0058
Peat 0.0035
Shrinking or aggregated clay 0.0031
Sandy loam 0.0018
Loam 0.0011
Silty loam 0.0010
Clay loam 0.0007
Muck 0.0006
Non-shrinking or non-aggregated clay 0.0005

T 0.0245 0–2 (%) 0.0112
2–6 (%) 0.0066
6–12 (%) 0.0037
12–18 (%) 0.0018
 > 18 (%) 0.0010

I 0.2933 Silt/clay 0.0047
Shale 0.006
Limestone 0.0087
Sandstone 0.0275
Bedded limestone, sandstone, shale 0.0282
Sand and gravel with significant silt and 

clay
0.0248

Metamorphic/igneous 0.0134
Sand and gravel 0.0588
Basalt 0.0485
Karst limestone 0.0724
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Implementation of DRASTIC ANP model

First, the pairwise comparison matrices are formed between 
different parameters and sub-parameters inside and outside 

the cluster elements, likewise AHP. ANP compares the sub-
parameters inside the parameter cluster and compares all 
the eight parameters and their interrelationship between the 
parameters and other parameters’ sub-parameters if there is 
a dependency. To validate the judgment criteria of matrices, 
C.R. is evaluated. Reconsidering the comparison matrix is 
necessary whenever the C.R. value beats the threshold value, 
which is 0.1. In ANP, inconsistency reduction is much easier 
than the AHP because it uses software like Super Decisions, 
which calculates inconsistency by itself directly. One can 
manipulate the values of comparison matrices at any time, 
and the software shows the inconsistency ratio. The com-
parison matrices adjusted in Super Decisions software for 
criteria comparison (for weights) is given in Table 5.

Further, pairwise comparison matrix and consistency 
indices are calculated for all the criteria’s sub-criteria as 

Table 4  (continued)

Criteria Weight Sub-criteria Rating

C 0.0855 1–100 (GPD/FTP2P) 0.0028

100–300 (GPD/FTP2P) 0.0040

300–700 (GPD/FTP2P) 0.0057

700–1000 (GPD/FTP2P) 0.0110

1000–2000 (GPD/FTP2P) 0.0224

 > 2000 (GPD/FTP2P) 0.0400

Fig. 4  A AHP structure, B ANP structure

Table 5  ANP-DRASTIC 
criteria pairwise comparison 
matrix for optimization of 
weights

Criteria D R A S T I C

D 1 2 5 9 9 1 5
R 1/2 1 2 5 6 1/2 2
A 1/5 1/2 1 3 6 1/5 1
S 1/9 1/5 1/3 1 1 1/9 1/2
T 1/9 1/6 1/6 1 1 1/9 1/3
I 1 2 5 9 9 1 5
C 1/5 1/2 1 2 3 1/5 1
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shown below in tables (Appendix 2: Table 5a, b, c, d, e, f, 
and g).

The final optimized values obtained from the ANP model 
are given in Table 6.

