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Abstract
Forest aboveground biomass (AGB) measurement is a direct estimator of the live carbon stock of that forest region. Increas-
ing emission and concentration of  CO2 is a global threat as it is a major cause of today’s global warming. The forest AGB is 
a live carbon sequester that plays a major role by absorbing atmospheric  CO2. There are field-based measurement methods 
of AGB, but the main disadvantage is that they are primarily destructive. Several authors have undertaken AGB estimation 
using different remote sensing data types, but they are mostly not cost-effective for extensive study areas. We have created a 
cost-effective algorithm for AGB estimation using multispectral (MSS) data. In this study, Indian Remote-Sensing Satellite-
P6 (IRS P6) Linear Imaging Self-Scanning Sensor-4 (LISS-IV) MSS data have been used for the analysis. The research has 
tried to estimate the AGB of different types of forests existing in the study area by using various vegetation indices and the 
gray-level co-occurrence matrix (GLCM) and created a hybrid methodology combining the vegetation indices and GLCM. 
Among all vegetation indices, the simple ratio (SR) highly correlates with AGB of pure deciduous and coniferous forests. 
In a mixed forest region, due to a mixture of two canopy stands, there is a mixture of foliage angle and optical scattering 
distribution. Therefore, modified simple ratio (MSR) becomes dominant in mixed forest AGB estimation. Previously there 
was no study to justify this GLCM texture parameter selection. In this study, we have justified the parameter selection of 
GLCM texture statistics. This parameter selection will help researchers choose the proper GLCM texture parameter for 
their study. Integration of GLCM textures with vegetation indices enhances the AGB model strength for all forest regions. 
The deciduous forest map gives validation R2 of 0.89 with an RMSE of 1.93 ton/pixel. The validation R2 of the Coniferous 
Forest map is 0.83 with an RMSE of 1.35 ton/pixel. There is a comparatively identifiable improvement in mixed forest with 
validation R2 of 0.96 and RMSE of 0.25 ton/pixel. This study shows AGB storage of deciduous forest has a maximum share 
over other forest region of Kalimpong forest.

Keywords Gray-level co-occurrence matrix · Aboveground biomass · Optical remote sensing · Vegetation indices · Entropy

Introduction

Greenhouse gases are a significant contributor to global 
warming. Among all other greenhouse gases,  CO2 contrib-
utes the most to global warming. The forest AGB is a live 
sequester of emitted  CO2. The assessment of forest above-
ground biomass (AGB) is an essential part of national devel-
opment planning as it incorporates the productivity of an 
ecosystem, carbon budget, and etc. (Parresol 1999; Zianis 
& Mencuccini 2004; Zheng et al. 2004; Hall et al. 2006). 
In addition to the economic aspect, it dramatically impacts 
global climatic variables.

Field-based AGB measurements were the standard meth-
ods for AGB estimation of a forest area. The field-based 
methods were mostly destructive and not practicable in a 
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mountainous terrain where most of the area is inaccessi-
ble. Remote sensing has been mainly used to estimate forest 
AGB as it is more economical and less time-consuming to 
measure the AGB of a forest than field-based estimation. 
Remote sensing methods are the only way to assess the AGB 
of forests in hilly terrain with inaccessible tracts of land 
parcels.

Researchers have studied different remote sensing 
approaches. These approaches are majorly divided into two 
parts: (1) optical or passive remote sensing and (2) active 
remote sensing approach. In the active remote sensing-
based approach, researchers have mainly focused on the 
synthetic-aperture radar (SAR)-based approach for monitor-
ing AGB. Among all SAR data, only L band data have pene-
tration capability through the surface canopy layer and then 
get scattered back by the trunk and main branches (Blomb-
erg et al. 2018). The L band data to be used should have to 
be cross-polarized (i.e., HV or VH) as cross-polarized data 
can give the volumetric backscatter (Xiang et al. 2016) from 
the tree trunks and branches that have a reasonable cor-
relation with the AGB of that forest (Luckman et al. 1997; 
Kurvonen et al. 1999; Sun et al. 2002; Günlü and Ercanlı, 
2020). Although the L band cross-polarized data have a 
reasonable correlation with forest AGB, temporal meas-
urements of AGB at a specified period are very costly and 
uneconomical. The researchers have studied optical data to 
estimate forest AGB to make the estimation more economi-
cal. Multispectral and hyperspectral optical data have been 
used to estimate forest AGB by different researchers all over 
the globe. Although hyperspectral data demonstrates some 
AGB estimation successes, the data suffers from the prob-
lem of band redundancy. The application of hyperspectral 
data is significantly less in AGB estimation because of its 
minimal availability (Hyperspectral data are mainly air-
borne and captured in small areas) (Lu et al. 2016).

Multispectral (MSS) data are the most used data for forest 
AGB assessment among all other remote sensing data due to 
the availability of its various spatial, spectral, radiometric, 
and temporal resolutions. There are various MSS data avail-
able like Landsat-5 TM (Roy & Ravan 1996; Wylie et al. 
2002; Foody et al. 2003; Phua & Saito 2003; Lu 2005; Lu 
et al. 2005 (a); Du et al. 2012; Singh & Das 2014; Günlü 
et al. 2014; Barrachina et al. 2015; Das & Singh 2016), 
Landsat-7 ETM + (Zheng et al. 2004; Avitabile et al. 2012), 
Landsat-8 OLI (Ali et al. 2018; Li et al. 2018), Sentinel-2 
(Askar et al. 2018; Ali et al. 2018; Pandit et al. 2018; Keleş 
et al. 2021), and LISS-3 (Kumar et al. 2013; Mayamanikan-
dan et al. 2017; Nandy et al. 2017), Aster (Fuchs et al. 2009). 
Due to free availability and good spectral resolution, Landsat 
series and Sentinel 2 are the most commonly used MSS data 
for forest AGB estimation. Although the spatial resolution 
of Sentinel 2 data does not meet the accuracy required in 
the estimation of forest AGB, researchers are also using the 

high-resolution MSS data like IKONOS (Thenkabail et al. 
2004; Kayitakire et al. 2006), Quickbird (Fuchs et al. 2009; 
Sousa et al. 2015), Worldview (Obeyed et al. 2018), GeoEye 
(Mareya et al. 2018), and RapidEye (Gascón et al. 2019) 
for estimation of forest AGB. Due to high-cost involvement 
and lack of availability of IKONOS data, it is challenging 
to identify the AGB of a forest where regular monitoring is 
required at a specific interval of time.

Previously, a few studies on AGB estimation have been 
done by some researchers using Linear Imaging Self-Scan-
ning Sensor-4 (LISS-IV). Madugundu et al. (2008) used 
LISS-IV data to estimate AGB by leaf area index (LAI) 
determination and got an R2 value of 0.63 between the esti-
mated and field-observed AGB of Haliyal and Yellapur For-
est Divisions, Western Ghats of Karnataka, India. On the 
other hand, Pargal et al. (2017) studied the AGB of different 
forest types of Yellapur Forest Division, Uttara Kannada 
District, Western Ghats of Karnataka, India, with LISS-IV. 
He used the vegetation index, NDVI, for his analysis. He got 
R2 = 0.82 for his AGB model. Attri and Kushwaha (2018) 
have used LISS-IV data on Barkot Forest Range, Dehra-
dun, India. For identification of AGB using NDVI, he got 
R2 = 0.71 for his AGB model.

