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Abstract

Forest aboveground biomass (AGB) measurement is a direct estimator of the live carbon stock of that forest region. Increas-
ing emission and concentration of CO, is a global threat as it is a major cause of today’s global warming. The forest AGB is
a live carbon sequester that plays a major role by absorbing atmospheric CO,. There are field-based measurement methods
of AGB, but the main disadvantage is that they are primarily destructive. Several authors have undertaken AGB estimation
using different remote sensing data types, but they are mostly not cost-effective for extensive study areas. We have created a
cost-effective algorithm for AGB estimation using multispectral (MSS) data. In this study, Indian Remote-Sensing Satellite-
P6 (IRS P6) Linear Imaging Self-Scanning Sensor-4 (LISS-IV) MSS data have been used for the analysis. The research has
tried to estimate the AGB of different types of forests existing in the study area by using various vegetation indices and the
gray-level co-occurrence matrix (GLCM) and created a hybrid methodology combining the vegetation indices and GLCM.
Among all vegetation indices, the simple ratio (SR) highly correlates with AGB of pure deciduous and coniferous forests.
In a mixed forest region, due to a mixture of two canopy stands, there is a mixture of foliage angle and optical scattering
distribution. Therefore, modified simple ratio (MSR) becomes dominant in mixed forest AGB estimation. Previously there
was no study to justify this GLCM texture parameter selection. In this study, we have justified the parameter selection of
GLCM texture statistics. This parameter selection will help researchers choose the proper GLCM texture parameter for
their study. Integration of GLCM textures with vegetation indices enhances the AGB model strength for all forest regions.
The deciduous forest map gives validation R> of 0.89 with an RMSE of 1.93 ton/pixel. The validation R? of the Coniferous
Forest map is 0.83 with an RMSE of 1.35 ton/pixel. There is a comparatively identifiable improvement in mixed forest with
validation R? of 0.96 and RMSE of 0.25 ton/pixel. This study shows AGB storage of deciduous forest has a maximum share
over other forest region of Kalimpong forest.
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Introduction

Greenhouse gases are a significant contributor to global
warming. Among all other greenhouse gases, CO, contrib-
utes the most to global warming. The forest AGB is a live
Responsible Editor: Biswajeet Pradhan sequester of emitted CO,. The assessment of forest above-
ground biomass (AGB) is an essential part of national devel-
opment planning as it incorporates the productivity of an
ecosystem, carbon budget, and etc. (Parresol 1999; Zianis
& Mencuccini 2004; Zheng et al. 2004; Hall et al. 2006).
In addition to the economic aspect, it dramatically impacts
global climatic variables.

Field-based AGB measurements were the standard meth-
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mountainous terrain where most of the area is inaccessi-
ble. Remote sensing has been mainly used to estimate forest
AGB as it is more economical and less time-consuming to
measure the AGB of a forest than field-based estimation.
Remote sensing methods are the only way to assess the AGB
of forests in hilly terrain with inaccessible tracts of land
parcels.

Researchers have studied different remote sensing
approaches. These approaches are majorly divided into two
parts: (1) optical or passive remote sensing and (2) active
remote sensing approach. In the active remote sensing-
based approach, researchers have mainly focused on the
synthetic-aperture radar (SAR)-based approach for monitor-
ing AGB. Among all SAR data, only L band data have pene-
tration capability through the surface canopy layer and then
get scattered back by the trunk and main branches (Blomb-
erg et al. 2018). The L band data to be used should have to
be cross-polarized (i.e., HV or VH) as cross-polarized data
can give the volumetric backscatter (Xiang et al. 2016) from
the tree trunks and branches that have a reasonable cor-
relation with the AGB of that forest (Luckman et al. 1997,
Kurvonen et al. 1999; Sun et al. 2002; Giinlii and Ercanli,
2020). Although the L band cross-polarized data have a
reasonable correlation with forest AGB, temporal meas-
urements of AGB at a specified period are very costly and
uneconomical. The researchers have studied optical data to
estimate forest AGB to make the estimation more economi-
cal. Multispectral and hyperspectral optical data have been
used to estimate forest AGB by different researchers all over
the globe. Although hyperspectral data demonstrates some
AGB estimation successes, the data suffers from the prob-
lem of band redundancy. The application of hyperspectral
data is significantly less in AGB estimation because of its
minimal availability (Hyperspectral data are mainly air-
borne and captured in small areas) (Lu et al. 2016).

Multispectral (MSS) data are the most used data for forest
AGB assessment among all other remote sensing data due to
the availability of its various spatial, spectral, radiometric,
and temporal resolutions. There are various MSS data avail-
able like Landsat-5 TM (Roy & Ravan 1996; Wylie et al.
2002; Foody et al. 2003; Phua & Saito 2003; Lu 2005; Lu
et al. 2005 (a); Du et al. 2012; Singh & Das 2014; Giinlii
et al. 2014; Barrachina et al. 2015; Das & Singh 2016),
Landsat-7 ETM + (Zheng et al. 2004; Avitabile et al. 2012),
Landsat-8 OLI (Ali et al. 2018; Li et al. 2018), Sentinel-2
(Askar et al. 2018; Ali et al. 2018; Pandit et al. 2018; Keles
et al. 2021), and LISS-3 (Kumar et al. 2013; Mayamanikan-
dan et al. 2017; Nandy et al. 2017), Aster (Fuchs et al. 2009).
Due to free availability and good spectral resolution, Landsat
series and Sentinel 2 are the most commonly used MSS data
for forest AGB estimation. Although the spatial resolution
of Sentinel 2 data does not meet the accuracy required in
the estimation of forest AGB, researchers are also using the
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high-resolution MSS data like IKONOS (Thenkabail et al.
2004; Kayitakire et al. 2006), Quickbird (Fuchs et al. 2009;
Sousa et al. 2015), Worldview (Obeyed et al. 2018), GeoEye
(Mareya et al. 2018), and RapidEye (Gascén et al. 2019)
for estimation of forest AGB. Due to high-cost involvement
and lack of availability of IKONOS data, it is challenging
to identify the AGB of a forest where regular monitoring is
required at a specific interval of time.

Previously, a few studies on AGB estimation have been
done by some researchers using Linear Imaging Self-Scan-
ning Sensor-4 (LISS-IV). Madugundu et al. (2008) used
LISS-IV data to estimate AGB by leaf area index (LAI)
determination and got an R? value of 0.63 between the esti-
mated and field-observed AGB of Haliyal and Yellapur For-
est Divisions, Western Ghats of Karnataka, India. On the
other hand, Pargal et al. (2017) studied the AGB of different
forest types of Yellapur Forest Division, Uttara Kannada
District, Western Ghats of Karnataka, India, with LISS-IV.
He used the vegetation index, NDVI, for his analysis. He got
R>=0.82 for his AGB model. Attri and Kushwaha (2018)
have used LISS-IV data on Barkot Forest Range, Dehra-
dun, India. For identification of AGB using NDVI, he got
R*=0.71 for his AGB model.

Very few studies apply gray-level co-occurrence matrix
(GLCM) texture parameters on AGB estimation. Lu and
Batistella (2005) and Lu (2005) have used eight textural
parameters of Landsat-5 TM data to identify AGB and got
maximum R?=0.68 and 0.71, respectively. Kayitakire et al.
(2006) have used GLCM of IKONOS data. He got an R? value
of 0.82. This work indicates that high-resolution GLCM tex-
tures have a high correlation with forest AGB. For AGB esti-
mation, some researchers have integrated both vegetation indi-
ces with the GLCM texture. Lu (2005) has used the integrated
model with Landsat-5 TM data and got R?=0.77. Fuchs et al.
(2009) have used coarse resolution ASTER data and high-
resolution Quickbird data and got R*>=0.63 and 0.69, respec-
tively. Avitabile et al. (2012) had used Landsat-7 ETM + data
and got R*=0.81. Nandy et al. (2017) had used LISS-3 data
and got R*=0.746. Gascén et al. (2019) had used RapidEye
data and got R*=0.69 for their AGB models.