Optimization of DRASTIC parameters using fuzzy 
logic

The fuzzy set theory concept came to solve the partial truth 
of values, i.e., not entirely true, not wholly false. Fuzzy 
set theory is a leading tool for managing imprecision or 
ambiguity in any system (Zadeh 1975; Rezaei et al. 2013; 
Hamamin and Nadiri 2018). The conventional way of quan-
tifying values is not enough to convey complex situations, 
so there is a necessity to employ some other technique which 
is linguistic variables. The fuzzy set theory became very 
popular for many reasons, such as the power of working 
with linguistic variables, low computational cost, and easy 
to understand. The AHP and ANP DRASTIC models give 
better results than the fundamental DRASTIC. Still, they 
do not provide accurate results because they do not include 
the uncertainty or the input parameters’ fuzziness. For esti-
mating the DRASTIC index, usually Boolean logic, i.e., the 
conventional quantifier, is used. Still, it may result in wrong 
conclusions, where values are rational numbers or near 
the classification boundaries. Because of the spectral and 
ambiguous nature of the DRASTIC parameters, if the clas-
sifications are based on Boolean logic, a slight variation in 
a point value may shift its rating up or down among catego-
ries and in case of points with clearly different values might 
have the same ratings because they are in a single category 
(range) together. All these difficulties cannot get resolved in 
the Boolean logic classification system. The only solution to 
these problems is the use of fuzzy logic. The fuzzy optimiza-
tion model is presented to calculate the groundwater vulner-
ability risk by including fuzziness into the assessment. In the 
past, several models have been used to design fuzzy com-
parison matrices such as a fuzzy logarithmic least square 
model (LLSM) developed by (Van Laarhoven and Pedrycz 
1983), which derived the triangular fuzzy weights from a 
triangular fuzzy comparison matrix. Similarly, other models 
were developed in this regard such as revised fuzzy LLSM 
(Wang et al. 2006) and geometric mean model employed by 
(Buckley 1985) to calculate fuzzy weights and many more. 

The basic concept of fuzzy logic is simple: generally, the 
statements are not entirely “true” or “false.” They may have 
some degree of truth or falseness for each input. Member-
ship functions characterize the fuzzy sets. The fuzzy opti-
mization model is developed to estimate the risk associ-
ated with groundwater vulnerability by taking the standard 
value matrix of samples of the respected area. In the fuzzy 
logic models, pairwise comparison matrices have been 
constructed by utilizing linguistic evaluations concerning 

Table 6  Optimized weights and ratings of ANP DRASTIC model

Criteria Weight Sub-criteria Weight

D 0.3080 0–1.524 (m) 0.1134
1.524–4.572 (m) 0.0608
4.572–9.144 (m) 0.0608
9.144–15.24 (m) 0.0335
15.24–22.86 (m) 0.0143
22.86–30.48 (m) 0.0124
 > 30.48 (m) 0.0124

R 0.1608 0–0.0508 (m) 0.0072
0.0508–0.1016 (m) 0.0141
0.1016–0.1778 (m) 0.0141
0.1778–0.254 (m) 0.0591
 > 0.254 (m) 0.0662

A 0.0429 Massive shale 0.0010
Metamorphic/igneous 0.0010
Weathered metamorphic/igneous/thin-

bedded sandstone, limestone
0.0017

Shale sequences 0.0131
Massive sandstone 0.0018
Massive limestone 0.0018
Sand and gravel 0.0019
Basalt 0.0063
Karst limestone 0.0429

S 0.0463 Thin or absent 0.0069
Gravel 0.0069
Sand 0.0068
Peat 0.0068
Shrinking or aggregated clay 0.0068
Sandy loam 0.0032
Loam 0.0027
Silty loam 0.0032
Clay loam 0.0010
Muck 0.0006
Non-shrinking or non-aggregated clay 0.0006

T 0.0601 0–2 (%) 0.0284
2–6 (%) 0.0158
6–12 (%) 0.0087
12–18 (%) 0.0038
 > 18 (%) 0.0032

I 0.3080 Silt/clay 0.0068
Shale 0.0068
Limestone 0.0080
Sandstone 0.0263
Bedded limestone, sandstone, shale 0.0153
Sand and gravel with significant silt and 

clay
0.0263

Metamorphic/igneous 0.0133
Sand and gravel 0.0772
Basalt 0.0490
Karst limestone 0.0785
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decision-makers’ judgments. The linguistic variables for 
making pairwise comparison for each criterion are given 
in Table 7.

Buckley’s fuzzy geometric mean model

In this research paper, the authors have implemented Buck-
ley’s fuzzy GM model (Buckley 1985) to improve the opti-
mization process of the ANP DRASTIC model by using 
the triangular membership function to give more accurate 
results. The following steps are to be performed:

Step 1: The fuzzy pairwise comparison matrix D̃ =
[

∼
aij

]

 
is constructed as

where  
∼
aij ×

∼
aji≈ 1 and i, j = 1, 2, …, n.