Very few studies apply gray-level co-occurrence matrix 
(GLCM) texture parameters on AGB estimation. Lu and 
Batistella (2005) and Lu (2005) have used eight textural 
parameters of Landsat-5 TM data to identify AGB and got 
maximum R2 = 0.68 and 0.71, respectively. Kayitakire et al. 
(2006) have used GLCM of IKONOS data. He got an R2 value 
of 0.82. This work indicates that high-resolution GLCM tex-
tures have a high correlation with forest AGB. For AGB esti-
mation, some researchers have integrated both vegetation indi-
ces with the GLCM texture. Lu (2005) has used the integrated 
model with Landsat-5 TM data and got R2 = 0.77. Fuchs et al. 
(2009) have used coarse resolution ASTER data and high-
resolution Quickbird data and got R2 = 0.63 and 0.69, respec-
tively. Avitabile et al. (2012) had used Landsat-7 ETM + data 
and got R2 = 0.81. Nandy et al. (2017) had used LISS-3 data 
and got R2 = 0.746. Gascón et al. (2019) had used RapidEye 
data and got R2 = 0.69 for their AGB models.

The forest region of Kalimpong has dense forest cover. 
There is no study available on the estimation of AGB of 
Kalimpong forest. Due to a gradual increase in human habi-
tation, deforestation is a significant concern for these forests. 
In addition to this, monitoring of AGB is one of the essential 
measures to identify forest health. Kalimpong is hilly ter-
rain, with most places inaccessible for collecting physical 
measurements of forest AGB due to stiff slopes. Not only 
stiff slopes but several reserve forests, protected forests, and 
Indian army-occupied forest regions are not permitted entry 
due to government rules. Therefore, physical identification 
and forest inventory-based sample collection are challeng-
ing in the Kalimpong forest region. For delineating these 
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problems of the study area, this research attempted to identify 
a cost-effective method for AGB estimation, which can be 
used by the authorities for the measurement of AGB peri-
odically. In this work, MSS data that is IRS P6 LISS-IV, 
which is a meager cost high-resolution data, have been used 
to create a cost-effective, accurate methodology for estimat-
ing AGB. There are few studies on AGB estimation using 
vegetation indices of high-resolution LISS-4 data. However, 
no study is available on the relationship of GLCM-based 
texture parameters of LISS-4 bands with AGB of the forest. 
There is no study on the impact of forest vegetation indices 
and textures of spectral response with AGB of different forest 
classes present in Himalayan Forest regions. An attempt has 
also been made to identify whether the integration of texture 
and vegetation indices influences the improvement of AGB 
measurement.

This study has been made to identify the models using 
LISS-4 generated vegetation indices and GLCM-based tex-
ture parameters with AGB of different forest types (conif-
erous, deciduous, and mixed) of the Kalimpong district. 
The best fit models have been correlated to come out with 
models using vegetation indices and the GLCM parameters 
to increase the accuracy of assessment of AGB of various 
types of forest in the study area.

Materials and methods

Study area

The Kalimpong district of West Bengal, India is a part of 
the north-eastern Himalayan region. It lies between 27° 
11′ 44″ N to 26° 51′ 40″ N latitude and 88° 23′ 16″ E and 
88° 53′ 00″ E longitude. The areal extent of the Kalim-
pong district is 1095.18  km2 (Fig. 1). The mean monthly 
temperature of this area lies between 30 and 9 °C. The 
annual average rainfall is 2200 mm. The forests under the 
Kalimpong district mostly fall under the Kalimpong For-
est Division of West Bengal Forest Development Corpo-
ration (WBFDC), excluding the area under Neora Valley 
National Park that had been handed over to Wild Life Wing 
Forest Directorate. The elevation of the study area ranges 
from 150 to 3700 m. The upper altitude region consists of 
evergreen alpine coniferous forest, and the lower altitude 
is covered by temperate deciduous forest. Being a hilly 
location, most of the forested area is inaccessible, and the 
accessible places also pose difficulty in collecting the field 
data. Additionally, shadows of the hills cause many prob-
lems in using satellite data in the study area. Only mini-
mal data are available for reliably estimating the existing 
forest biomass in the Kalimpong district of West Bengal. 
Deforestation due to the increasing pressure of the growing 
population and frequent landslides on many forested slopes 

are affecting the biomass stock in that region, so estimat-
ing actual biomass present in that region is necessary to 
monitor the forests. The detailed methodology flowchart 
is shown in Fig. 2.

Field inventory data collection and AGB estimation

A total of 59 random sample plots were collected from the 
different forests of Kalimpong in places that are acces-
sible. There were 18 coniferous forest plots, 26 deciduous 
forest plots, and 15 mixed forest plots. The field plots 
were established using purposive sampling (Nesha et al., 
2020) due to the constraints of accessibility in the pres-
ence of steep slopes and also administrative permissions. 
Picea rubens and Juniperus virginiana were the major 
species found in coniferous forests. In the deciduous for-
est, the primary species were Tectona grandis, Garuga 
pinnata, Toona ciliate, Holarrhena pubescens, Albizia 
procera, Shorea robusta, Alnus nepalensis, Terminalia 
myriocarpa, Quercus pachyphylla, Bucklandia populnea, 
Alnus nepalensis, Ficus cunia, Schima wallichii, Michelia 
champaca, and etc. The diameter at breast height (DBH), 
tree height, wood density, and plot area were collected 
from the field. The details of field inventoried data of the 
sample areas in coniferous, deciduous, and mixed forests 
are shown in Table 1.

The field plot distribution has been shown on the LISS-
IV MSS data (Fig. 1). The field estimation of AGB has been 
calculated from this field-collected inventory data.

The AGB was calculated using the volumetric conversion 
method (Brown & Lugo 1992). AGB density (t/ha) = F

where VOB = volume over bark; WD = volume-weighted 
average wood density (tons/m3 or g/cm3); and BEF = bio-
mass expansion factor (ratio of oven-dry AGB of trees to 
oven-dry biomass of inventoried volume). (Brown, 1997).

Volume over bark (VOB) has been calculated using 
the DBH value and the height. Using VOB per hector and 
volume-weighted average wood density, the biomass of the 
inventoried volume has been calculated. Biomass expansion 
factor (BEF) has been calculated using the biomass of the 
inventoried volume. Volume expansion factor (VEF) has 
been calculated using the  VOB30 (i.e., this VOB includes 
the DBH of trees having a minimum diameter greater than 
30 cm) value.  VOB10 (i.e., this VOB includes the DBH of 
trees having a minimum diameter greater than 10 cm) has 
been calculated using the volume expansion factor and 
 VOB30. Finally, AGB has been calculated using VOB10, 
biomass expansion factor, and volume-weighted average 
wood density. The AGB in tons/ha of all the 59 plots meas-
ured in the field has been calculated using this methodology. 

(1)
Aboveground biomass density (t∕ha) = VOB ∗ WD ∗ BE
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Fig. 1  Study area
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Finally, the AGB thus calculated was divided into three 
classes: coniferous, deciduous, and mixed type of forest for 
further analysis. It has been found that among 59 plots, there 
are 18 coniferous forest plots, 26 deciduous forest plots, 
and 15 mixed forest plots available. We have divided these 
data into 70% training sample plots (i.e., those sample plots 
have been used to correlate and model making) and 30% 

test sample plots (i.e., those sample plots have been used to 
validate the model).

where V1, V2,…. Vn = volume of species 1, 2,.. to the nth 
species and Vt = total volume WD1, WD2,….. Wdn = wood 

(2)
WD = {(V1∕Vt) ∗ WD1} + {(V2∕Vt) ∗ WD2} + ...........{(Vn∕Vt) ∗ Wdn}

Forest inventory data collection

Field based AGB estimation

Variable selection

Vegetation indices
based AGB 

GLCM based 
AGB modelling

MLR based 
combined AGB 

IRS P6 LISS-4 data collection

Landuse and landcover 

Forest distribution map 

Estimation of vegetation indices

Geometric and atmospheric corrections 

Estimation of GLCM texture features

Data extraction for different forest classes

Database creation

Pearson's correlation coefficient

Training data  Validation data

Vegetation indices
based AGB mapping 

of different forest 
classes

GLCM based 
AGB mapping 

of different 
forest classes

MLR based 
combined AGB 

mapping of different 
forest classes

Comparison of models

Model selection

Integration of AGB maps of 
different forests for the selected 

model

AGB distribution map of Kalimpong 
forest region

Fig. 2  Methodology flowchart

Table 1  Details of field inventoried data distribution

Forest type DBH range (cm) Height range (m) Wood density 
range (gm/cc)