The forest region of Kalimpong has dense forest cover.
There is no study available on the estimation of AGB of
Kalimpong forest. Due to a gradual increase in human habi-
tation, deforestation is a significant concern for these forests.
In addition to this, monitoring of AGB is one of the essential
measures to identify forest health. Kalimpong is hilly ter-
rain, with most places inaccessible for collecting physical
measurements of forest AGB due to stiff slopes. Not only
stiff slopes but several reserve forests, protected forests, and
Indian army-occupied forest regions are not permitted entry
due to government rules. Therefore, physical identification
and forest inventory-based sample collection are challeng-
ing in the Kalimpong forest region. For delineating these
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problems of the study area, this research attempted to identify
a cost-effective method for AGB estimation, which can be
used by the authorities for the measurement of AGB peri-
odically. In this work, MSS data that is IRS P6 LISS-1V,
which is a meager cost high-resolution data, have been used
to create a cost-effective, accurate methodology for estimat-
ing AGB. There are few studies on AGB estimation using
vegetation indices of high-resolution LISS-4 data. However,
no study is available on the relationship of GLCM-based
texture parameters of LISS-4 bands with AGB of the forest.
There is no study on the impact of forest vegetation indices
and textures of spectral response with AGB of different forest
classes present in Himalayan Forest regions. An attempt has
also been made to identify whether the integration of texture
and vegetation indices influences the improvement of AGB
measurement.

This study has been made to identify the models using
LISS-4 generated vegetation indices and GLCM-based tex-
ture parameters with AGB of different forest types (conif-
erous, deciduous, and mixed) of the Kalimpong district.
The best fit models have been correlated to come out with
models using vegetation indices and the GLCM parameters
to increase the accuracy of assessment of AGB of various
types of forest in the study area.

Materials and methods
Study area

The Kalimpong district of West Bengal, India is a part of
the north-eastern Himalayan region. It lies between 27°
11" 44" N to 26° 51" 40" N latitude and 88° 23’ 16" E and
88° 53" 00" E longitude. The areal extent of the Kalim-
pong district is 1095.18 km? (Fig. 1). The mean monthly
temperature of this area lies between 30 and 9 °C. The
annual average rainfall is 2200 mm. The forests under the
Kalimpong district mostly fall under the Kalimpong For-
est Division of West Bengal Forest Development Corpo-
ration (WBFDC), excluding the area under Neora Valley
National Park that had been handed over to Wild Life Wing
Forest Directorate. The elevation of the study area ranges
from 150 to 3700 m. The upper altitude region consists of
evergreen alpine coniferous forest, and the lower altitude
is covered by temperate deciduous forest. Being a hilly
location, most of the forested area is inaccessible, and the
accessible places also pose difficulty in collecting the field
data. Additionally, shadows of the hills cause many prob-
lems in using satellite data in the study area. Only mini-
mal data are available for reliably estimating the existing
forest biomass in the Kalimpong district of West Bengal.
Deforestation due to the increasing pressure of the growing
population and frequent landslides on many forested slopes

are affecting the biomass stock in that region, so estimat-
ing actual biomass present in that region is necessary to
monitor the forests. The detailed methodology flowchart
is shown in Fig. 2.

Field inventory data collection and AGB estimation

A total of 59 random sample plots were collected from the
different forests of Kalimpong in places that are acces-
sible. There were 18 coniferous forest plots, 26 deciduous
forest plots, and 15 mixed forest plots. The field plots
were established using purposive sampling (Nesha et al.,
2020) due to the constraints of accessibility in the pres-
ence of steep slopes and also administrative permissions.
Picea rubens and Juniperus virginiana were the major
species found in coniferous forests. In the deciduous for-
est, the primary species were Tectona grandis, Garuga
pinnata, Toona ciliate, Holarrhena pubescens, Albizia
procera, Shorea robusta, Alnus nepalensis, Terminalia
myriocarpa, Quercus pachyphylla, Bucklandia populnea,
Alnus nepalensis, Ficus cunia, Schima wallichii, Michelia
champaca, and etc. The diameter at breast height (DBH),
tree height, wood density, and plot area were collected
from the field. The details of field inventoried data of the
sample areas in coniferous, deciduous, and mixed forests
are shown in Table 1.

The field plot distribution has been shown on the LISS-
IV MSS data (Fig. 1). The field estimation of AGB has been
calculated from this field-collected inventory data.

The AGB was calculated using the volumetric conversion
method (Brown & Lugo 1992). AGB density (t/ha)=F

Aboveground biomass density (t/ha) = VOB * WD x BE
ey
where VOB =volume over bark; WD =volume-weighted
average wood density (tons/m> or g/cm?); and BEF =bio-
mass expansion factor (ratio of oven-dry AGB of trees to

oven-dry biomass of inventoried volume). (Brown, 1997).
Volume over bark (VOB) has been calculated using
the DBH value and the height. Using VOB per hector and
volume-weighted average wood density, the biomass of the
inventoried volume has been calculated. Biomass expansion
factor (BEF) has been calculated using the biomass of the
inventoried volume. Volume expansion factor (VEF) has
been calculated using the VOB, (i.e., this VOB includes
the DBH of trees having a minimum diameter greater than
30 cm) value. VOB (i.e., this VOB includes the DBH of
trees having a minimum diameter greater than 10 cm) has
been calculated using the volume expansion factor and
VOB, Finally, AGB has been calculated using VOB10,
biomass expansion factor, and volume-weighted average
wood density. The AGB in tons/ha of all the 59 plots meas-
ured in the field has been calculated using this methodology.

@ Springer
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Fig.2 Methodology flowchart

Table 1 Details of field inventoried data distribution

Forest type DBH range (cm) Height range (m) Wood density Plot area range(mz) Tree density range (ha™h Num-
range (gm/cc) ber of
plot
Coniferous forest 12.73-92.30 6.00-22.50 0.375-0.45 95.00-407.17 395.97-1894.17 18
Deciduous forest 11.14-178.25 2.00-30.00 0.255-0.840 50.00-650.98 127.44-1720.43 26
Mixed forest 11.78-133.69 2.00-20.00 0.375-0.840 100.00-625.00 279.27-1324.71 15

Finally, the AGB thus calculated was divided into three
classes: coniferous, deciduous, and mixed type of forest for
further analysis. It has been found that among 59 plots, there
are 18 coniferous forest plots, 26 deciduous forest plots,
and 15 mixed forest plots available. We have divided these
data into 70% training sample plots (i.e., those sample plots
have been used to correlate and model making) and 30%

test sample plots (i.e., those sample plots have been used to
validate the model).

WD = {(V1/V1) * WD1} + {(V2/V1) * WD2} + ........... {(Vn/ V1) % Wdn}

()
where V|, V,,.... Vn=volume of species 1, 2,.. to the nth
species and V,=total volume WD,, WD,,..... Wd, =wood
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density of species 1, 2,...... to the nth species. (Brown,

1997)

BEF = Wabnveground (3)
bole

where BEF =biomass expansion factor (dimensionless)
(Brown, 1997);

Waboveground = Wbole + Wcrown 4)

where W, =tree crown dry weight (kg), composed of foli-
age, thick and thin branches; W, . =tree bole dry weight

(kg) (i.e., trunk weight) (Brown, 1997).

BEF = e{3.213—0.506*log(BV)}f0rBV<l 90t /ha}

= 1.74forBV > 190t /ha
= 1.3(coniferous)

(Deciduous)  (5)

where BV = biomass of inventoried volume in t/ha, calcu-
lated as the product of VOB/ha (m*/ha) and wood density
(t/m?) (Brown, 1997).

