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Abstract
To accurately predict the attenuation law of the blasting vibration velocity, the concept of equivalent radius (rd) is introduced 
based on Heelan short column charge theory. The attenuation model equation of the peak blasting vibration velocity under 
the action of the internal instantaneous excitation load is obtained and verified by dimensional analysis. Combined with an 
example of tunnel blasting engineering, the attenuation law of blasting vibration velocity is studied. In addition, the improved 
formula under the conditions of spherical charge and cylindrical charge is discussed. The comparison results show that the 
effect of fitting analysis obtained by the improved formula is the best and can provide a reference for similar blasting projects.

Keywords Blasting vibration velocity · Theoretical analysis · Field experiment · Regression calculation

Introduction

With the rapid development of transportation infrastructure 
construction, the utilization rate of underground space has 
significantly increased. The route selection of railway tun-
nels will inevitably pass through existing buildings. Drilling 
and blasting are the main methods of mountain tunnel exca-
vation, but the induced blasting vibration adversely affects 
the surrounding buildings. Therefore, the accurate prediction 
of rock blasting vibration has important engineering signifi-
cance to ensure the safety of surrounding buildings (Zheng 
et al.2021; Alimohammadi et al. 2020; Satvati et al. 2020; 
Alimohammadi et al. 2019, Zhao et al.2021a).

Most researchers used the peak particle velocity (PPV) 
as an indicator and conducted research on the response 
characteristics of blasting vibration. Yu et al. (2021) used 
similar simulation experiments to study the effect of the 

joint weakness on the transmission of blasting vibration. 
The experimental results showed that the number of joints 
greatly affected the prediction accuracy of blasting vibration. 
Roy et al. (2020) studied the influence of the total charge 
on the intensity of blasting vibration. When the maximum 
charge is used as a fitting parameter, the prediction effect 
of blasting vibration is good. Zhao et al. (2021b) obtained 
a new fitting method for tunnel blasting vibration through 
induction and dimensional analysis. In addition, the analysis 
method was used to study the attenuation law of blasting 
vibration energy. A comparison of four prediction models of 
blasting vibration velocity shows that the prediction effects 
of the USBM model and Sadofsky equation are similar and 
can be widely used in subsequent prfediction work (Ongen 
et al. 2018). Lu et al. (2018) studied the influence of an air-
borne free surface on the attenuation law of blasting vibra-
tion using actual measurements and numerical analysis. In 
addition, a large number of on-site monitoring technology 
and experimental verification methods (Dong et al. 2021, 
2017; Sengupta et al. 2021; Gao et al. 2019; Wang et al. 
2021) have also been applied in the research for the tunnel 
engineering. Ji et al. (2021) made statistics on the damage 
characteristics of tunnel surrounding rock through acous-
tic wave tests, and proposed corresponding control thresh-
olds. Zhong et al. (2012) used the method of combining 
dimensional analysis with wavelet packet analysis to study 
the vibration attenuation law of tunnel and open-air slope 
collaborative blasting.
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In summary, most studies predict the attenuation law of 
blasting vibration through field measurements (Huang et al. 
2019; Gou et al. 2020) or numerical simulation (Xu et al. 
2019; Yang et al. 2020; Peng et al. 2021). However, there 
are few theoretical derivation studies on the attenuation law 
of blasting vibration. The theoretical derivation of blast-
ing vibration is of great significance for comprehensively 
understanding the transmission of blasting stress waves 
and accurately predicting the evolution of blasting vibra-
tion. Therefore, based on the analytical solution of the wave 
equation excited by the short column charge, the attenuation 
model equation of the tunnel blasting vibration is derived. 
Secondly, the reliability of the improved formula is verified 
by dimensional analysis. Finally, the two charge expression 
forms of the two blasting vibration fittings are separately dis-
cussed, and the prediction effects of the three fitting methods 
are compared. The content of this research is dedicated to 
introducing a new working idea to predict and control blast-
ing vibration in the future and proposes improvements and 
supplements to traditional prediction methods.