Step 2: For each criterion i, there is the fuzzy geometric 
mean value 

∼
ri is calculated by using the formula

Step 3: Finally, for each criterion i the fuzzy weight 
∼
wi is 

calculated by

Step 4: The fuzzy weights 
∼
wi=

(

li,mi, ui
)

 obtained from 
the previous step are de-fuzzified by using any method of 
defuzzification; here, Buckley used the COA (center of 
area) method, which is given below:

This is how the final weights and ratings should be calcu-
lated from this fuzzy GM model.

Implementation of fuzzy geometric mean model

Here triangular fuzzy numbers are taken to obtain the pair-
wise comparison matrices for all the criteria and sub-crite-
ria. After that fuzzy geometric mean, i. e., 

∼
ri is calculated 

by using Eq. (5), and then the fuzzy weights are calculated 
by using Eq. (6) Lastly, all the fuzzy weights and ratings are 
de-fuzzified using Eq. (7). The fuzzified criteria pairwise 
comparison matrix is shown in Table 8.

The fuzzified sub-criteria pairwise comparison matrices 
are given below in tables (Appendix 3: Table 8a, b, c, d, e, 
f, and g).

(4)D̃ =

⎡

⎢

⎢

⎢

⎢

⎣

(1, 1, 1)
∼
a
12

∼
a
12

(1, 1, 1)

…

…

∼
a
1n
∼
a
2n

⋮ ⋮ ⋱ ⋮
∼
an1

∼
an2 ⋯ (1, 1, 1)

⎤

⎥

⎥

⎥

⎥

⎦

(5)∼
r
i
= (Ã1 ∗ A2 ∗ A3⋯ ∗ A

n
)
1/

n

(6)
∼
wi= ri ∗ (r

1
+ r

2
+⋯ + rn)

−1

(7)
∼
wi=

l + m + u

3

Table 6  (continued)

Criteria Weight Sub-criteria Weight

C 0.0737 1–100 (GPD/FTP2P) 0.0026

100–300 (GPD/FTP2P) 0.0052

300–700 (GPD/FTP2P) 0.0052

700–1000 (GPD/FTP2P) 0.0112

1000–2000 (GPD/FTP2P) 0.0246

 > 2000 (GPD/FTP2P) 0.0246

Table 7  Fuzzified Saaty’s scale of importance

Importance 
scale (crisp 
value)

Meaning Importance scale (fuzzy 
value)

1 Equal importance (1,1,1)
3 Moderate importance (2,3,4)
5 Strong importance (4,5,6)
7 Very strong importance (6,7,8)
9 Extreme importance (9,9,9)
2,4,6,8 Intermediate values (1,2,3), (3,4,5), (5,6,7), 

(7,8,9)

Table 8  Fuzzified criteria 
pairwise comparison matrix for 
optimization of weights

Criteria D R A S T I C

D (1,1,1) (1,2,3) (4,5,6) (9,9,9) (9,9,9) (1,1,1) (4,5,6)
R (1/3,1/2,1/1) (1,1,1) (1,2,3) (4,5,6) (5,6,7) (1/3,1/2,1/1) (1,2,3)
A (1/6,1/5,1/4) (1/3,1/2,1/1) (1,1,1) (2,3,4) (5,6,7) (1/6,1/5,1/4) (1,1,1)
S (1/9,1/9,1/9) (1/6,1/5,1/4) (1/4,1/3,1/2) (1,1,1) (1,1,1) (1/9,1/9,1/9) (1/3,1/2,1/1)
T (1/9,1/9,1/9) (1/7,1/6,1/5) (1/7,1/6,1/5) (1,1,1) (1,1,1) (1/9,1/9,1/9) (1/4,1/3,1/2)
I (1,1,1) (1,2,3) (4,5,6) (9,9,9) (9,9,9) (1,1,1) (4,5,6)
C (1/6,1/5,1/4) (1/3,1/2,1/1) (1,1,1) (1,2,3) (2,3,4) (1/6,1/5,1/4) (1,1,1)
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The final calculated weights and rating values are shown 
in Table 9.