VOB, ©)

VEF = {1:300-0209+10g(VOB3)} \ forVOB30 < 250m3/ha
=1.13 forVOB30 > 250m3 /ha

@)

LISS-IV data accusation

Two cloud-free scenes of IRS P6 LISS-IV were acquired
for Kalimpong district from NRSC, Hyderabad, India.
Those images were geometrically and atmospherically
corrected. LISS-IV data have a swath of 70 km. It consists
of three spectral bands: B2 (green (0.52-0.59 mm)), B3
(red (0.62-0.68 mm)), and B4 (NIR (0.76-0.86 mm)). The
details of those LISS-IV scenes are given in Table 2. The
landuse landcover, forest class map, and vegetation indices
of Kalimpong forest have been calculated from this data
with the help of the ERDAS Imagine software.

Preparation of forest classification map

The landuse and landcover map has been prepared using
a supervised classification based on the field-observed

training data points with a maximum likelihood algorithm.
The study area has been classified into eight classes: for-
est, agriculture, waterbody, settlement, barren land, open
scrub, tea garden, and sand over the Kalimpong district.
Processing of images has been done using a supervised
classification based on collected training sets. Among all
classes, the forest areas have the maximum coverage of
about 817.01 km? (about 74.57% of the total Kalimpong
district). Other than forest, the agricultural land has cov-
erage of about 89.91 km? (8.21%); settlement has cover-
age of about 89.58 km? (8.17%), open scrub has coverage
of about 44.77 km? (4.08%), waterbody has coverage of
about 24.13 km? (2.20%), barren land has coverage of
about 20.38 km? (1.85%), tea garden has coverage of about
9.07 km? (0.83%), and the sand deposit has coverage of
about 0.73 km? (0.066%). The landuse landcover map has
been validated using field-collected 191 test datasets. An
accuracy of 87.96% and an overall Kappa 0.81 have been
achieved for this landuse landcover map (Fig. 3 (a)). The
confusion of landuse and landcover distribution is shown
in Table 3.

The forest class map (Fig. 3(b)) has been prepared
by extracting the landuse classified forest area from the
LISS 4 MSS data using a supervised classification of the
extracted LISS 4 MSS data. The distribution of forest cover
is described in Table 4. The forest map has been validated
using field-collected 150 test datasets. An accuracy of
89.33% and an overall Kappa 0.80 have been achieved for
the forest map. The confusion of landuse and landcover dis-
tribution is shown in Table 5.

Estimation of vegetation indices

From the spectral response curve of the vegetation
region, it is identified that the blue and red reflectance
is significantly less in the visible spectrum than green.
However, there is a sudden increment in reflectance
from vegetation beyond the visible range in the infra-
red region. Red reflectance is sensitive to chlorophyll
content, and the near-infrared reflectance is sensitive to
the mesophyll structure of leaves. The higher the differ-
ence between the red and near-infrared reflectance, the
higher the green vegetation present in that pixel. Using
this spectral phenomenon of vegetation, researchers have
developed several vegetation indices to relate the bio-
physical parameters of vegetation, like leaf area index,

Table 2 Details of LISS-IV data

Product ID  Path Row Subscene No.of bands Date of pass  Shift (%) No. of band Spatial
resolution
(m)

184,811,411 107 052 D 3 12-NOV-2017 0 3 5

184,811,421 107 052 C 3 19-OCT-2017 0 3 5

@ Springer
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Table 3 Confusion matrix Agriculture  Forest  Settlement  Water Barren Tea Open Sand Reference  Producers
of landuse and landcover body land garden scrub Totals Accuracy
distribution Classified
Agriculture 12 1 2 0 0 0 0 0 15 80.00%
Forest 6 107 0 0 0 0 0 0 113 94.69%
Settlement 0 0 26 2 0 0 0 0 28 92.86%
Waterbody 0 0 2 5 0 0 0 0 7 71.43%
Barren land 0 0 2 0 3 0 0 0 5 60.00%
Teagarden 0 2 0 0 0 4 0 0 6 66.67%
Open scrub 0 0 0 0 1 2 9 1 13 69.23%
Sand 0 0 0 0 1 0 1 2 4 50.00%
Classified 18 110 32 7 5 6 10 3 191
Totals
Users 66.67% 97.27% 81.25% 7143%  60.00%  66.67%  90.00%  66.67%
Accuracy
Table 4 Forest distribution of Kalimpong district percentage vegetation cover, a fraction of absorbed
hoto-synthetically active radiation (FAPAR), photosyn-
Class name Count Area (kmz) Percentage p i y X y . ( )- p y
areal cover thetic capacity, and carbon dioxide fluxes, and also, they
(%) identified a relationship between the forest biomass. In
Decid : 20.160389.00 504,01 6169 our study, six vegetation indices generated from the high-
eciduous forest ,160,389. X R .
Conif . 897512800 206.88 5532 resolution LISS-IV data have been correlated to measure
oniferous forest ,275,128. . . . .
. the AGB of Kalimpong forest. The selected vegetation
Mixed forest 4,245,060.00  106.13 12.99 .. . .
indices are as given in Table 6.
Total 32,680,577.00  817.015 100.00
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Table 5

Confusion matrix of

forest distribution Reference
Deciduous Coniferous Mixed R?rfe:e;l ce l;roducers
Classifie otals ccuracy
Deciduous 72 4 2 78 92.31%
Coniferous 8 56 0 64 87.50%
Mixed 2 0 6 8 75.00%
Classified
Totals 82 60 8 150
Users Accuracy 87.80% 93.33% 75.00%
Table 6 List of vegetation indices that have been correlated with forest AGB
Indices  Full form Equation References
SR Simple ratio SR =NIR/RED Pearson and Miller (1972)
NDVI Normalized difference vegetation index NDVI=(NIR —RED)/(NIR + RED) Rouse et al. (1974)
TVI Transformed vegetation index TVI=(NDVI+0.5)NDVI + 0.5[*(NDVI + 0.5)*> Perry and Lautenschlager (1984)
SAVI Soil adjusted vegetation index SAVI=1.5%(NIR —RED)/(NIR+RED+0.5) Huete (1988)
RDVI Renormalized difference vegetation index ~ RDVI=(NIR — RED)/\/ (NIR + RED) Roujean and Breon (1995)
MSR Modified simple ratio MSR = (NIR/(RED-1))/A/(NIR /(RED + 1)) Chen (1996)

Relationship between AGB of different forests
with vegetation indices

The whole field-collected dataset is divided into three major
parts according to the forest classification, i.e., deciduous,
coniferous, and mixed. Furthermore, the dataset is divided
into training (70%) and testing (30%) datasets to establish
the model and validate that model. The different vegetation
indices are compared to identify the correlation (Pearson
correlation) with AGB for each forest class individually. The
AGB density has been converted into AGB of each pixel.
Those per pixel AGB have been correlated with vegetation
index of that pixel generated from LISS-IV data. Plot-wise
vegetation index distribution of coniferous, deciduous, and
mixed forest AGB are shown in Appendix Tables 22, 23 and

24 respectively. The correlations of vegetation indices with
AGB are shown in Table 7.

Among all vegetation indices, simple ratio (SR) has the
maximum correlation in coniferous (r=0.81) and decidu-
ous (r=0.75) forest. In mixed forest, modified simple ratio
(MSR) has maximum correlation (r=0.84). The relationship
between AGB of coniferous, deciduous, and mixed forests is
shown in Fig. 4 a, b, and c, respectively.

Estimation of GLCM (gray-level co-occurrence
matrix)-based texture parameters

The GLCM-based texture parameters show different com-
binations of a pixel’s gray-level occurrence in an image
scene by relating with its neighborhood pixel’s gray value.

Table 7 Correlation (r) of

; ) Forest type MSR NDVI RDVI SAVI SR TVI

different forest AGB with

vegetation indices Coniferous 0.80 0.79 0.75 0.79 0.81 0.79
Deciduous 0.70 0.62 0.61 0.63 0.75 0.60
Mixed 0.84 0.80 0.74 0.80 0.81 0.80
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Fig.4 Relationship between AGB of coniferous (a), deciduous (b), and mixed (c) with vegetation indices

This study generated ten second-order statistics from the
GLCM of 3 bands of LISS-4 data (i.e., 30 GLCM texture
parameters). Those texture maps have been correlated with
the AGB of three different types of forests of Kalimpong.
The details of those GLCM second-order statistics are given
below (Tables 8 and 9).