Theoretical analysis of the peak velocity 
attenuation of blasting vibration

At present, most researchers use the Sadofsky formula (Mat-
idza et al. 2020; Zhao et al. 2021a) or the USBM model 
(United States Bureau of Mines) (Azimi et al. 2019; Hos-
seini et al. 2019; Shi et al. 2018; Jayasinghe et al. 2019; 
Arthur et al. 2020) to fit and analyze the blasting vibration 
velocity. In addition, other classic models have been used to 
predict the peak particle velocity.

This empirical formula only considers the influence of 
the distance from the blast area and the blasting charge on 
the PPV. It does not reflect the influence of other factors on 
the PPV, such as charge type, charge radius, drilling radius, 
blasthole layout, mechanical properties of the medium rock 
mass, and topographic and geological conditions (Hu et al. 
2020; Jiang et al. 2017). Therefore, based on the analytical 
solution of the wave excited by the short column charge, the 
attenuation law of blasting vibration in the middle and far 
fields is studied.

Attenuation law of blasting vibration based 
on short column charge

When the distance from the blast area is greater than the 
length of the cylindrical charge and wavelength of the stress 
wave, Hustrulid et al. (1992) obtained an analytical solution 
for the low-frequency fluctuations of the short column cavity 
under instantaneous internal load excitation.

As shown in Fig. 1, assuming that the internal instan-
taneous excitation load acts on the inner wall of a short 

cylindrical cavity with a length of dH and a radius of rb, the 
displacement field can be expressed as:

where up is the displacement caused by the compression 
wave; us is the displacement caused by the shear wave; rb is 
the radius of the charge; p0 is the initial pressure of the blast-
hole; G is the shear modulus of the rock; D is the propaga-
tion speed of the detonation wave; R is the distance between 
the vibration source and the measuring point; t is the time 
of action; H1 and H2 are the upper and lower limits of the 
calculation of H; cp and cs are the propagation velocities of 
the compression wave and shear wave, respectively.

Then, the radial displacement and vertical displacement 
excited by the explosion of the short column charge can be 
expressed as

where ur and uz are the radial vertical displacement excited 
by the instantaneous load.
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Fig. 1  Instantaneous load acts on the inner wall of the short column 
cavity with a length of dH 
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The velocity field excited by the instantaneous load can 
be obtained by differential calculation:

Many scientific studies (Jiang et al. 2012; Ji et al. 2021; 
Luo et al. 2021) have shown that the S wave is the dominant 
wave near blasting, which mainly controls the surrounding 
rock damage caused by blasting construction. The P wave is 
an important part of the blasting near zone and blasting far 
zone, and it mainly affects the blasting vibration in the mid-
dle and far zones of blasting. However, it is well known that 
P waves decay faster than S waves. Therefore, the S wave 
may dominate the vibration in the far region. Based on the 
above analysis, the common contribution of P wave and S 
wave to vibration should be considered.

where ρ is the rock density, and k1 and k2 are undetermined 
coefficients. The PPV caused by the short column charge is:

In particular, the result of formula (7) refers to the vector 
sum of the two velocities.

Simplifying formula (7), we obtain:

Since the actual rock mass has viscoelastic and damping 
properties, the blasting vibration attenuation equation of the 
actual rock mass can be expressed as:

The vibration speed on the blasthole wall can be 
expressed as:

Equation (10) can also be expressed as:

where k is the site coefficient, λ is the attenuation coefficient, 
rb is the radius of the cylindrical charge, and R is the dis-
tance from the blast area.
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Improvement of blasting vibration velocity fitting 
formula

Equation (11) is indicated to be suitable for single-hole 
blasting, but it is relatively difficult to obtain engineer-
ing parameters in the formula. In addition, multi-hole 
and multi-stage blasting is often used in tunnel blasting 
engineering, and single-hole blasting is rare. Therefore, 
an attempt is made to find an equivalent solution suitable 
for tunnel blasting.