Plot area range(m2) Tree density range  (ha−1) Num-
ber of 
plot

Coniferous forest 12.73–92.30 6.00–22.50 0.375–0.45 95.00–407.17 395.97–1894.17 18
Deciduous forest 11.14–178.25 2.00–30.00 0.255–0.840 50.00–650.98 127.44–1720.43 26
Mixed forest 11.78–133.69 2.00–20.00 0.375–0.840 100.00–625.00 279.27–1324.71 15
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density of species 1, 2,…… to the nth species. (Brown, 
1997)

where BEF = biomass expansion factor (dimensionless) 
(Brown, 1997);

where Wcrown = tree crown dry weight (kg), composed of foli-
age, thick and thin branches; Wbole = tree bole dry weight 
(kg) (i.e., trunk weight) (Brown, 1997).

where BV = biomass of inventoried volume in t/ha, calcu-
lated as the product of VOB/ha  (m3/ha) and wood density 
(t/m3) (Brown, 1997).

LISS‑IV data accusation

Two cloud-free scenes of IRS P6 LISS-IV were acquired 
for Kalimpong district from NRSC, Hyderabad, India. 
Those images were geometrically and atmospherically 
corrected. LISS-IV data have a swath of 70 km. It consists 
of three spectral bands: B2 (green (0.52–0.59 mm)), B3 
(red (0.62–0.68 mm)), and B4 (NIR (0.76–0.86 mm)). The 
details of those LISS-IV scenes are given in Table 2. The 
landuse landcover, forest class map, and vegetation indices 
of Kalimpong forest have been calculated from this data 
with the help of the ERDAS Imagine software.

Preparation of forest classification map

The landuse and landcover map has been prepared using 
a supervised classification based on the field-observed 

(3)BEF =
Waboveground

Wbole

(4)Waboveground = Wbole +Wcrown

(5)
BEF = e

{3.213−0.506∗log(BV)}forBV<1 90t∕ha}

= 1.74forBV ≥ 190t∕ha

= 1.3(coniferous)

⎫
⎪⎬⎪⎭
(Deciduous)

(6)VEF =
VOB

10

VOB
30

(7)

VEF = e
{1.300−0.209∗log(VOB

30
)}

= 1.13

}
forVOB30 < 250m3∕ha

forVOB30 ≥ 250m3∕ha

training data points with a maximum likelihood algorithm. 
The study area has been classified into eight classes: for-
est, agriculture, waterbody, settlement, barren land, open 
scrub, tea garden, and sand over the Kalimpong district. 
Processing of images has been done using a supervised 
classification based on collected training sets. Among all 
classes, the forest areas have the maximum coverage of 
about 817.01  km2 (about 74.57% of the total Kalimpong 
district). Other than forest, the agricultural land has cov-
erage of about 89.91  km2 (8.21%); settlement has cover-
age of about 89.58  km2 (8.17%), open scrub has coverage 
of about 44.77  km2 (4.08%), waterbody has coverage of 
about 24.13  km2 (2.20%), barren land has coverage of 
about 20.38  km2 (1.85%), tea garden has coverage of about 
9.07  km2 (0.83%), and the sand deposit has coverage of 
about 0.73  km2 (0.066%). The landuse landcover map has 
been validated using field-collected 191 test datasets. An 
accuracy of 87.96% and an overall Kappa 0.81 have been 
achieved for this landuse landcover map (Fig. 3 (a)). The 
confusion of landuse and landcover distribution is shown 
in Table 3.

The forest class map (Fig.  3(b)) has been prepared 
by extracting the landuse classified forest area from the 
LISS 4 MSS data using a supervised classification of the 
extracted LISS 4 MSS data. The distribution of forest cover 
is described in Table 4. The forest map has been validated 
using field-collected 150 test datasets. An accuracy of 
89.33% and an overall Kappa 0.80 have been achieved for 
the forest map. The confusion of landuse and landcover dis-
tribution is shown in Table 5.

Estimation of vegetation indices

From the spectral response curve of the vegetation 
region, it is identified that the blue and red reflectance 
is significantly less in the visible spectrum than green. 
However, there is a sudden increment in reflectance 
from vegetation beyond the visible range in the infra-
red region. Red reflectance is sensitive to chlorophyll 
content, and the near-infrared reflectance is sensitive to 
the mesophyll structure of leaves. The higher the differ-
ence between the red and near-infrared reflectance, the 
higher the green vegetation present in that pixel. Using 
this spectral phenomenon of vegetation, researchers have 
developed several vegetation indices to relate the bio-
physical parameters of vegetation, like leaf area index, 

Table 2  Details of LISS-IV data Product ID Path Row Sub scene No. of bands Date of pass Shift (%) No. of band Spatial 
resolution 
(m)

184,811,411 107 052 D 3 12-NOV-2017 0 3 5
184,811,421 107 052 C 3 19-OCT-2017 0 3 5
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percentage vegetation cover, a fraction of absorbed 
photo-synthetically active radiation (fAPAR), photosyn-
thetic capacity, and carbon dioxide fluxes, and also, they 
identified a relationship between the forest biomass. In 
our study, six vegetation indices generated from the high-
resolution LISS-IV data have been correlated to measure 
the AGB of Kalimpong forest. The selected vegetation 
indices are as given in Table 6.

(a) (b)

Fig. 3   a Landuse landcover map. b Forest map.

Table 3  Confusion matrix 
of landuse and landcover 
distribution

Reference   

Classified

Agriculture Forest Settlement Water
body

Barren 
land

Tea 
garden

Open 
scrub

Sand Reference 
Totals

Producers 
Accuracy

Agriculture 12 1 2 0 0 0 0 0 15 80.00%

Forest 6 107 0 0 0 0 0 0 113 94.69%

Settlement 0 0 26 2 0 0 0 0 28 92.86%

Waterbody 0 0 2 5 0 0 0 0 7 71.43%

Barren land 0 0 2 0 3 0 0 0 5 60.00%

Teagarden 0 2 0 0 0 4 0 0 6 66.67%

Open scrub 0 0 0 0 1 2 9 1 13 69.23%

Sand 0 0 0 0 1 0 1 2 4 50.00%

Classified 

Totals

18 110 32 7 5 6 10 3 191

Users 

Accuracy

66.67% 97.27% 81.25% 71.43% 60.00% 66.67% 90.00% 66.67%

Table 4  Forest distribution of Kalimpong district

Class name Count Area  (km2) Percentage 
areal cover 
(%)

Deciduous forest 20,160,389.00 504.01 61.69
Coniferous forest 8,275,128.00 206.88 25.32
Mixed forest 4,245,060.00 106.13 12.99
Total 32,680,577.00 817.015 100.00
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Relationship between AGB of different forests 
with vegetation indices

The whole field-collected dataset is divided into three major 
parts according to the forest classification, i.e., deciduous, 
coniferous, and mixed. Furthermore, the dataset is divided 
into training (70%) and testing (30%) datasets to establish 
the model and validate that model. The different vegetation 
indices are compared to identify the correlation (Pearson 
correlation) with AGB for each forest class individually. The 
AGB density has been converted into AGB of each pixel. 
Those per pixel AGB have been correlated with vegetation 
index of that pixel generated from LISS-IV data. Plot-wise 
vegetation index distribution of coniferous, deciduous, and 
mixed forest AGB are shown in Appendix Tables 22, 23 and 

24 respectively. The correlations of vegetation indices with 
AGB are shown in Table 7.