The description of notations of the equations given in
Table 8 is as follows:

P(i,j) = (i,j)th entry in a normalized gray-tone spatial
dependence matrix. (i,j) stands for the number of times gray
tones i and j have been neighbors; u and ¢ are the mean and
standard deviation respectively (Haralick et al. 1973).

Relationship between AGB of different forests with GLCM
parameters

The details of training data of coniferous, deciduous, and
mixed forest AGB with the all GLCM texture features are
in Appendix, Tables 25, 26, 27, 28, 29, 30, 31, 32 and
33. The correlation of AGB with GLCM parameters is
given in Table 10. It has been identified that (Table 9)
among all GLCM textures, angular second moment of the
green band (ASM_GREEN), homogeneity of the red band
(HOM_RED), and entropy of infrared band (ENT_IR) have
a maximum correlation with AGB of coniferous forest. In
the deciduous forest, the entropy of green (ENT_GREEN),
red (ENT_RED), and infrared (ENT_IR) has the highest
correlation with AGB. Similarly, the contrast of green
(CON_GREEN), infrared (CON_IR), and entropy of red
(ENT_RED) have the highest correlation with mixed for-
est AGB.

The relationships between the highest correlated GLCM
texture features with AGB of coniferous forest (Fig. 4a, b, ¢),
deciduous forest (Fig. 4e, f, g), and mixed forest (Fig. 5h, i, j)
have been chosen for establishing GLCM-based multi-linear

regression (MLR) models for estimation of AGB of conifer-
ous forest (Table 11), deciduous forest (Table 12), and mixed
forest (Table 13).

Model developed by combining vegetation indices
with the GLCM texture parameters

Results

In vegetation index-based models, SR generated models were
used for the coniferous and deciduous forests to generate an
AGB distribution map of both forests. Similarly, the mixed
forest AGB distribution map was generated using the MSR
generated model. Those maps have been validated using
30% of the test datasets. The validation plots are shown in
Fig. 6a, b, and c for coniferous, deciduous, and mixed forest,
respectively.

Among all GLCM-based MLR models, model 7 has the
highest R? with AGB of coniferous forest (Table 11). Also,
deciduous forest model 7 has the highest R? (Table 12), and
mixed forest model 7 has the highest R? (Table 13). Those
GLCM-based parameters have been used to generate AGB
distribution maps. Those maps have been validated using
30% of the test datasets. The validation plots are shown in
Fig. 7a, b, and c for the coniferous, deciduous, and mixed
forest, respectively.

The model 7 of the combined model of all forests has the
highest R? (Tables 14, 15, 16) with AGB. That shows the
importance of all the chosen parameters. These combined
models have been used to generate AGB maps of each for-
est. Those maps have been validated using 30% of the test
datasets. The validation plots are shown in Fig. 8a, b, and c
for the coniferous, deciduous, and mixed forest, respectively.
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Table 8 GLCM second-order statistics

2nd order statistical feature Significance Formula Reference
Second moment (ASM) e Also called uniformity ASM = Zi Z]_ i * p(, j)2 Haralick et al. (1973)
eMeasures the pixel pair uniformity that is pair
repetition

eDetects disorder in texture

Entropy (ENT) eMeasure the disorder and complexity of an image
eThe entropy is large when the image is not textur-
ally uniform
eComplex texture tends to have high entropy
oENT is strongly but inversely proportional with
the SEM

Contrast (CON) eMeasures the spatial frequency of the image pixel
and difference moment of GLCM
o]t is the difference between the highest and lowest
values of contiguous set of pixels
o]t measures the local variations present in the
image
Homogeneity (HOM) e Also called as inverse distance moment
eMeasure image homogeneity as it assumes larger
values for the smaller gray-tone difference
o]t is very sensitive to the near diagonal element in
the GLCM
oHOM decreases when CON increases keeping the
SEM constant

Variance (VAR) oThis statistic is a measure of heterogeneity and is
strongly correlated to first-order statistical vari-
able such as standard deviation

o VAR increases when the gray level of a pixel dif-
fers from their mean

Dissimilarity (DIS) eInstead of weights increasing exponentially as
one moves away from the diagonal as contrast
did, dissimilarity weights increase linearly

Correlation (COR) o]t passes the calculation of the correlation of
a pixel and its neighbor over the whole image
means it figures out the linear dependency of
gray levels on those of neighboring pixels

Maximum probability (MAX) eThis is simply the largest entry in the matrix, and
corresponds to the strongest response

Mean (MEAN) eSmall mean values ud indicate coarse texture
having a grain size equal to or larger than the
magnitude of the displacement vector

Energy (ENG) e Since energy is used for doing work, thus orderli-
ness
o]t makes use for the texture that calculates orders
in an image

ENT =Y, Zji x p(i,)) * In(—p(i,)) Haralick et al. (1973)

CON=Y, Zj (i — j)* = p(i,j)Haralick et al. (1973)

HOM =Y, Zj_ %Haralick et al. (1973)

VAR = Zi Zj (i — ﬂ;)z % p(i, ) Haralick et al. (1973)

DIS = Zl. Z; |i —j| * p(i,j)Haralick et al. (1973)

;e (=) (G—p) i
COR=Y, ij(l,j)z * f‘(zl #) Haralick et al. (1973)

o

MAX =max(p(i,j)) Haralick et al. (1973)

MEAN = %, i * p(i,j) Haralick et al. (1973)

ENG =Y, Zi p(i, j)* Haralick et al. (1973)

Table 9 The choice of GLCM property for this study

GLCM property  Selected Reason

parameter
Window size 5%5 Minimum size of window available is 5x 5. Increase in window size tends to data loss, so generally minimum
window size should be chosen
Direction (0) All Homogeneous class present. As we are doing GLCM for a particular landuse class (i.e., forest)
Quantization level 128 Maximum available in SNAP 7.0. Increase in radiometric resolution implies less loss of gray-level variation and
good contrast
Displacement (5) 2 We are using LISS-4 bands whose pixel size is 5 m and our average plot size is 15.23 m, so in all direction (i.e.,

horizontal (10 m), vertical (10 m), and diagonal (10\/ 2) m), the maximum neighborhood pixel will cover for

our plot size
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Table 10 Correlation among
AGB with all 10 GLCM
parameters ASM CON COR DIS ENG ENT HOM MAX MEAN VAR

Forest class Bands GLCM texture features

Coniferous Green -0.58  0.01 000 005 -0.56 050 -052 -056 -0.02 -0.04
Red  0.20 015 024 010 020 0.10 060 055 0.18 0.22
IR -057 =039 042 -028 -0.60 0.63 -046 -0.59 0.20 0.13

Deciduous Green -0.57 -0.10 0.10 -0.02 -0.58 063 -0.08 -037 -0.13 -0.21
Red -045 009 -005 020 -050 064 -037 -036 -021 -0.28

IR -049 -0.06 023 -0.08 =053 059 -0.15 -0.38 0.14 0.12
Mixed Green —0.38 0.69 -0.61 069 -042 051 -0.53 -0.18 =033 -0.31
Red -0.53 0.57 -0.38 062 -0.56 0.64 -059 -0.51 -033 -0.34
IR —-0.64 0.71 -0.56 061 -0.66 0.59 -0.59 -0.68 -040 -0.37
ASM_GREEN vs AGB of (a) HOM RED vs AGB of (b) ENT IR vs AGB of coniferous  (¢)
3 coniferous forest g coniferous forest 8 forest
.. _ ...
ER ° %6 %6 o
! el £
g4 .\‘\‘\ e c ° fo
) © I g2 ©
X - . 3
AGB = 6.8828¢-3.322.ASM_GREEN < AGB = 10.194*HOM_RED - 0.3108 AGB= 1.6716*ENT_IR - 6.8163
0 R2=0.36 0 R2=0.36 0 R2=0.40
0 0.2 0.4 0 0.2 0.4 0.6 0.8 4 5 6 7 8
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Fig.5 Relationship between AGB of coniferous forest (a-c), deciduous forest (d-f), and mixed forest (g-i) with GLCM texture features
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Table 11 GLCM-based MLR model of coniferous forest