Determination of equivalent boundary of blasting

According to the difference in stress state, the rock mass 
near the blasting source can be divided into a crushed 
zone, fractured zone, and elastic zone. The actual blasting 
vibration test is often located in the elastic zone. The rock 
mass in this area can be approximated as an elastic body, 
while the rock mass in the crushed zone and the fractured 
zone is seriously damaged by the blast stress wave. How-
ever, the boundary of the inelastic zone can be considered 
the blasting load equivalent boundary (Deng et al. 2020; 
Irazoqui et al. 2000) to study the propagation law of blast-
ing vibration.

Under the condition of a single blasthole cylindrical 
charge, the radius of the crushed zone (r1) and radius of 
the fractured zone (r2) can be expressed as (Yang et al. 
2012):

where σc and σt are the dynamic uniaxial compressive 
strength and dynamic uniaxial tensile strength of the rock 
mass, respectively; σ* is the dynamic compressive strength 
of the rock mass under multi-directional stress conditions; β 
is the propagation attenuation coefficient; μ is Poisson’s ratio 
of the rock. Generally, the radius of the crushed zone is 3~5 
times the radius of the charge, and the radius of the fractured 
zone is 10~15 times the radius of the charge.

If the interaction between the blastholes is not consid-
ered, the detonation of each cutting hole can be approxi-
mated as a short cylindrical cavity subjected to internal 
transient loads in a semi-infinite medium. Therefore, the 
effective boundary of the cutting section initiation can 
be approximated as the envelope of the multi-hole blast-
ing fractured zone (Esen et al. 2003; Liang et al. 2013). 

(12)r1 =

(
pcp

2

5�c

) 1

2( p0

�∗

) 1

4

rb

(13)r2 =

(
�p0

(1 − �)�t

) 1

�

rb

Page 3 of 10    631Arab J Geosci (2022) 15: 631



1 3

Non-cutting holes, such as auxiliary holes, penetrate 
through the axis of adjacent blastholes to destroy the 
thrown rock, and their void surface can be approximated 
as an equivalent boundary. Figure 2 is a schematic diagram 
of the equivalent radius (rd) of the cutting hole of the tun-
nel blasting.

Determination of the equivalent load of blasting 
load

According to the theory of detonation waves C-J of con-
densed charge, the initial detonation pressure p0 on the 
blasthole wall can be expressed as:

Under the condition of uncoupling charge, the initial 
detonation pressure on the blasthole wall is:

If the uncoupling coefficient is large, the explosion gas 
expansion must go through two processes.

where pe is the critical pressure of the explosive gas.
The initial detonation pressure can be expressed as 

follows:
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where ρe is the explosive density, γ is the isentropic coef-
ficient of the explosive, and da and db are the diameters of 
the cylindrical charge and the blasthole, respectively.

The variation law of the blasting load of a single blasthole 
with the distance from the blast area is:

where ζ is the load transmission index; for the crushed zone, 
ζ=2+μ/1−μ; for the fractured zone, ζ=2−μ/1−μ.

Considering the influence of the group of holes in the cut-
ting section on the equivalent blasting load, η is introduced 
as the influence coefficient of the blast load to simultane-
ously initiate multiple holes:

where n is the number of blastholes in the cutting section.
For the cutting section with multiple simultaneously deto-

nated blastholes, the equivalent blasting load is:

For noncutting holes, the blasting load is equivalently 
applied to the plane where the centerline of the blasthole 
and the axis of the blasthole are located. The equivalent load 
size is:

where s is the distance between adjacent blastholes.
Then, the improved attenuation equation for the vibration 

velocity can be written as:

Dimensional analysis

To verify the feasibility of the improved formula (22), a 
dimensional analysis is used to derive the velocity attenu-
ation equation of tunnel blasting vibration. Among the 
influencing factors, the rock density (ρ), longitudinal wave 
propagation velocity (cp), distance from the blast area (R), 
rock elastic modulus (E), and blasting load equivalent radius 
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Fig. 2  Schematic diagram of the equivalent boundary of cutting hole 
blasting
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(rd) are selected as the main influencing factors. Moreover, 
cp, R, and ρ are selected as independent dimensions; then:

According to the π theorem, Eq. (23) can be represented 
by 3 dimensionless numbers:

Therefore:

According to the dimensional harmony theorem:

For a specific tunnel project, E, cp, and ρ remain basically 
unchanged, so they can be converted into:

Equation (27) has the same form as the improved formula 
(22), which verifies the feasibility of the improved formula.
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Project background and monitoring plan

The blasting project of Chong-li Tunnel was used as the 
engineering background for subsequent research. The main 
tunnel passes through the existing villages with a mini-
mum vertical clearance of 18 m. The surrounding rock of 
the tunnel is designed to be grade III. Figure 3 shows the 
topographic map of the underpass section of the Chong-li 
Tunnel.

Blasting construction plan

According to the surrounding rock grade and geological con-
ditions of the tunnel, the tunnel is driven by full-face blast-
ing, as shown in Fig. 4. Table 1 shows the specific charge of 
blasting construction. The density of the surrounding rock is 
2630 kg/m3, the longitudinal wave velocity is approximately 
5500 m/s, the detonation wave velocity is 4500 cm/s, and the 
explosive density is 1 g/cm3.

Blasting vibration monitoring program

A TC-4850 N blasting vibration tester was used in the on-
site monitoring process. The blasting vibration meter is 
equipped with the three-axis vibration velocity sensor TCS-
B3, which can simultaneously collect the blasting vibration 
velocity in the three directions of X, Y, and Z. As shown in 
Fig. 5, the five measurement points horizontally adjacent to 
the tunnel were selected for this monitoring.

Fig. 3  Topographic map of the 
underpass section of the tunnel Tunnel construction direction

 Existing Village

N
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Regression analysis of on‑site measurement 
results

Table 2 is the results of two field experiments. As shown in 
Fig. 6, the blasting vibration speed excited by each detona-
tor can be clearly distinguished from the waveform time 
history diagram.

Table 2 shows that the vibration velocity in the Z direc-
tion is the largest among the three directions. Therefore, 
the subsequent analysis only focuses on the velocity in 
the Z direction. In addition, the PPVs corresponding to 
MS1 and MS9 are the largest. The PPVs corresponding 
to MS1 of the two blasting constructions are 1.99 cm/s 
and 2.33 cm/s, respectively. For comparison, the PPVs 
corresponding to MS9 are 1.58  cm/s and 2.02  cm/s, 

respectively. To predict the blasting vibration accurately, 
classification research should be conducted according to 
the blasthole type.

Regression analysis of PPV

Equation (22) is used in the regression calculation of the 
blasting vibration velocity, and the fitting results are shown 
in Fig. 7. It shows that Eq. (22) has a good fitting effect on 
the PPV induced by different detonator positions, and all 
correlation coefficients are greater than 0.8.

Figure  7 shows that the same model equation can 
express the PPV that corresponds to the same type of 
blastholes. For example, the PPV excited by multiple-
level detonators in the auxiliary hole shows a good linear 
fitting relationship, and the correlation coefficient is as 

Fig. 4  Layout of the blasthole
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Table 1  Specific charge for 
tunnel blasting

Type of blasthole Blasthole 
depth (m)

Detonator level 
(segment)

Number of 
holes (number)

Single-hole 
charge (kg)

Total charge (kg)

Cutting hole 4.0 MS1 16 2.7 43.2
Auxiliary hole 3.5 MS3 8 2.4 19.2
Auxiliary hole 3.5 MS5 17 1.8 30.6
Auxiliary hole 3.5 MS7 25 1.5 37.5
Auxiliary hole 3.5 MS9 30 1.5 45
Peripheral hole 2.5 MS11 25 1.2 30
Bottom plate hole 2.5 MS13 2 2.1 4.2

123 209.7
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high as 0.8770. Thus, it is feasible to uniformly fit and 
analyze the vibration velocities induced by the same type 
of blastholes, which saves calculation time and obtains a 
blasting vibration attenuation law that is more consistent 
with reality.