Results and discussion

Authentication of such kinds of experimental studies is quite 
difficult in the sense that vulnerability maps generated by 
these models, which consider the physical parameters, can-
not always be very accurate due to the complex dynamics 
of groundwater. It is challenging to replace the cumbersome 
manual on-site physical investigations for ground truth. But 
DRASTIC provides relatively good approximate vulnerabil-
ity maps, which can further be improved for more clarity 
and accuracy.

The weights and ratings of the DRASTIC model param-
eters assigned by Aller are called the fundamental DRAS-
TIC model results. Now that it has some serious issues 
related to its accuracy, effectiveness, and the scientific proof 
of the model strategy, MCDA techniques are involved in 
resolving these problems. To optimize the weights and rat-
ings of DRASTIC parameters, the authors have employed 
three models—AHP DRASTIC model, the ANP-DRASTIC 
model, and the fuzzy DRASTIC model.

AHP technique is quite useful in optimizing the weights 
and ratings of fundamental DRASTIC model parameters. It 
gives much more understandable outcomes, and it is easy 
to compare and analyze the importance of different crite-
ria/sub-criteria by looking at their values. It reduces human 
involvement in the assignment process to some extent. Also, 
it has scientific proof and a methodology. To implement 
this technique, MATLAB software is used to calculate the 
results. It gives good approximate values, which can be fur-
ther used for in-depth analysis. It has a limitation in that it 
does not provide many realistic values. To determine the 
accuracy at each level, the consistency index and consistency 
ratios are calculated for all pairwise comparison matrices, 
which shows the level of uncertainty present in the weights 
and ratings of DRASTIC parameters. So, this is not the best 
model to optimize the parameter values, but it sure gives a 
rough idea of the ranges of values.

To overcome some issues of the AHP technique, ANP 
technique is used. ANP gives more accurate results than 
the AHP technique because it includes the interrelations 
between parameters and the feedback between the criteria/
sub-criteria, improving outcomes. Also, in ANP analysis, 
it is more direct and easier to reduce the uncertainty level 
of each parameter. In AHP, there is a need to calculate the 
uncertainty of pairwise comparison matrices by finding the 
principal eigenvector by coding in MATLAB or any other 
tool. Then by using an associated formula, uncertainty is 
calculated manually. To reduce the level of uncertainty, reas-
signment of the values in pairwise comparison matrices is 

Table 9  Optimized weights and ratings of fuzzy DRASTIC model

Criteria Weight Sub-criteria Rating

D 0.3086 0–1.524 (m) 0.1105
1.524–4.572 (m) 0.0615
4.572–9.144 (m) 0.0615
9.144–15.24 (m) 0.0359
15.24–22.86(m) 0.0145
22.86–30.48 (m) 0.0122
 > 30.48 (m) 0.0122

R 0.1658 0–0.0508 (m) 0.0079
0.0508–0.1016 (m) 0.0146
0.1016–0.1778 (m) 0.0146
0.1778–0.254 (m) 0.0607
 > 0.254 (m) 0.0677

A 0.0852 Massive shale 0.0022
Metamorphic/igneous 0.0022
Weathered metamorphic/igneous/thin-

bedded sandstone, limestone
0.0035

Shale sequences 0.0259
Massive sandstone 0.0037
Massive limestone 0.0037
Sand and gravel 0.0038
Basalt 0.0126
Karst limestone 0.0272

S 0.0323 Thin or absent 0.0047
Gravel 0.0047
Sand 0.0047
Peat 0.0046
Shrinking or aggregated clay 0.0045
Sandy loam 0.0025
Loam 0.0020
Silty loam 0.0025
Clay loam 0.0007
Muck 0.0004
Non-shrinking or non-aggregated clay 0.0004