Model Variable used Number  Relationship Model coefficient of
of vari- determination (R?)
ables
1 ENT_IR 1 AGB=1.6716*ENT_IR - 6.8163 0.39
2 HOM_RED 1 AGB=10.194*HOM_RED —-0.3108 0.36
3 ASM_GREEN 1 AGB =6.8828*EXP(—3.322*ASM_GREEN) 0.32
4 ENT_IR HOM_RED 2 AGB =0.747852775205543*(1.6716*ENT_IR — 6. 0.55
8163)+0.709798271592606%(10.194*HOM_RED
—0.3108)—2.12726005289109

5 ENT_IR ASM_GREEN 2 AGB=0.722797147512587*(1.6716*ENT_IR - 6. 0.43
8163)+0.48894381212065*(6.8828*EXP(—3.322*
ASM_GREEN)) —0.872661130154658

6 HOM_RED ASM_GREEN 2 AGB =0.840471355012151%(10.194*HOM_RED 0.56
—0.3108)+0.891276320429085%(6.8828*EXP(— 3.
322* ASM_GREEN)) —3.19822262062676

7 ENT_IR HOM_RED ASM_GREEN 3 AGB=0.416826165533434*(1.6716*ENT_IR—6. 0.59

8163)+0.736781544062229%(10.194*HOM_RED
—0.3108)+0.566954200560853*(6.8828*EXP(— 3.
322*ASM_GREEN)) —3.22008711022198

Table 12 GLCM-based MLR model of deciduous forest

MODEL  Variable used Number of  Relationship Model coefficient of
variables determination (%)
1 ENT_RED 1 AGB =0.014*EXP(0.902*ENT_RED) 0.570
2 ENT_GREEN 1 AGB =0.0014*EXP(1.257*ENT_GREEN) 0.427
3 ENT_IR 1 AGB =0.0037*EXP(0.9324*ENT_IR) 0.381
4 ENT_RED ENT_GREEN 2 AGB =(1.5433980367221*0.014*EXP(0.902*ENT_ 0.577
GREEN)) —1.44544606367556 +(0.282939580666907*0.0014*EXP
(1.257*ENT_RED))
5 ENT_RED ENT_IR 2 AGB =(1.46676608709125%0.014*EXP(0.902*ENT_ 0.600
RED)) —2.17026188620024 + (0.699734945044056%0.0037*EXP(0.
9324*ENT_IR))
6 ENT_GREEN ENT_IR 2 AGB = —1.51122384874277 +(0.879675944870026*0.0014*EXP(1 0.492
257*ENT_GREEN)) +(1.03958495058038*0.0037*EXP(0.9324*
ENT_IR))
7 ENT_RED ENT_GREEN ENT_IR 3 AGB =(1.36808932689061%0.014*EXP(0.902*ENT_ 0.601

RED)) —2.14064136681706 + (0.126598738500455%0.0014*EXP(1
257*ENT_GREEN)) + (0.654767397041001*0.0037*EXP(0.9324*
ENT_IR))

The detailed model statistics generated from vegeta-
tion indices, GLCM, and combined model are discussed in
Table 17.

Discussions

The study area is hilly terrain with 74.57% of the forest
where most places are inaccessible. There is an urgent
need to identify the biomass content of the district. This
biomass measurement is for regulatory measures to

@ Springer

control the degradation of forests and maintain the for-
est’s health. Keeping this objective in view, this work
envisages creating a methodology that will be economical
for periodically measuring biomass of the district. There
are many options available today for biomass measure-
ment by remote sensing methods, but in this work, LISS-4
data was selected to keep the investigation cost as low as
possible.

A few studies were available on the applicability of
LISS-4 data as an AGB estimator to date. Madugundu et al.
(2008) used LISS-IV generated NDVI to estimate LAI as
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Table 13 GLCM-based MLR model of mixed forest

MODEL Variable used Number  Relationship Model coefficient of
of vari- determination (%)
ables
1 ENT_RED 1 AGB=1.6644.ENT_RED - 6.8199 0.41
2 CON_GREEN 1 AGB =0.0016.CON_GREEN + 1.556 0.48
3 CON_IR 1 AGB =0.0035CON_IR***!? 0.53
4 ENT_RED CON_GREEN 2 AGB =(0.810693126890302*(0.0016*CON_GRE 0.68
EN+1.556))+(0.732092547693519%(1.6644*E
NT_RED-6.8199)) — 1.46594719942554

5 ENT_RED CON_IR 2 AGB =(0.448356701350558*(1.6644*ENT_RED 0.55
—6.8199)) +(0.798423143874*(0.0035*CON_
IR70.9419)) —0.511750556935335

6 CON_GREEN CON_IR 2 AGB =(0.633454237941903*(0.0016*CON_GRE 0.63
EN+1.556))+(0.726385062436259*(0.0035*C
ON_IR"0.9419)) —0.817943435431242

7 ENT_RED CON_GREEN CON_IR 3 AGB =(0.686568955851643*(0.0016*CON_GRE 0.70

EN+1.556))+(0.543699516368457*(1.6644*E
NT_RED —6.8199)) +(0.332029299588111*(0.0035
*CON_IR"0.9419)) — 1.45435355281016
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Coniferous forest using the SR
model

R2=0.8652
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(b) ©
Flel.d observed vs pfedlcted AGB of Field observed vs predicted AGB of
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Fig. 6

Validation plot between observed and predicted AGB of coniferous (a), deciduous (b), and mixed (c) forest using vegetation indices
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Fig. 7 Validation plot between observed and predicted AGB of coniferous (a), deciduous (b), and mixed (c) forest using GLCM-based models
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Table 14 MLR-based combined modeling for coniferous forest

Model Variable used

Number of
variables

Relationship

Model coefficient of
determination (%)

1 SR ENT_IR

HOM_RED

ASM_GREEN

ENT_IR HOM_RED

ENT_IR ASM_GREEN

HOM_RED ASM_GREEN

ENT_IR HOM_RED ASM_GREEN

2

AGB =(0.900518947504234*0.7524*EXP(0.558
4*SR))+0.459062580854248%(1.6716%*ENT_
IR—6.8163)—1.58507716896411

AGB =(0.927435539812124%0.7524*EXP(0.5584

0.7479

0.8017

*SR)) +0.603653709026976*(10.194*HOM_RED —0.3108)

—2.37985615137042
AGB =(0.993902940489857%0.7524*EXP(0.5584

0.6951

*SR)) +0.237232280888233%(6.8828*EXP(—3.322*ASM_

GREEN)) —0.925090916245941

AGB =(0.816223764075035%0.7524*EXP(0.5584
*SR)) +0.322871080378063%(1.6716*HOM_RED
—6.8163)+0.525904860894667*(10.194*ENT_
IR —0.3108) —3.01287046960345

AGB =(0.933436676678785*%0.7524*EXP(0.558
4*SR))+0.524505729230038*(1.6716*ASM_
GREEN - 6.8163) —0.150304941066467%(6.8828*EXP(-
3.322*ENT_IR)) — 1.37474112385736

AGB =(0.838512229643216%0.7524*EXP(0.5584
*SR)) +0.601272697403676*%(10.194* ASM_GREEN —
0.3108) +0.225654108380577*(6.8828*EXP(—3.322*H
OM_RED))—-2.96139563179597

AGB =(0.820297320671545%0.7524*EXP(0.5584
*SR)) +0.330865636425123*%(1.6716*ASM_GREE
N-6.8163)+0.524162541451282%(10.194*HOM _
RED -0.3108)—0.0173250138195351%(6.8828*EXP
(—3.322*ENT_IR)) —2.9838956546503