Among all vegetation indices, simple ratio (SR) has the 
maximum correlation in coniferous (r = 0.81) and decidu-
ous (r = 0.75) forest. In mixed forest, modified simple ratio 
(MSR) has maximum correlation (r = 0.84). The relationship 
between AGB of coniferous, deciduous, and mixed forests is 
shown in Fig. 4 a, b, and c, respectively.

Estimation of GLCM (gray‑level co‑occurrence 
matrix)‑based texture parameters

The GLCM-based texture parameters show different com-
binations of a pixel’s gray-level occurrence in an image 
scene by relating with its neighborhood pixel’s gray value. 

Table 5  Confusion matrix of 
forest distribution Reference

Classified
Deciduous Coniferous Mixed Reference 

Totals
Producers 
Accuracy

Deciduous 72 4 2 78 92.31%

Coniferous 8 56 0 64 87.50%

Mixed 2 0 6 8 75.00%

Classified 

Totals
82 60 8 150

Users Accuracy 87.80% 93.33% 75.00%

Table 6  List of vegetation indices that have been correlated with forest AGB

Indices Full form Equation References

SR Simple ratio SR = NIR/RED Pearson and Miller (1972)
NDVI Normalized difference vegetation index NDVI = (NIR − RED)/(NIR + RED) Rouse et al. (1974)
TVI Transformed vegetation index TVI = (NDVI + 0.5)/|NDVI + 0.5|*(|NDVI + 0.5|)0.5 Perry and Lautenschlager (1984)
SAVI Soil adjusted vegetation index SAVI = 1.5*(NIR − RED)/(NIR + RED + 0.5) Huete (1988)
RDVI Renormalized difference vegetation index RDVI = (NIR − RED)/

√
(NIR + RED) Roujean and Breon (1995)

MSR Modified simple ratio MSR = (NIR/(RED-1))/
√
(NIR∕(RED + 1)) Chen (1996)

Table 7  Correlation (r) of 
different forest AGB with 
vegetation indices

Forest type MSR NDVI RDVI SAVI SR TVI

Coniferous 0.80 0.79 0.75 0.79 0.81 0.79
Deciduous 0.70 0.62 0.61 0.63 0.75 0.60
Mixed 0.84 0.80 0.74 0.80 0.81 0.80
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This study generated ten second-order statistics from the 
GLCM of 3 bands of LISS-4 data (i.e., 30 GLCM texture 
parameters). Those texture maps have been correlated with 
the AGB of three different types of forests of Kalimpong. 
The details of those GLCM second-order statistics are given 
below (Tables 8 and 9).

The description of notations of the equations given in 
Table 8 is as follows:

P(i,j) = (i,j)th entry in a normalized gray-tone spatial 
dependence matrix. (i,j) stands for the number of times gray 
tones i and j have been neighbors; µ and σ are the mean and 
standard deviation respectively (Haralick et al. 1973).

Relationship between AGB of different forests with GLCM 
parameters

The details of training data of coniferous, deciduous, and 
mixed forest AGB with the all GLCM texture features are 
in Appendix, Tables 25, 26, 27, 28, 29, 30, 31, 32 and 
33. The correlation of AGB with GLCM parameters is 
given in Table 10. It has been identified that (Table 9) 
among all GLCM textures, angular second moment of the 
green band (ASM_GREEN), homogeneity of the red band 
(HOM_RED), and entropy of infrared band (ENT_IR) have 
a maximum correlation with AGB of coniferous forest. In 
the deciduous forest, the entropy of green (ENT_GREEN), 
red (ENT_RED), and infrared (ENT_IR) has the highest 
correlation with AGB. Similarly, the contrast of green 
(CON_GREEN), infrared (CON_IR), and entropy of red 
(ENT_RED) have the highest correlation with mixed for-
est AGB.

The relationships between the highest correlated GLCM 
texture features with AGB of coniferous forest (Fig. 4a, b, c), 
deciduous forest (Fig. 4e, f, g), and mixed forest (Fig. 5h, i, j) 
have been chosen for establishing GLCM-based multi-linear 

regression (MLR) models for estimation of AGB of conifer-
ous forest (Table 11), deciduous forest (Table 12), and mixed 
forest (Table 13). 

Model developed by combining vegetation indices 
with the GLCM texture parameters

Results

In vegetation index-based models, SR generated models were 
used for the coniferous and deciduous forests to generate an 
AGB distribution map of both forests. Similarly, the mixed 
forest AGB distribution map was generated using the MSR 
generated model. Those maps have been validated using 
30% of the test datasets. The validation plots are shown in 
Fig. 6a, b, and c for coniferous, deciduous, and mixed forest, 
respectively.

Among all GLCM-based MLR models, model 7 has the 
highest R2 with AGB of coniferous forest (Table 11). Also, 
deciduous forest model 7 has the highest R2 (Table 12), and 
mixed forest model 7 has the highest R2 (Table 13). Those 
GLCM-based parameters have been used to generate AGB 
distribution maps. Those maps have been validated using 
30% of the test datasets. The validation plots are shown in 
Fig. 7a, b, and c for the coniferous, deciduous, and mixed 
forest, respectively.

The model 7 of the combined model of all forests has the 
highest R2 (Tables 14, 15, 16) with AGB. That shows the 
importance of all the chosen parameters. These combined 
models have been used to generate AGB maps of each for-
est. Those maps have been validated using 30% of the test 
datasets. The validation plots are shown in Fig. 8a, b, and c 
for the coniferous, deciduous, and mixed forest, respectively.
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Table 8  GLCM second-order statistics

2nd order statistical feature Significance Formula Reference

Second moment (ASM) •Also called uniformity
•Measures the pixel pair uniformity that is pair 

repetition
•Detects disorder in texture

ASM =
∑

i

∑
j
i ∗ p(i, j)2 Haralick et al. (1973)

Entropy (ENT) •Measure the disorder and complexity of an image
•The entropy is large when the image is not textur-

ally uniform
•Complex texture tends to have high entropy
•ENT is strongly but inversely proportional with 

the SEM

ENT =
∑

i

∑
j
i ∗ p(i, j) ∗ ln(−p(i, j)) Haralick et al. (1973)

Contrast (CON) •Measures the spatial frequency of the image pixel 
and difference moment of GLCM

•It is the difference between the highest and lowest 
values of contiguous set of pixels

•It measures the local variations present in the 
image

CON =
∑

i

∑
j
(i − j)2 ∗ p(i, j)Haralick et al. (1973)

Homogeneity (HOM) •Also called as inverse distance moment
•Measure image homogeneity as it assumes larger 

values for the smaller gray-tone difference
•It is very sensitive to the near diagonal element in 

the GLCM
•HOM decreases when CON increases keeping the 

SEM constant

HOM =
∑

i

∑
j

p(i,j)

1+(i−j)2
Haralick et al. (1973)

Variance (VAR) •This statistic is a measure of heterogeneity and is 
strongly correlated to first-order statistical vari-
able such as standard deviation

•VAR increases when the gray level of a pixel dif-
fers from their mean

VAR =
∑

i

∑
j

�
i − �

i

�2
∗ p(i, j)Haralick et al. (1973)

Dissimilarity (DIS) •Instead of weights increasing exponentially as 
one moves away from the diagonal as contrast 
did, dissimilarity weights increase linearly

DIS =
∑

i

∑
j
�i − j� ∗ p(i, j)Haralick et al. (1973)

Correlation (COR) •It passes the calculation of the correlation of 
a pixel and its neighbor over the whole image 
means it figures out the linear dependency of 
gray levels on those of neighboring pixels

COR =
∑

i

∑
j
p(i, j)2 ∗

(i−�)(j−�)

�
2

Haralick et al. (1973)

Maximum probability (MAX) •This is simply the largest entry in the matrix, and 
corresponds to the strongest response

MAX = max(p(i,j)) Haralick et al. (1973)

Mean (MEAN) •Small mean values µd indicate coarse texture 
having a grain size equal to or larger than the 
magnitude of the displacement vector