T 0.0262 0 0.0120
2–6 (%) 0.0070
6–12 (%) 0.0039
12–18 (%) 0.0017
 > 18 (%) 0.0013

I 0.3086 Silt/clay 0.0069
Shale 0.0069
Limestone 0.0083
Sandstone 0.0274
Bedded limestone, sandstone, shale 0.0159
Sand and gravel with significant silt and 

clay
0.0264

Metamorphic/igneous 0.0140
Sand and gravel 0.0755
Basalt 0.0503
Karst limestone 0.0766
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necessary, and repeat the above process every time until the 
minimum possible uncertainty level is achieved, which is 
quite time-taking and somewhat complex. Though ANP 
does this much easier, it requires a software tool to estimate. 
This research paper uses Super Decisions software, which 
allows us to see uncertainty at every optimization level. It is 
easy to reduce it by simply changing the values of pairwise 
comparison matrices in the judgment tab. It recalculates the 
uncertainty itself, which is very useful and, more impor-
tantly, time-saving.

The following technique employed is fuzzy logic. Fuzzy 
logic is a beneficial technique to include when the informa-
tion provided is linguistic. Fuzzy techniques included the 
fuzzy nature or, say, uncertain nature of the input parame-
ters, which gives more accurate results in optimizing weights 
and ratings of the DRASTIC model parameters. Because of 
the spectral and ambiguous nature of the DRASTIC parame-
ters, if the classifications are based on Boolean logic, a slight 
variation in a point value may shift its rating up or down 
among categories and in case of points with clearly differ-
ent values might have the same ratings because they are in a 
single category (range) together. All these difficulties cannot 
get resolved in the Boolean logic classification system. The 
only solution to these problems is the use of fuzzy logic. 
This work has employed a triangular membership function 
instead of Gaussian or trapezoidal membership functions to 
obtain the best possible outcomes. The pairwise comparison 
matrix is converted into a fuzzy pairwise comparison matrix, 
and the final weights and rating get calculated. It gives the 
best results among the above three models.

The comprehensive comparison showing the optimized 
values of AHP-DRASTIC, ANP-DRASTIC, and fuzzy-
DRASTIC is given in Table 10.

AHP assigns parameter importance in the range of 0 to 1, 
through which the difference in importance values of param-
eters are easy to see and pretty straightforward. According 
to Aller, parameter D has the highest importance of value 
5; however, in the case of AHP, it has an importance of 
0.3221, which is the highest importance value in AHP. This 
optimised weight value of D parameter is improved in ANP 
with a value of 0.3080 because the consistency index of 

D parameter for weights in ANP is better than that of D 
parameter in AHP. Further, the fuzzy approach gives a value 
of 0.3086 for the weight of D parameter which includes the 
uncertainty present in available surface input data. There-
fore, this value of 0.3086 as optimised weight of D param-
eter is more reliable and acceptable. T parameter has the 
lowest value in fundamental DRASTIC, while in case of 
AHP, it has a weight of 0.0245, which is lowest in AHP too, 
ANP improved it to be 0.0601, and fuzzy approach makes 
it 0.0262 again after improving. In ANP model results, 
parameter D and I have equal weights of value 0.3080, which 
shows equal importance; however, in AHP, this is not the 
case. In ANP, parameter A has the lowest weight with the 
value 0.0429, while in AHP, it has a moderate weightage 
of 0.0800 because, in AHP, the calculation of consistency 
index is very slow, manual, and complex. In fuzzy DRAS-
TIC, parameter D and I also have an equal weightage of 
value 0.3086, and parameter T has the lowest weight with 
the value of 0.0262.