0.8307

0.7506

0.8106

0.8308

Table 15 MLR-based combined modeling for deciduous forest

MODEL Variable used

Number
of vari-
ables

Relationship

Model coefficient of
determination (%)

SR

SR

SR

SR

SR

SR

SR

ENT_RED

ENT_GREEN

ENT_IR

ENT_RED ENT_GREEN

ENT_RED ENT_IR

ENT_GREEN ENT_IR

ENT_RED ENT_GREEN ENT_IR

2

4

AGB =0.847644073680865*0.2615*EXP(0.6789
*SR)+0.804215940553931*0.014*EXP(0.902*
ENT_RED) —1.20380427014967

AGB=1.09101917779112*0.2615*EXP(0.6789
*SR)+0.195824526570449*%0.0014*EXP(1.257*
ENT_GREEN) —0.341026676494041

AGB =1.08414333702256%0.2615*EXP(0.6789
*SR)+0.35624190867026*0.0037*EXP(0.9324*
ENT_IR)—-0.65584228760595

AGB=0.921421457720776*0.2615*EXP(0.67
89*SR) —0.300907742481*0.0014*EXP(1.257*
ENT_GREEN) + 1.00389087049466*0.014*EXP(0.
902*ENT_RED) —1.13955531800184

AGB=0.836792020732083*0.2615*EXP(0.678
9%SR)+0.790326869665679*0.014*EXP(0.902*
ENT_RED) +0.0540701857301251%0.0037*EXP(0.
9324*ENT_IR) - 1.26575949017129

AGB=1.03200167900364*0.2615*EXP(0.6789
*SR)—0.131125618814277*0.0014*EXP(1.257*
ENT_GREEN) +0.299745975191922*0.0037*EXP
(0.9324*ENT_IR) —0.716369085328599

AGB=0.901864914911025*0.2615*EXP(0.678
9*SR) —0.31626023959724*0.0014*EXP(1.257*
ENT_GREEN) +0.984231244376142*%0.014*EXP
(0.902*ENT_
RED)+0.116195076761434*0.0037*EXP(0.9324*
ENT_IR)—1.2694170570619

0.7367

0.6866

0.6895

0.7436

0.7369

0.6912

0.7442
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Table 16 MLR-based combined modeling for mixed forest

MODEL  Variable used Number Relationship Model
of vari- coefficient
ables of determi-
nation (%)
1 MSR  ENT_RED 2 AGB =(0.774296358673027#2.4128**MSR”2.8338) + (0.433793896048752*(1.6644*E 0.78
NT_RED-6.8199))—0.517212125667856
2 MSR  CON_GREEN 2 AGB=(0.742121701215775%2.4128*MSR”2.8338) + (0.612148654494936*(0.0016*C 0.86
ON_GREEN + 1.556)) —0.902314039809311
3 MSR  CON_IR 2 AGB =(0.723404122249626%2.4128*MSR"2.8338) + (0.629628882885919*%(0.7872*EXP(  0.85
0.001*CON_IR))) —0.788097497406977
4 MSR  ENT_RED CON_ 3 AGB =(0.629358242238062%2.4128*MSR”2.8338) + (0.571689969130797%(0.0016*C 0.90
GREEN ON_GREEN + 1.556)) 4+ (0.350840410548309*(1.6644*ENT_RED — 6.8199)) — 1.4542
4388347297
5 MSR  ENT_RED CON_IR 3 AGB =(0.710475923449143%2.4128*MSR"2.8338) + (0.0736191328641494*(1.6 0.86
644*ENT_RED — 6.8199)) + (0.588819137581949*(0.7872*EXP(0.001 *CON_
IR))) —0.852088124202343
6 MSR  CON_GREEN CON_IR 3 AGB =(0.661096297817618%2.4128*MSR"2.8338) + (0.431974070079122%*(0.00 0.91
16*CON_GREEN + 1.556)) +(0.416592786133718%(0.7872*EXP(0.001*CON_
1R)))—1.25376091189061
7 MSR  ENT_RED CON_ CON_ 4 AGB =(0.648609247582477%2.4128*MSR"2.8338) +(0.3766131173131 0.92
GREEN IR 49*%(0.0016*CON_GREEN + 1.556)) + (0.12037360444411*(1.6644*E
NT_RED -6.8199)) + (0.396131933575747%(0.7872*EXP(0.001*CON_
IR))) —1.34826615320316
i i b c
Field observed vs predicted AGB of (@) F lelfi observed vs pFEdICted AGB of (b) . . ( )
: 5 e . Deciduous forest using the combined Field observed vs predicted AGB of
Coniferous forest using the combined . . . .
. model-7 Mixed forest using the optical model-7
< model-7 3 10 .
x 7 a g 3.5
§ 6 R2=0.8314 Z 8 R? = 0.8908 o & 3 | Re=09582
s e 6 g 25
24 8 z 2
23 2z 4 g 15
3?2 g, z |
2! o = £ 05
o 0 2 kS|
£ g 0 2 0
0 2 4 6 0 5 10 15 A 0 1 2 3 4
Field observed AGB (Tons/ pixel) Field observed AGB (Tons/ pixel) Field observed AGB (Tons/ pixel)

Fig.8 Validation plot between observed and predicted AGB of coniferous (a), deciduous (b), and mixed (c) forest using combined modeling

Table 17 Detailed model statistics generated from all models for each forest class

Model Model parameter Type of forest Model R? Model Model standard error Validation R? Validation
adjusted R> (SE) (ton/pixel) RMSE (ton/
pixel)
Vegetation indices SR Deciduous 0.69 0.66 2.17 0.84 2.29
SR Coniferous 0.68 0.65 1.08 0.87 1.38
MSR Mixed 0.72 0.69 0.81 0.82 0.54
GLCM ENT_IR, ENT_RED, ENT_GREEN Deciduous 0.61 0.51 2.61 0.70 1.80
ENT_IR, HOM_RED, ASM_GREEN Coniferous 0.59 0.44 1.37 0.77 1.66
ENT_RED, CON_GREEN, CON_IR Mixed 0.70 0.55 0.97 0.57 0.69
Combined SR, ENT_IR, ENT_RED, ENT_GREEN Deciduous 0.74 0.67 2.16 0.89 1.93
SR, ENT_IR, HOM_RED, ASM_ Coniferous 0.83 0.73 0.95 0.83 1.35
GREEN
MSR, ENT_RED, CON_GREEN, Mixed 0.92 0.87 0.52 0.96 0.25
CON_IR
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Fig.9 AGB of Kalimpong for- 88°30'0"E 88°40'0"E 88°50'0"E
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Distribution of AGB
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Kalimpong District, W.B. A
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27°0'0"N+ -27°0'0"N
26°50'0"N+ -26°50'0"N
AGB
(Tones)
High : 23.14
.
— Low : 0.04
0 < 8 16 Kilometers
26°40'0"N I [ -26°40'0"N
88"36'0"E 88"4('3'0"E 88°5tlJ'O“E

Table 18 ANOVA report of combined model of coniferous forest

df S§ MS F Significance F
Regression 4 30.82359 7.705897 8.591017 0.0007791
Residual 7 6.2788  0.896971
Total 11 37.10239

an identifier of AGB of Haliyal and Yellapur Forest Divi-
sions, Western Ghats of Karnataka, India. However, Madu-
gundu et al. (2008) did not directly relate to forest AGB and

@ Springer

Table 19 ANOVA report of combined model of deciduous forest

df S§ MS F Significance F

Regression 4 177.5391 44.38478 9.457264 0.000826
Residual 13 61.01153 4.693195
Total 17 238.5507

vegetation index (NDVI). Madugundu et al.’s (2008) study
was only based on Haliyal and Yellapur Forest’s decidu-
ous forest of Western Ghats of Karnataka, India. Pargal
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et al. (2017), on the other hand, used LISS-IV to investigate
the AGB of different forest types in the Yellapur Forest
Division, Uttara Kannada District, Western Ghats of Kar-
nataka, India. He used the vegetation index, only NDVI,
for his analysis. Pargal et al.’s (2017) AGB model achieved
R*=0.82. However, Pargal et al. (2017) cannot generate
different AGB models for different forest classes. Attri and
Kushwaha (2018) have used LISS-IV data on Barkot For-
est Range, Dehradun, India. Attri and Kushwaha (2018)
used only NDVI as a vegetation index to identify AGB and
got R>=0.71 for his AGB model. Bindu et al. (2020) used
kg/pixel-based AGB estimation using LISS-4 generated
NDVI. Bindu et al. (2020) achieved an R? of 0.71 for his
NDVI-based AGB model. However, no studies have used
all LISS-4 generated vegetation indices for their AGB mod-
eling. No study has generated an individual AGB model
for different forest classes using LISS-4. To date, no study
also used LISS-4 generated GLCM-based textures to model
forest AGB.