Form of charge of attenuation formula

To verify the superiority of the introduced fitting Eq. (22), a 
comparative analysis was conducted by introducing a com-
mon charge structure. For spherical charge blasting at one 
time, the charge quantity has the following relationship with 
the equivalent radius (Liu et al. 2018).

Therefore, Eq. (22) can be rewritten as:

Similarly, for the columnar charge, Eq.  (22) can be 
rewritten as:

(28)Q =
4
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Fig. 5  Layout of measuring 
points

Table 2  Peak blasting vibration velocity (PPV) and related parameters

Measuring 
point

Experiment R (m) PPV (cm/s)

Cutting hole Auxiliary hole Peripheral hole Bottom plate hole

MS1 MS3 MS5 MS7 MS9 MS11 MS13

5# I 27.58 1.99 1.04 1.22 1.29 1.58 0.84 0.38
4# 30.48 1.66 0.87 0.91 1.08 1.27 0.73 0.25
3# 36.89 1.34 0.72 0.46 0.89 1.23 0.62 0.20
2# 40.31 1.11 0.64 0.58 0.80 0.92 0.57 0.22
1# 49.24 0.98 0.56 0.48 0.61 0.76 0.46 0.23
5# II 20.39 2.33 1.2 1.61 1.68 1.95 1.25 0.70
4# 21.54 2.22 1.03 1.24 1.65 1.67 0.99 0.48
3# 25.26 2.01 0.97 1.15 1.50 2.02 1.14 0.44
2# 28.28 1.96 0.88 0.91 1.16 1.35 0.85 0.34
1# 36.48 1.55 0.89 0.80 1.12 1.28 0.69 0.26
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The regression analysis of the test data is performed using 
Eqs. (29) and (30). The comparison with the fitting effect of 
Eq. (22) is summarized in Table 3.

Table  3 shows that all correlation coefficients of 
Eqs. (29)~(30) are smaller than those of Eq. (22), but the 
correlation coefficients of cutting holes, peripheral holes, 
and bottom plate holes are not significantly different. How-
ever, for the auxiliary hole, the fitting coefficients obtained 
by Eqs. (29)~(30) are 0.4976 and 0.4370, respectively, which 
are much smaller than those obtained by Eq. (22). The above 
analysis proves that the charge form of the attenuation equa-
tion is better in fitting the blasting vibration induced by sin-
gle-segment detonators, but it is not suitable for analyzing 
blasting vibrations corresponding to multi-segment detona-
tors. The main reason for this difference is that the initiation 
of cutting holes, etc. is mainly affected by the maximum 
charge per delay. However, the auxiliary hole is composed 
of multiple sections of detonators, which makes the vibra-
tion speed that is excited by different levels have obvious 
differences. If the maximum charge per delay is used as the 
fitting parameter, it cannot truly reflect the law of blasting 
vibration.
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Fig. 6  Time-history waveform of the blasting vibration of the experi-
ment

Fig. 7  Fitting of attenuation of 
blasting vibration particles
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Conclusion

Based on the analytical solution of the stress wave of the 
short column charge, the blasting vibration attenuation for-
mula is deduced. Relying on specific blasting projects, a 
regression analysis was performed, and the following con-
clusions were obtained:

1. Based on short column charge theory, the concept of 
equivalent radius is introduced, and the blasting vibra-
tion attenuation model equation is theoretically deduced. 
It is verified through dimensional analysis.

2. The improved model can accurately predict the peak 
blasting vibration velocity for different detonator posi-
tions and apply to the fitting analysis of the PPV for 
different blasthole types.

3. By comparison, the fitting effect of the two charge forms 
of the blasting vibration attenuation formula is not as 
good as the improved formula, which proves that the 
attenuation model of blasting vibration introduced is 
suitable for practical engineering.
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