The fuzzy model gives more realistic values of optimized 
weights and the ratings of DRASTIC parameters by assign-
ing the membership values as the weights and the ratings of 
DRASTIC parameters. Becasue in the case of fuzzy model, 
fuzzy numbers are used to determine the weights and rat-
ings in contrast to crisp values which are used in AHP and 
ANP approaches. Then membership functions are selected to 
calculate the membership value. The triangular fuzzy mem-
bership function has been used in this research work. The 
obtained membership values are the corresponding weights 
and ratings of the DRASTIC parameters. The fuzzy DRAS-
TIC approach reduces the fuzziness/ambiguity existing in 
the parameter inputs. For example, if the 0–5-m range of 
depth to water has the assigned rating of 6, instead of this, 
it is given a rating in a range of (5,6,7); in this case, for the 
whole range, the rating will not be the same for two differ-
ent input values. Also, if the 0–5-m range of depth to water 
has the assigned rating of 6, the rating will be the same in 
the range from 0 to 4.9 m. But, for the range of 5 - 10m, the 
rating changes to 7. For example, up to 4.9m depth of water 
table, the rating is 6, but the rating suddenly changes to 7 
for the depth of water table from 5.1 m onwards, which is 
a crisp jump in value. In fact, it should be gradual change. 
Further, for depth of water table corresponding to the depth 
exactly 5m, it is unclear that it should have the rating of 6 or 
7. However, in the case of fuzzy approach for 0–5-m range, 
rating will be in the range of (5,6,7), and for 5–10-m range 
of depth to the water table, the rating will be in a range 
of (6,7,8), so the 5 m of depth to table value will have the 
membership value of both the ranges of (5,6,7) and (6,7,8), 
and that will be its rating. So fuzzy theory eliminates the 
ambiguity problem. Therefore, to avoid these situations, the 
fuzzy technique is useful. Overall, the fuzzy approach gives 
much more accurate and realistic results than AHP and ANP 

Table 9  (continued)

Criteria Weight Sub-criteria Rating

C 0.0730 1–100 (GPD/FTP2P) 0.0028

100–300 (GPD/FTP2P) 0.0052

300–700 (GPD/FTP2P) 0.0052

700–1000 (GPD/FTP2P) 0.0119

1000–2000 (GPD/FTP2P) 0.0238

 > 2000 (GPD/FTP2P) 0.0238
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Table 10  Comparison of fundamental DRASTIC, AHP DRASTIC, ANP DRASTIC, and fuzzy DRASTIC parameter values

Parameters Range/type Fundamental 
DRASTIC

AHP DRASTIC ANP DRASTIC Fuzzy DRASTIC

W R W R W R W R
D 0–1.524 (m) 5 10 0.3221 0.1070 0.3080 0.1134 0.3086 0.1105

1.524–4.572 (m) 9 0.0770 0.0608 0.0615
4.572–9.144 (m) 7 0.0643 0.0608 0.0615
9.144–15.24 (m) 5 0.0435 0.0335 0.0359
15.24–22.86 (m) 3 0.0144 0.0143 0.0145
22.86–30.48 (m) 2 0.0090 0.0124 0.0122
 > 30.48 (m) 1 0.0066 0.0124 0.0122

R 0–0.0508 (m) 4 1 0.1604 0.0067 0.1608 0.0072 0.1658 0.0079
0.0508–0.1016 (m) 3 0.0097 0.0141 0.0146
0.1016–0.1778 (m) 6 0.0152 0.0141 0.0146
0.1778–0.254 (m) 8 0.0466 0.0591 0.0607
 > 0.254 (m) 9 0.0820 0.0662 0.0677

A Massive shale 3 1–3 0.0800 0.0012 0.0429 0.0010 0.0852 0.0022
Metamorphic/igneous 2–5 0.0020 0.0010 0.0022
Weathered metamorphic/igneous/thin-bedded 

sandstone, limestone
3–5 0.0031 0.0017 0.0035

Shale sequences 5–9 0.0237 0.0131 0.0259
Massive sandstone 4–9 0.0065 0.0018 0.0037
Massive limestone 4–9 0.0061 0.0018 0.0037
Sand and gravel 4–9 0.0062 0.0019 0.0038
Basalt 2–10 0.0132 0.0063 0.0126
Karst limestone 9–10 0.0176 0.0429 0.0272