This study correlated high-resolution LISS-4 MSS gen-
erated six vegetation indices with AGB. It has been identi-
fied that the pure coniferous (+*=0.81) and deciduous forest
(r*=0.75) AGB are strongly correlated with SR (Table 7).
Due to mixed patches of coniferous and deciduous stands in
mixed forest regions, the response of SR is comparatively
weaker than the nonlinear vegetation index MSR (Chen
1996). We have found that MSR has a comparatively strong
correlation with mixed forest AGB (> =0.84). Although SR
has a strong correlation with pure forest regions, the vegeta-
tion index-based model standard error (Table 16) shows that
the ability of SR-based model to estimate coniferous forest
AGB (SE=1.08 ton/pixel) is comparatively better than AGB
of deciduous forest (SE=2.17 ton/pixel) due to the presence
of varying tree species and so varying spectral responses in
deciduous forest. Due to different optical and geometrical
surfaces of mixed forest canopies, MSR is a good estimator
of mixed forest AGB with SE=0.81 ton/pixel. These model
generated AGB maps have been validated with the field-col-
lected test data sets. The validation of maps also has a strong
coefficient of determination (R?) with field-observed AGB
and map generated AGB of deciduous (R*>=0.84), coniferous
(R*>=0.87), and mixed forest (R”>=0.82). However, the RMSE
of validation is relatively higher in the deciduous forest (2.29
ton/pixel) compared to coniferous (1.38 ton/pixel) and mixed
forest (0.54 ton/pixel).

Spectral responses play more essential roles in bio-
mass estimation than textural images when the forest
stand structure is relatively simple, but textural images are
more important than spectral responses in complex for-
est stand structures (Lu 2005). Our study has generated

10 GLCM-based texture parameters of 3 different spec-
tral bands of LISS-4 MSS data. These GLCM texture
parameters have been correlated with AGB to identify the
effect of forest canopy complexity responses among the
neighboring pixels. In this study, we have discussed the
reasons and justifications for GLCM properties’ choice
(Table 9). The adjusted R? of GLCM models for decidu-
ous (0.51) and mixed forest (0.55) are comparatively better
(Table 15) than coniferous forest (0.44). GLCM texture has
a better response in complex forest structures with varying
tree species. The coniferous forest has fewer tree species
than deciduous and mixed forests. The coniferous GLCM
model is weaker than the deciduous and mixed forest. Due
to higher complexity in tree species variation, the GLCM
model of the mixed forest has a higher response than the
deciduous forest. These model generated maps of each for-
est have been validated with the test data. The validation
shows that RMSE has reduced in each forest in GLCM
models compared to vegetation indices (Table 17). It is
seen that the validation R? of GLCM models is poor com-
pared to the vegetation index model.

An attempt has been made to combine the models gen-
erated by vegetation indices and GLCM-based texture
parameters to increase the accuracy of AGB measure-
ment. It has been identified that the combined models
have an improvement over individual models (Table 17)
in all forest classes. Therefore, the combined models have
been chosen to estimate the AGB of each forest class.
After generating coniferous, deciduous, and mixed forest
AGB maps, the AGB maps have been merged to generate
the AGB distribution map of the Kalimpong forest region
(Fig. 9). The deciduous forest map shows a validation R?
of 0.89 with an RMSE of 1.93 ton/pixel. Coniferous for-
est map validation R* is 0.83 with an RMSE of 1.35 ton/
pixel. There is a comparatively identifiable improvement
in mixed forest with validation R* of 0.96 and RMSE of
0.25 ton/pixel. ANOVA report of coniferous, deciduous,
and mixed forest is shown in Tables 18, 19, and 20. The
equations used to generate the AGB distribution map are
given below. The detailed AGB report generated from the
AGB distribution map is in Table 21.

Table 20 ANOVA report of combined model of mixed forest

df SS MS F Significance F
Regression 4  17.5191  4.379776 15.94902 0.0004725
Residual 5 1.373055 0.274611
Total 9 18.89216
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T?blf" 21_ Detailed.AGB Type of forest Total AGB (Mt) Percentage AGB Model R? Validation R?
distribution of Kalimpong forest cover (%)
region
Deciduous 58.87 56.93 0.74 0.89
Coniferous 36.09 3491 0.83 0.83
Mixed 8.44 8.16 0.92 0.96
Total (Kalimpong) 103.40 100.00

e Coniferous forest: (*=0.83)
AGB = (0.820297320671545*0.7524*EXP(
0.5584*SR)) + 0.330865636425123 * (1.6716
* ASM_GREEN — 6.8163) + 0.5241625414512
82 *(10.194 * HOM_RED - 0.3108) — 0.01732
50138195351 * (6.8828 * EXP(—3.322*ENT_
IR)) —2.9838956546503.
e Deciduous forest: (r>=0.74)
AGB =0.901864914911025*0.2615*EXP(0.678
9*SR) —0.31626023959724 * 0.0014 * EXP(1.257
* ENT_GREEN) + 0.984231244376142 * 0.014%
EXP(0.902* ENT_RED)+0.116195076761434 * 0.0037
* EXP(0.9324*ENT_IR) — 1.2694170570619.
e Mixed forest: (*=0.92)

AGB =(0.648609247582477%2.4128*MSR"2.8338
)+(0.376613117313149*%(0.0016*CON_GREEN + 1.
556)) +(0.12037360444411*(1.6644*ENT_RED — 6.
8199)) +(0.396131933575747 *(0.7872 * EXP(0.001
*CON_IR))) —1.34826615320316.

Conclusion

The work envisaged a cost-effective methodology for
identifying the AGB of a study area in the Himalayan
region. Most of the area in the study area is inaccessible
due to rugged terrain and is covered mainly by forest. Due
to poor per capita income in the study area, there is much
pilferage of forest inventory. To maintain the health of
the forest and for regulatory measurement of the forest,
it was decided to use LISS-4 data for this work. There
are various options available today in identifying AGB
using the remote sensing approach, but using low-cost
data will reduce the total cost of the analysis for periodic
measurement of AGB.

This study suggested that LISS-4 MSS data can
estimate the high-resolution AGB distribution of the

@ Springer

Himalayan Forest region with adequate accuracy. Vari-
ous options available for AGB estimation using opti-
cal remote sensing data were attempted in work. In this
study, six vegetation indices have been used for AGB
estimation of different forests of Kalimpong forest
regions. Among them, SR gives the highest correlation
with AGB of pure deciduous and coniferous forests. In
mixed forest regions, due to a mixture of two canopy
stands, there is a mixture of foliage angle and optical
scattering distribution. Therefore, the nonlinear vegeta-
tion index of SR (i.e., MSR) becomes dominant in AGB
estimation in mixed forest. It was found that GLCM-
based texture parameters of LISS-4 bands have the ability
of AGB estimation. Attempts were made to identify the
AGB using the GLCM parameters. The results obtained
depicted varying accuracy wherein some categories of
forest GLCM parameters showed better results, whereas
in some types the vegetation indices had better accuracy.
An attempt was made to integrate GLCM textures with
vegetation indices to identify whether a better accuracy
could be obtained in the AGB estimation of the study
area. The results obtained have enhanced the AGB model
strength for all forest regions, so the integrated model
using vegetation indices and the GLCM parameters were
selected for the calculation of AGB of the study area.