MEAN =
∑

i

∑
j
i ∗ p(i, j)Haralick et al. (1973)

Energy (ENG) • Since energy is used for doing work, thus orderli-
ness

•It makes use for the texture that calculates orders 
in an image

ENG =
∑

i

∑
j
p(i, j)2 Haralick et al. (1973)

Table 9  The choice of GLCM property for this study

GLCM property Selected 
parameter

Reason

Window size 5 × 5 Minimum size of window available is 5 × 5. Increase in window size tends to data loss, so generally minimum 
window size should be chosen

Direction (θ) All Homogeneous class present. As we are doing GLCM for a particular landuse class (i.e., forest)
Quantization level 128 Maximum available in SNAP 7.0. Increase in radiometric resolution implies less loss of gray-level variation and 

good contrast
Displacement (δ) 2 We are using LISS-4 bands whose pixel size is 5 m and our average plot size is 15.23 m, so in all direction (i.e., 

horizontal (10 m), vertical (10 m), and diagonal (10√2) m), the maximum neighborhood pixel will cover for 
our plot size
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Table 10  Correlation among 
AGB with all 10 GLCM 
parameters

Forest class Bands GLCM texture features

ASM CON COR DIS ENG ENT HOM MAX MEAN VAR

Coniferous Green  − 0.58 0.01 0.00 0.05  − 0.56 0.50  − 0.52  − 0.56  − 0.02  − 0.04
Red 0.20 0.15 0.24 0.10 0.20 0.10 0.60 0.55 0.18 0.22
IR  − 0.57  − 0.39 0.42  − 0.28  − 0.60 0.63  − 0.46  − 0.59 0.20 0.13

Deciduous Green  − 0.57  − 0.10 0.10  − 0.02  − 0.58 0.63  − 0.08  − 0.37  − 0.13  − 0.21
Red  − 0.45 0.09  − 0.05 0.20  − 0.50 0.64  − 0.37  − 0.36  − 0.21  − 0.28
IR  − 0.49  − 0.06 0.23  − 0.08  − 0.53 0.59  − 0.15  − 0.38 0.14 0.12

Mixed Green  − 0.38 0.69  − 0.61 0.69  − 0.42 0.51  − 0.53  − 0.18  − 0.33  − 0.31
Red  − 0.53 0.57  − 0.38 0.62  − 0.56 0.64  − 0.59  − 0.51  − 0.33  − 0.34
IR  − 0.64 0.71  − 0.56 0.61  − 0.66 0.59  − 0.59  − 0.68  − 0.40  − 0.37
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Page 11 of 28    601Arab J Geosci (2022) 15: 601



1 3

The detailed model statistics generated from vegeta-
tion indices, GLCM, and combined model are discussed in 
Table 17.

Discussions

The study area is hilly terrain with 74.57% of the forest 
where most places are inaccessible. There is an urgent 
need to identify the biomass content of the district. This 
biomass measurement is for regulatory measures to 

control the degradation of forests and maintain the for-
est’s health. Keeping this objective in view, this work 
envisages creating a methodology that will be economical 
for periodically measuring biomass of the district. There 
are many options available today for biomass measure-
ment by remote sensing methods, but in this work, LISS-4 
data was selected to keep the investigation cost as low as 
possible.

A few studies were available on the applicability of 
LISS-4 data as an AGB estimator to date. Madugundu et al. 
(2008) used LISS-IV generated NDVI to estimate LAI as 

Table 11  GLCM-based MLR model of coniferous forest

Model Variable used Number 
of vari-
ables

Relationship Model coefficient of 
determination (R2)

1 ENT_IR 1 AGB = 1.6716*ENT_IR − 6.8163 0.39
2 HOM_RED 1 AGB = 10.194*HOM_RED − 0.3108 0.36
3 ASM_GREEN 1 AGB = 6.8828*EXP(− 3.322*ASM_GREEN) 0.32
4 ENT_IR HOM_RED 2 AGB = 0.747852775205543*(1.6716*ENT_IR − 6.

8163) + 0.709798271592606*(10.194*HOM_RED 
− 0.3108) − 2.12726005289109

0.55

5 ENT_IR ASM_GREEN 2 AGB = 0.722797147512587*(1.6716*ENT_IR − 6.
8163) + 0.48894381212065*(6.8828*EXP(− 3.322*
ASM_GREEN)) − 0.872661130154658

0.43

6 HOM_RED ASM_GREEN 2 AGB = 0.840471355012151*(10.194*HOM_RED 
− 0.3108) + 0.891276320429085*(6.8828*EXP(− 3.
322*ASM_GREEN)) − 3.19822262062676

0.56

7 ENT_IR HOM_RED ASM_GREEN 3 AGB = 0.416826165533434*(1.6716*ENT_IR − 6.
8163) + 0.736781544062229*(10.194*HOM_RED 
− 0.3108) + 0.566954200560853*(6.8828*EXP(− 3.
322*ASM_GREEN)) − 3.22008711022198

0.59

Table 12  GLCM-based MLR model of deciduous forest

MODEL Variable used Number of 
variables

Relationship Model coefficient of 
determination (r2)

1 ENT_RED 1 AGB = 0.014*EXP(0.902*ENT_RED) 0.570
2 ENT_GREEN 1 AGB = 0.0014*EXP(1.257*ENT_GREEN) 0.427
3 ENT_IR 1 AGB = 0.0037*EXP(0.9324*ENT_IR) 0.381
4 ENT_RED ENT_GREEN 2 AGB = (1.5433980367221*0.014*EXP(0.902*ENT_

GREEN)) − 1.44544606367556 + (0.282939580666907*0.0014*EXP
(1.257*ENT_RED))

0.577

5 ENT_RED ENT_IR 2 AGB = (1.46676608709125*0.014*EXP(0.902*ENT_
RED)) − 2.17026188620024 + (0.699734945044056*0.0037*EXP(0.
9324*ENT_IR))

0.600

6 ENT_GREEN ENT_IR 2 AGB =  − 1.51122384874277 + (0.879675944870026*0.0014*EXP(1
.257*ENT_GREEN)) + (1.03958495058038*0.0037*EXP(0.9324*
ENT_IR))

0.492

7 ENT_RED ENT_GREEN ENT_IR 3 AGB = (1.36808932689061*0.014*EXP(0.902*ENT_
RED)) − 2.14064136681706 + (0.126598738500455*0.0014*EXP(1
.257*ENT_GREEN)) + (0.654767397041001*0.0037*EXP(0.9324*
ENT_IR))

0.601
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Table 13  GLCM-based MLR model of mixed forest

MODEL Variable used Number 
of vari-
ables

Relationship Model coefficient of 
determination (r2)

1 ENT_RED 1 AGB = 1.6644.ENT_RED − 6.8199 0.41
2 CON_GREEN 1 AGB = 0.0016.CON_GREEN + 1.556 0.48
3 CON_IR 1 AGB = 0.0035CON_IR0.9419 0.53
4 ENT_RED CON_GREEN 2 AGB = (0.810693126890302*(0.0016*CON_GRE

EN + 1.556)) + (0.732092547693519*(1.6644*E
NT_RED − 6.8199)) − 1.46594719942554

0.68

5 ENT_RED CON_IR 2 AGB = (0.448356701350558*(1.6644*ENT_RED 
− 6.8199)) + (0.798423143874*(0.0035*CON_
IR^0.9419)) − 0.511750556935335

0.55

6 CON_GREEN CON_IR 2 AGB = (0.633454237941903*(0.0016*CON_GRE
EN + 1.556)) + (0.726385062436259*(0.0035*C
ON_IR^0.9419)) − 0.817943435431242

0.63

7 ENT_RED CON_GREEN CON_IR 3 AGB = (0.686568955851643*(0.0016*CON_GRE
EN + 1.556)) + (0.543699516368457*(1.6644*E
NT_RED − 6.8199)) + (0.332029299588111*(0.0035
*CON_IR^0.9419)) − 1.45435355281016