S Thin or absent 2 10 0.0341 0.0082 0.0463 0.0069 0.0323 0.0047
Gravel 10 0.0076 0.0069 0.0047
Sand 9 0.0058 0.0068 0.0047
Peat 8 0.0035 0.0068 0.0046
Shrinking or Aggregated clay 7 0.0031 0.0068 0.0045
Sandy loam 6 0.0018 0.0032 0.0025
Loam 5 0.0011 0.0027 0.0020
Silty loam 4 0.0010 0.0032 0.0025
Clay loam 3 0.0007 0.0010 0.0007
Muck 2 0.0006 0.0006 0.0004
Non-shrinking or non-aggregated clay 1 0.0005 0.0006 0.0004

T 0–2 (%) 1 10 0.0245 0.0112 0.0601 0.0284 0.0262 0.0120
2–6 (%) 9 0.0066 0.0158 0.0070
6–12%) 5 0.0037 0.0087 0.0039
12–18 (%) 3 0.0018 0.0038 0.0017
 > 18 (%) 1 0.0010 0.0032 0.0013

I Silt/clay 5 1–2 0.2933 0.0047 0.3080 0.0068 0.3086 0.0069
Shale 2–5 0.0060 0.0068 0.0069
Limestone 2–7 0.0087 0.0080 0.0083
Sandstone 4–8 0.0275 0.0263 0.0274
Bedded limestone, sandstone, shale 4–8 0.0282 0.0153 0.0159
Sand and gravel with significant silt and clay 4–8 0.0248 0.0263 0.0264
Metamorphic/igneous 2–8 0.0134 0.0133 0.0140
Sand and gravel 6–9 0.0588 0.0772 0.0755
Basalt 2–10 0.0485 0.0490 0.0503
Karst limestone 6–10 0.0724 0.0785 0.0766
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as found in the practical implementation of these optimized 
values of weights and ranking with GIS for study region 
Deccan Basaltic Province, Pune India (Lad et al. 2019). 
However, this is not the most precise model. It also has sub-
jectivity issues remaining, as well as it is not a self-learning 
model; it cannot recognize the input patterns and use them 
in the future.

Conclusion

Optimization of the weights and ranking of DRASTIC 
parameters is a challenging task, and there have been sev-
eral attempts to optimize the weights and the rankings of 
DRASTIC parameters, but no technique is a generic solu-
tion as every technique has its own sets of pros and cons. 
However, as far as the removal of human subjectivity is 
concerned in the assignment of values to weights and rank-
ing of DRASTIC parameters, fuzzy system does perform 
better as discussed above. The work presented in this paper 
gives a detailed implementation of AHP, ANP, and fuzzy 
approach to optimize the weights and the ranking of DRAS-
TIC parameters. The subtle nuances of building the pairwise 
comparison matrices in AHP and ANP and the selection of 
membership functions play a vital role in getting the most 
reliable optimized values of DRASTIC parameters which 
ultimately has a final role in building the groundwater vul-
nerability maps, and when these maps are validated against 
the ground truth values such as water quality parameters, 
it generates the most reliable map for the further analysis. 
As it is quite evident from Saaty’s scale of importance that 
in cases of trade-offs, values like 2, 4, 6, and 8, a slight 
different assignment of scale values can lead to a not very 
much optimized DRASTIC parameters values which will 
ultimately lead to a false groundwater vulnerability map 
thereby not matching with the ground truth values.

There is a need for further development and application 
of other decision optimization techniques depending upon 
the study area’s requirement and limitations of data avail-
ability. There is a need to find out one universal optimization 
technique used in any area, which can include all kinds of 

nonlinearity, and possesses the self-learning ability to bring 
results as accurately as possible. However, more research 
needs to be done on inconsistency calculation, subjectivity, 
uncertainty, correlation index, and accuracy for better and 
reliable results.
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