This study shows AGB storage of deciduous forest
has a maximum share over other forest regions of Kalim-
pong forest. Not only in pure deciduous and coniferous
regions, this study has developed an adequately accu-
rate model for mixed forest regions also, where there
is a mixture of different canopy cover. The study has
also concluded an adequately accurate model with more
cost-effectiveness than L band microwave data for AGB
modeling.

This model can be used to estimate accurate AGB of dif-
ferent forest regions. Integration of microwave data with
LISS-4 can improve the accuracy of AGB monitoring in
the future. This model can be beneficial for use in carbon
budgeting.
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Appendix
Table 22 Plot-wise vegetation index distribution of coniferous forest used to train AGB model
S1. number Plot no Above ground biomass Above ground biomass MSR NDVI RDVI SAVI SR TVI
(AGB) [tons/ha] (AGB) [tons/pixel]
1 2 927.7517 2.319379 0.581127 0.335075 0.38942 0.327667 2.007858 0.913824
2 3 1942.688 4.856719 1.199063 0.56147 0.576612 0.666637 3.560691 1.030277
3 7 2677.199 6.692998 1.152446 0.547917 0.537121 0.646104 3.423966 1.023678
4 8 2903.594 7.258984 1.211049 0.564876 0.567134 0.671649 3.596391 1.031928
5 9 2515.866 6.289666 1.248631 0.575352 0.589885 0.687434 3.709783 1.036992
6 10 1679.119 4.197799 1.196585 0.560762 0.557368 0.665436 3.55334 1.029933
7 18 1439.11 3.597776 0.966498 0.488686 0.514783 0.55765 2911491 0.994327
8 20 1547.309 3.868272 1.165224 0.551681 0.555569 0.651887 3.461109 1.025515
9 21 2929.369 7.323423 1.233744 0.571239 0.566298 0.681126 3.664603 1.035007
10 22 1686.7 421675 1.125022 0.539711 0.567279 0.634109 3.345096 1.019662
11 23 938.0345 2.345086 0.576107 0.332759 0.386869 0.324194 1.997418 0.912556
12 26 1123.687 2.809217 0.702006 0.388251 0.425873 0.407221 2269315 0.942471

Table 23 Plot-wise vegetation index distribution of deciduous forest used to train AGB model

S1. number Plot no Above ground biomass Above ground biomass MSR NDVI RDVI SAVI SR TVI
(AGB) [tons/ha] (AGB) [tons/pixel]

1 1 326.0192 0.815048 0.469848 0.281596 0.340073 0.247561 1.783949 0.884079
2 5 5383.013 13.45753 1.728696 0.685505 0.693926 0.852439 5.359402 1.088809
3 6 4522.028 11.30507 1.259265 0.578261 0.61894 0.691927 3.74227 1.038393
4 11 465.3523 1.163381 0.461249 0.277273 0.346064 0.241156 1.767297 0.881631
5 12 299.3747 0.748437 0.132296 0.089274 0.173078 0.059555 1.19605 0.767642
6 13 478.2154 1.195539 0.902617 0.466279 0.514374 0.524194 2.747276 0.982995
7 14 1252.013 3.130032 0.875067 0.456267 0.501789 0.509184 2.678276 0.977889
8 15 390.1231 0.975308 0.845384 0.445238 0.492582 0.492668 2.60515 0.972234
9 16 407.9778 1.019944 0.983836 0.494578 0.531717 0.566541 2.957089 0.997285
10 17 1099.099 2.747746 1.344226 0.60066 0.643991 0.725494 4.008264 1.049123
11 19 3109.936 7.77484 1.671958 0.674503 0.681963 0.83595 5.14445 1.083745
12 28 636.4639 1.59116 1.100281 0.532156 0.549379 0.622727 3.274929 1.015951
13 29 1073.342 2.683355 1.169386 0.552899 0.56854 0.653797 3.473262 1.026109
14 33 223.5837 0.558959 0.278977 0.178767 0.253699 0.09359 1.435362 0.823873
15 34 1498.469 3.746174 1.351981 0.602632 0.646235 0.728449 4.033118 1.050063
16 36 746.692 1.86673 1.100281 0.532156 0.549379 0.622727 3.274929 1.015951
17 38 949.3571 2.373393 1.128369 0.540722 0.587839 0.635714 3.354661 1.020158
18 39 443.6311 1.109078 0.396143 0.243617 0.303519 0.190668 1.644163 0.862332

Table 24 Plot-wise vegetation index distribution of mixed forest used to train AGB model

S1. number Plot no Above ground biomass Above ground biomass MSR NDVI RDVI SAVI SR TVI
(AGB) [tons/ha] (AGB) [tons/pixel]

1 4 985.2877 2.463219 1.059282 0.519312 0.56459 0.603633 3.160703 1.00961
2 24 780.4696 1.951174 0.929733 0.475926 0.503459 0.53854 2.816255 0.98789
3 25 1148.409 2.871022 1.097041 0.531156 0.549379 0.622727 3.265811 1.015459
4 27 1109.217 2.773043 1.099185 0.531818 0.559545 0.622285 3.271843 1.015784
5 30 492.1385 1.230346 0.841181 0.443656 0.485196 0.490271 2.594898 0.97142
6 31 320.1169 0.800292 0.698578 0.38681 0.433231 0.40513 2261632 0.941706
7 43 1743.402 4.358506 1.237287 0.572222 0.6 0.68282 3.675322 1.035482
8 48 2078.953 5.197383 1.30308 0.562615 0.587248 0.663333 3.572631 1.030832
9 49 1687.798 4.219496 0.936894 0.47844 0.49482 0.54222 2.83465 0.989161
10 54 642.2481 1.60562 0.901255 0.465789 0.497738 0.52338 2.743839 0.982746
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Table 33 Plot-wise GLCM of IR band distribution of mixed forest used to train AGB model

@ Springer

VAR
IR

HOM MAX MEAN
IR IR

IR

CON COR DIS ENG ENT
IR IR IR IR

IR

ASM
IR

Above ground biomass

Above ground bio-

SI1. number

mass (AGB) [tons/ha] (AGB) [tons/pixel]

181.729 16,854.2

0.041667
0.041667
0.044444
0.041667
0.071429
0.076923
0.041667
0.041667
0.022222
0.041667

0.071819

7.54023
7.36695
7.55171

0.218502
0.230112
0.215452
0.216506
0.298807
0.392232
0.208333
0.208333
0.210819
0.212459

31.875

695.0417  0.979381

1371.867

0.04774

2463219
1.951174
2.871022
2.773043
1.230346
0.800292
4.358506
5.197383
4.219496
1.60562

985.288

922917 4726

142.311

0.076547
0.092923
0.021712
0.165138
0.205963
0.04213

33.58333
41.95556
55.20833
24.07143
27.84615
43.29167
42.04167
47.42222
41.41667

0.910812
0.939076

0.05295
0.04642

780.47
1148.41
1109.22

10,656.6

1298.489

99.4792  5807.4

179.393
192.539
189.896

7.56912

787.7083  0.819917

441.3571

0.04688

16,287.5
18,804.7
18,722.6

6.31784
5.1299

0.986451

0.08929
0.15385
0.0434
0.0434

492.139

579.5385 0.984591

1373.208

320.117
1743.4

7.07926

0.963327
0.846883
0.865047
0.935146

91.8542 4860.81

103.267
134.25

0.067944
0.082028
0.057065

7.68464
7.61333
7.62688

1488.542

2078.95

6132.69
9614.58

1655.244

0.04444
0.04514

1687.8

1247.083

642.248
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