0.70
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Table 14  MLR-based combined modeling for coniferous forest

Model Variable used Number of 
variables

Relationship Model coefficient of 
determination (r2)

1 SR ENT_IR 2 AGB = (0.900518947504234*0.7524*EXP(0.558
4*SR)) + 0.459062580854248*(1.6716*ENT_
IR—6.8163) − 1.58507716896411

0.7479

2 SR HOM_RED 2 AGB = (0.927435539812124*0.7524*EXP(0.5584
*SR)) + 0.603653709026976*(10.194*HOM_RED − 0.3108) 
− 2.37985615137042

0.8017

3 SR ASM_GREEN 2 AGB = (0.993902940489857*0.7524*EXP(0.5584
*SR)) + 0.237232280888233*(6.8828*EXP(− 3.322*ASM_
GREEN)) − 0.925090916245941

0.6951

4 SR ENT_IR HOM_RED 3 AGB = (0.816223764075035*0.7524*EXP(0.5584
*SR)) + 0.322871080378063*(1.6716*HOM_RED 
− 6.8163) + 0.525904860894667*(10.194*ENT_
IR − 0.3108) − 3.01287046960345

0.8307

5 SR ENT_IR ASM_GREEN 3 AGB = (0.933436676678785*0.7524*EXP(0.558
4*SR)) + 0.524505729230038*(1.6716*ASM_
GREEN − 6.8163) − 0.150304941066467*(6.8828*EXP(-
3.322*ENT_IR)) − 1.37474112385736

0.7506

6 SR HOM_RED ASM_GREEN 3 AGB = (0.838512229643216*0.7524*EXP(0.5584
*SR)) + 0.601272697403676*(10.194*ASM_GREEN − 
0.3108) + 0.225654108380577*(6.8828*EXP(− 3.322*H
OM_RED)) − 2.96139563179597

0.8106

7 SR ENT_IR HOM_RED ASM_GREEN 4 AGB = (0.820297320671545*0.7524*EXP(0.5584
*SR)) + 0.330865636425123*(1.6716*ASM_GREE
N − 6.8163) + 0.524162541451282*(10.194*HOM_
RED − 0.3108) − 0.0173250138195351*(6.8828*EXP
(− 3.322*ENT_IR)) − 2.9838956546503

0.8308

Table 15  MLR-based combined modeling for deciduous forest

MODEL Variable used Number 
of vari-
ables

Relationship Model coefficient of 
determination (r2)

1 SR ENT_RED 2 AGB = 0.847644073680865*0.2615*EXP(0.6789
*SR) + 0.804215940553931*0.014*EXP(0.902*
ENT_RED) − 1.20380427014967

0.7367

2 SR ENT_GREEN 2 AGB = 1.09101917779112*0.2615*EXP(0.6789
*SR) + 0.195824526570449*0.0014*EXP(1.257*
ENT_GREEN) − 0.341026676494041

0.6866

3 SR ENT_IR 2 AGB = 1.08414333702256*0.2615*EXP(0.6789
*SR) + 0.35624190867026*0.0037*EXP(0.9324*
ENT_IR) − 0.65584228760595

0.6895

4 SR ENT_RED ENT_GREEN 3 AGB = 0.921421457720776*0.2615*EXP(0.67
89*SR) − 0.300907742481*0.0014*EXP(1.257*
ENT_GREEN) + 1.00389087049466*0.014*EXP(0.
902*ENT_RED) − 1.13955531800184

0.7436

5 SR ENT_RED ENT_IR 3 AGB = 0.836792020732083*0.2615*EXP(0.678
9*SR) + 0.790326869665679*0.014*EXP(0.902*
ENT_RED) + 0.0540701857301251*0.0037*EXP(0.
9324*ENT_IR) − 1.26575949017129

0.7369

6 SR ENT_GREEN ENT_IR 3 AGB = 1.03200167900364*0.2615*EXP(0.6789
*SR) − 0.131125618814277*0.0014*EXP(1.257*
ENT_GREEN) + 0.299745975191922*0.0037*EXP
(0.9324*ENT_IR) − 0.716369085328599

0.6912

7 SR ENT_RED ENT_GREEN ENT_IR 4 AGB = 0.901864914911025*0.2615*EXP(0.678
9*SR) − 0.31626023959724*0.0014*EXP(1.257*
ENT_GREEN) + 0.984231244376142*0.014*EXP
(0.902*ENT_
RED) + 0.116195076761434*0.0037*EXP(0.9324*
ENT_IR) − 1.2694170570619

0.7442
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Table 16  MLR-based combined modeling for mixed forest

MODEL Variable used Number 
of vari-
ables

Relationship Model 
coefficient 
of determi-
nation (r2)

1 MSR ENT_RED 2 AGB = (0.774296358673027*2.4128*MSR^2.8338) + (0.433793896048752*(1.6644*E
NT_RED − 6.8199)) − 0.517212125667856

0.78

2 MSR CON_GREEN 2 AGB = (0.742121701215775*2.4128*MSR^2.8338) + (0.612148654494936*(0.0016*C
ON_GREEN + 1.556)) − 0.902314039809311

0.86

3 MSR CON_IR 2 AGB = (0.723404122249626*2.4128*MSR^2.8338) + (0.629628882885919*(0.7872*EXP(
0.001*CON_IR))) − 0.788097497406977

0.85

4 MSR ENT_RED CON_
GREEN

3 AGB = (0.629358242238062*2.4128*MSR^2.8338) + (0.571689969130797*(0.0016*C
ON_GREEN + 1.556)) + (0.350840410548309*(1.6644*ENT_RED − 6.8199)) − 1.4542
4388347297

0.90

5 MSR ENT_RED CON_IR 3 AGB = (0.710475923449143*2.4128*MSR^2.8338) + (0.0736191328641494*(1.6
644*ENT_RED − 6.8199)) + (0.588819137581949*(0.7872*EXP(0.001*CON_
IR))) − 0.852088124202343

0.86

6 MSR CON_GREEN CON_IR 3 AGB = (0.661096297817618*2.4128*MSR^2.8338) + (0.431974070079122*(0.00
16*CON_GREEN + 1.556)) + (0.416592786133718*(0.7872*EXP(0.001*CON_
IR))) − 1.25376091189061

0.91

7 MSR ENT_RED CON_
GREEN

CON_
IR

4 AGB = (0.648609247582477*2.4128*MSR^2.8338) + (0.3766131173131
49*(0.0016*CON_GREEN + 1.556)) + (0.12037360444411*(1.6644*E
NT_RED − 6.8199)) + (0.396131933575747*(0.7872*EXP(0.001*CON_
IR))) − 1.34826615320316

0.92
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Fig. 8  Validation plot between observed and predicted AGB of coniferous (a), deciduous (b), and mixed (c) forest using combined modeling

Table 17  Detailed model statistics generated from all models for each forest class

Model Model parameter Type of forest Model R2 Model 
adjusted R2

Model standard error 
(SE) (ton/pixel)

Validation R2 Validation 
RMSE (ton/
pixel)

Vegetation indices SR Deciduous 0.69 0.66 2.17 0.84 2.29
SR Coniferous 0.68 0.65 1.08 0.87 1.38
MSR Mixed 0.72 0.69 0.81 0.82 0.54

GLCM ENT_IR, ENT_RED, ENT_GREEN Deciduous 0.61 0.51 2.61 0.70 1.80
ENT_IR, HOM_RED, ASM_GREEN Coniferous 0.59 0.44 1.37 0.77 1.66
ENT_RED, CON_GREEN, CON_IR Mixed 0.70 0.55 0.97 0.57 0.69

Combined SR, ENT_IR, ENT_RED, ENT_GREEN Deciduous 0.74 0.67 2.16 0.89 1.93
SR, ENT_IR, HOM_RED, ASM_

GREEN
Coniferous 0.83 0.73 0.95 0.83 1.35

MSR, ENT_RED, CON_GREEN, 
CON_IR

Mixed 0.92 0.87 0.52 0.96 0.25
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an identifier of AGB of Haliyal and Yellapur Forest Divi-
sions, Western Ghats of Karnataka, India. However, Madu-
gundu et al. (2008) did not directly relate to forest AGB and 

vegetation index (NDVI). Madugundu et al.’s (2008) study 
was only based on Haliyal and Yellapur Forest’s decidu-
ous forest of Western Ghats of Karnataka, India. Pargal 

Fig. 9  AGB of Kalimpong for-
est from combined model

Table 18  ANOVA report of combined model of coniferous forest

df SS MS F Significance F

Regression 4 30.82359 7.705897 8.591017 0.0007791
Residual 7 6.2788 0.896971
Total 11 37.10239

Table 19  ANOVA report of combined model of deciduous forest

df SS MS F Significance F

Regression 4 177.5391 44.38478 9.457264 0.000826
Residual 13 61.01153 4.693195
Total 17 238.5507
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et al. (2017), on the other hand, used LISS-IV to investigate 
the AGB of different forest types in the Yellapur Forest 
Division, Uttara Kannada District, Western Ghats of Kar-
nataka, India. He used the vegetation index, only NDVI, 
for his analysis. Pargal et al.’s (2017) AGB model achieved 
R2 = 0.82. However, Pargal et al. (2017) cannot generate 
different AGB models for different forest classes. Attri and 
Kushwaha (2018) have used LISS-IV data on Barkot For-
est Range, Dehradun, India. Attri and Kushwaha (2018) 
used only NDVI as a vegetation index to identify AGB and 
got R2 = 0.71 for his AGB model. Bindu et al. (2020) used 
kg/pixel-based AGB estimation using LISS-4 generated 
NDVI. Bindu et al. (2020) achieved an R2 of 0.71 for his 
NDVI-based AGB model. However, no studies have used 
all LISS-4 generated vegetation indices for their AGB mod-
eling. No study has generated an individual AGB model 
for different forest classes using LISS-4. To date, no study 
also used LISS-4 generated GLCM-based textures to model 
forest AGB.

This study correlated high-resolution LISS-4 MSS gen-
erated six vegetation indices with AGB. It has been identi-
fied that the pure coniferous (r2 = 0.81) and deciduous forest 
(r2 = 0.75) AGB are strongly correlated with SR (Table 7). 
Due to mixed patches of coniferous and deciduous stands in 
mixed forest regions, the response of SR is comparatively 
weaker than the nonlinear vegetation index MSR (Chen 
1996). We have found that MSR has a comparatively strong 
correlation with mixed forest AGB (r2 = 0.84). Although SR 
has a strong correlation with pure forest regions, the vegeta-
tion index-based model standard error (Table 16) shows that 
the ability of SR-based model to estimate coniferous forest 
AGB (SE = 1.08 ton/pixel) is comparatively better than AGB 
of deciduous forest (SE = 2.17 ton/pixel) due to the presence 
of varying tree species and so varying spectral responses in 
deciduous forest. Due to different optical and geometrical 
surfaces of mixed forest canopies, MSR is a good estimator 
of mixed forest AGB with SE = 0.81 ton/pixel. These model 
generated AGB maps have been validated with the field-col-
lected test data sets. The validation of maps also has a strong 
coefficient of determination (R2) with field-observed AGB 
and map generated AGB of deciduous (R2 = 0.84), coniferous 
(R2 = 0.87), and mixed forest (R2 = 0.82). However, the RMSE 
of validation is relatively higher in the deciduous forest (2.29 
ton/pixel) compared to coniferous (1.38 ton/pixel) and mixed 
forest (0.54 ton/pixel).

Spectral responses play more essential roles in bio-
mass estimation than textural images when the forest 
stand structure is relatively simple, but textural images are 
more important than spectral responses in complex for-
est stand structures (Lu 2005). Our study has generated 

10 GLCM-based texture parameters of 3 different spec-
tral bands of LISS-4 MSS data. These GLCM texture 
parameters have been correlated with AGB to identify the 
effect of forest canopy complexity responses among the 
neighboring pixels. In this study, we have discussed the 
reasons and justifications for GLCM properties’ choice 
(Table 9). The adjusted R2 of GLCM models for decidu-
ous (0.51) and mixed forest (0.55) are comparatively better 
(Table 15) than coniferous forest (0.44). GLCM texture has 
a better response in complex forest structures with varying 
tree species. The coniferous forest has fewer tree species 
than deciduous and mixed forests. The coniferous GLCM 
model is weaker than the deciduous and mixed forest. Due 
to higher complexity in tree species variation, the GLCM 
model of the mixed forest has a higher response than the 
deciduous forest. These model generated maps of each for-
est have been validated with the test data. The validation 
shows that RMSE has reduced in each forest in GLCM 
models compared to vegetation indices (Table 17). It is 
seen that the validation R2 of GLCM models is poor com-
pared to the vegetation index model.

An attempt has been made to combine the models gen-
erated by vegetation indices and GLCM-based texture 
parameters to increase the accuracy of AGB measure-
ment. It has been identified that the combined models 
have an improvement over individual models (Table 17) 
in all forest classes. Therefore, the combined models have 
been chosen to estimate the AGB of each forest class. 
After generating coniferous, deciduous, and mixed forest 
AGB maps, the AGB maps have been merged to generate 
the AGB distribution map of the Kalimpong forest region 
(Fig. 9). The deciduous forest map shows a validation R2 
of 0.89 with an RMSE of 1.93 ton/pixel. Coniferous for-
est map validation R2 is 0.83 with an RMSE of 1.35 ton/
pixel. There is a comparatively identifiable improvement 
in mixed forest with validation R2 of 0.96 and RMSE of 
0.25 ton/pixel. ANOVA report of coniferous, deciduous, 
and mixed forest is shown in Tables 18, 19, and 20. The 
equations used to generate the AGB distribution map are 
given below. The detailed AGB report generated from the 
AGB distribution map is in Table 21.

Table 20  ANOVA report of combined model of mixed forest

df SS MS F Significance F

Regression 4 17.5191 4.379776 15.94902 0.0004725
Residual 5 1.373055 0.274611
Total 9 18.89216
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• Coniferous forest: (r2 = 0.83)
  AGB = (0 .820297320671545*0.7524*EXP(

0.5584*SR)) + 0.330865636425123 * (1.6716 
* ASM_GREEN − 6.8163) + 0.5241625414512
82 *(10.194 * HOM_RED − 0.3108) − 0.01732
50138195351 * (6.8828 * EXP(− 3.322*ENT_
IR)) − 2.9838956546503.

• Deciduous forest: (r2 = 0.74)
  AGB = 0.901864914911025*0.2615*EXP(0.678

9*SR) − 0.31626023959724 * 0.0014 * EXP(1.257 
* ENT_GREEN) + 0.984231244376142 * 0.014* 
EXP(0.902* ENT_RED) + 0.116195076761434 * 0.0037 
* EXP(0.9324*ENT_IR) − 1.2694170570619.

• Mixed forest: (r2 = 0.92)

AGB = (0.648609247582477*2.4128*MSR^2.8338
) + (0.376613117313149*(0.0016*CON_GREEN + 1.
556)) + (0.12037360444411*(1.6644*ENT_RED − 6.
8199)) + (0.396131933575747 *(0.7872 * EXP(0.001 
*CON_IR))) − 1.34826615320316.

Conclusion

The work envisaged a cost-effective methodology for 
identifying the AGB of a study area in the Himalayan 
region. Most of the area in the study area is inaccessible 
due to rugged terrain and is covered mainly by forest. Due 
to poor per capita income in the study area, there is much 
pilferage of forest inventory. To maintain the health of 
the forest and for regulatory measurement of the forest, 
it was decided to use LISS-4 data for this work. There 
are various options available today in identifying AGB 
using the remote sensing approach, but using low-cost 
data will reduce the total cost of the analysis for periodic 
measurement of AGB.

This study suggested that LISS-4 MSS data can 
estimate the high-resolution AGB distribution of the 

Himalayan Forest region with adequate accuracy. Vari-
ous options available for AGB estimation using opti-
cal remote sensing data were attempted in work. In this 
study, six vegetation indices have been used for AGB 
estimation of different forests of Kalimpong forest 
regions. Among them, SR gives the highest correlation 
with AGB of pure deciduous and coniferous forests. In 
mixed forest regions, due to a mixture of two canopy 
stands, there is a mixture of foliage angle and optical 
scattering distribution. Therefore, the nonlinear vegeta-
tion index of SR (i.e., MSR) becomes dominant in AGB 
estimation in mixed forest. It was found that GLCM-
based texture parameters of LISS-4 bands have the ability 
of AGB estimation. Attempts were made to identify the 
AGB using the GLCM parameters. The results obtained 
depicted varying accuracy wherein some categories of 
forest GLCM parameters showed better results, whereas 
in some types the vegetation indices had better accuracy. 
An attempt was made to integrate GLCM textures with 
vegetation indices to identify whether a better accuracy 
could be obtained in the AGB estimation of the study 
area. The results obtained have enhanced the AGB model 
strength for all forest regions, so the integrated model 
using vegetation indices and the GLCM parameters were 
selected for the calculation of AGB of the study area.

This study shows AGB storage of deciduous forest 
has a maximum share over other forest regions of Kalim-
pong forest. Not only in pure deciduous and coniferous 
regions, this study has developed an adequately accu-
rate model for mixed forest regions also, where there 
is a mixture of different canopy cover. The study has 
also concluded an adequately accurate model with more 
cost-effectiveness than L band microwave data for AGB 
modeling.

This model can be used to estimate accurate AGB of dif-
ferent forest regions. Integration of microwave data with 
LISS-4 can improve the accuracy of AGB monitoring in 
the future. This model can be beneficial for use in carbon 
budgeting.

Table 21  Detailed AGB 
distribution of Kalimpong forest 
region

Type of forest Total AGB (Mt) Percentage AGB 
cover (%)

Model R2 Validation R2

Deciduous 58.87 56.93 0.74 0.89
Coniferous 36.09 34.91 0.83 0.83
Mixed 8.44 8.16 0.92 0.96
Total (Kalimpong) 103.40 100.00

601   Page 18 of 28 Arab J Geosci (2022) 15: 601



1 3

Appendix

Table 22  Plot-wise vegetation index distribution of coniferous forest used to train AGB model

Sl. number Plot no Above ground biomass 
(AGB) [tons/ha]

Above ground biomass 
(AGB) [tons/pixel]

MSR NDVI RDVI SAVI SR TVI

1 2 927.7517 2.319379 0.581127 0.335075 0.38942 0.327667 2.007858 0.913824
2 3 1942.688 4.856719 1.199063 0.56147 0.576612 0.666637 3.560691 1.030277
3 7 2677.199 6.692998 1.152446 0.547917 0.537121 0.646104 3.423966 1.023678
4 8 2903.594 7.258984 1.211049 0.564876 0.567134 0.671649 3.596391 1.031928
5 9 2515.866 6.289666 1.248631 0.575352 0.589885 0.687434 3.709783 1.036992
6 10 1679.119 4.197799 1.196585 0.560762 0.557368 0.665436 3.55334 1.029933
7 18 1439.11 3.597776 0.966498 0.488686 0.514783 0.55765 2.911491 0.994327
8 20 1547.309 3.868272 1.165224 0.551681 0.555569 0.651887 3.461109 1.025515
9 21 2929.369 7.323423 1.233744 0.571239 0.566298 0.681126 3.664603 1.035007
10 22 1686.7 4.21675 1.125022 0.539711 0.567279 0.634109 3.345096 1.019662
11 23 938.0345 2.345086 0.576107 0.332759 0.386869 0.324194 1.997418 0.912556
12 26 1123.687 2.809217 0.702006 0.388251 0.425873 0.407221 2.269315 0.942471

Table 23  Plot-wise vegetation index distribution of deciduous forest used to train AGB model

Sl. number Plot no Above ground biomass 
(AGB) [tons/ha]

Above ground biomass 
(AGB) [tons/pixel]

MSR NDVI RDVI SAVI SR TVI

1 1 326.0192 0.815048 0.469848 0.281596 0.340073 0.247561 1.783949 0.884079
2 5 5383.013 13.45753 1.728696 0.685505 0.693926 0.852439 5.359402 1.088809
3 6 4522.028 11.30507 1.259265 0.578261 0.61894 0.691927 3.74227 1.038393
4 11 465.3523 1.163381 0.461249 0.277273 0.346064 0.241156 1.767297 0.881631
5 12 299.3747 0.748437 0.132296 0.089274 0.173078 0.059555 1.19605 0.767642
6 13 478.2154 1.195539 0.902617 0.466279 0.514374 0.524194 2.747276 0.982995
7 14 1252.013 3.130032 0.875067 0.456267 0.501789 0.509184 2.678276 0.977889
8 15 390.1231 0.975308 0.845384 0.445238 0.492582 0.492668 2.60515 0.972234
9 16 407.9778 1.019944 0.983836 0.494578 0.531717 0.566541 2.957089 0.997285
10 17 1099.099 2.747746 1.344226 0.60066 0.643991 0.725494 4.008264 1.049123
11 19 3109.936 7.77484 1.671958 0.674503 0.681963 0.83595 5.14445 1.083745
12 28 636.4639 1.59116 1.100281 0.532156 0.549379 0.622727 3.274929 1.015951
13 29 1073.342 2.683355 1.169386 0.552899 0.56854 0.653797 3.473262 1.026109
14 33 223.5837 0.558959 0.278977 0.178767 0.253699 0.09359 1.435362 0.823873
15 34 1498.469 3.746174 1.351981 0.602632 0.646235 0.728449 4.033118 1.050063
16 36 746.692 1.86673 1.100281 0.532156 0.549379 0.622727 3.274929 1.015951
17 38 949.3571 2.373393 1.128369 0.540722 0.587839 0.635714 3.354661 1.020158
18 39 443.6311 1.109078 0.396143 0.243617 0.303519 0.190668 1.644163 0.862332

Table 24  Plot-wise vegetation index distribution of mixed forest used to train AGB model

Sl. number Plot no Above ground biomass 
(AGB) [tons/ha]

Above ground biomass 
(AGB) [tons/pixel]

MSR NDVI RDVI SAVI SR TVI

1 4 985.2877 2.463219 1.059282 0.519312 0.56459 0.603633 3.160703 1.00961
2 24 780.4696 1.951174 0.929733 0.475926 0.503459 0.53854 2.816255 0.98789
3 25 1148.409 2.871022 1.097041 0.531156 0.549379 0.622727 3.265811 1.015459
4 27 1109.217 2.773043 1.099185 0.531818 0.559545 0.622285 3.271843 1.015784
5 30 492.1385 1.230346 0.841181 0.443656 0.485196 0.490271 2.594898 0.97142
6 31 320.1169 0.800292 0.698578 0.38681 0.433231 0.40513 2.261632 0.941706
7 43 1743.402 4.358506 1.237287 0.572222 0.6 0.68282 3.675322 1.035482
8 48 2078.953 5.197383 1.30308 0.562615 0.587248 0.663333 3.572631 1.030832
9 49 1687.798 4.219496 0.936894 0.47844 0.49482 0.54222 2.83465 0.989161
10 54 642.2481 1.60562 0.901255 0.465789 0.497738 0.52338 2.743839 0.982746
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