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Abstract
Land use land cover (LULC) changes act as global environmental drivers, and therefore, LULC change analysis has become 
the primary concern for the monitoring agencies. This study aims to project the land use and land cover (LULC) by analysing 
the change rate in the past, forecasting the near, middle, and far future scenarios of Cochin, a highly urbanised coastal city 
of Kerala, India. The natural land resources, specifically the wetlands, are undergoing adverse changes to meet the growing 
demands of industrialisation and basic anthropological necessities in Kochi, causing negative feedback on the environ-
ment. We performed the maximum likelihood classification technique on a series of Landsat imageries at five different 
times. We forecasted LULC scenarios of 2045, 2073, and 2100 using Modules for Land Change Evaluation (MOLUSCE) 
in QGIS. The model simulated LULC was validated by comparing the observed LULC 2020 with the simulated one. The 
model demonstrates acceptable LULC dynamics with an overall accuracy of 87.5%. The simulated future LULC scenarios 
illustrate a sweeping increase in the built-up lands and shrinkage of natural land covers such as agricultural lands, forests, 
fallow lands, and water bodies. The urban growth indicator based on impervious to pervious ratio (IPR) confirms the extreme 
transformations of the area in terms of urbanisation. The destructive effect of urbanisation on natural land cover is likely 
to be predominantly more alarming in the near future than in the far. The leads of this study urge the necessity to establish 
appropriate urban planning and management policies for sustainable environmental conservation.
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Introduction

Intense anthropogenic activities such as urbanisation and 
industrialisation significantly influence the demographic fea-
tures and alterations of the physical landscape. These activi-
ties adversely affect the Earth’s natural environment, espe-
cially the hydrosphere and lithosphere (Fichera et al. 2017; 
Patra et al. 2018; Singh et al. 2015). In the current scenario, 
rapid socio-economic growth has resulted in a significant 
shift in global land use and land cover (LULC) (Q. Wang 

et al. 2021a, b, c). In modern human history, land expansion 
in urban locations is one of the highest noticeable, unaltera-
ble, and rapid forms of LULC change. Therefore, urban land 
expansion is the root cause of many environmental and soci-
etal modifications (Gao and O’Neill 2020). Moreover, rapid 
urbanisation due to population and economic development 
threatens natural resources (Mohan et al. 2011). Changes 
in LULC results in significant global and regional changes 
in climate variables (Al et al. 2020; Li et al. 2020; Patra 
et al. 2018), groundwater level (Nath et al. 2021; Patra et al. 
2018), hydrology (Chanapathi and Thatikonda 2020; Yuan 
2008; Zhang and Schilling 2006), water quality (Tahiru et al. 
2020; Yuan 2008), estuarine (Dipson et al. 2015), and air 
quality (K. Wang et al. 2021a, b, c). Though land use is con-
ventionally considered a local concern to the environment, 
it is gradually transforming as a global dynamism (Samal 
and Gedam 2013). Therefore, a thorough analysis of the 
dynamics of the land-cover alterations generated by urbani-
sation is essential in enabling sustainable regional land use 
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management and adaptation to the resultant environmental 
modifications (Patra et al. 2018; Wang et al. 2021a, b, c).

In the last five decades, the population has doubled, with 
India ranked second in World’s population. However, the 
megacities of India are not planned to meet this scale of 
population increase (Nath et al. 2021). Consequently, devel-
opment activities such as urbanisation, population growth, 
and industrialisation are forcing alterations on LULC pat-
terns across the country. Kerala state on the west coast of 
India is famous for tourism, physiography, and biodiversity. 
It accommodates a series of lagoons and estuaries, with a 
high population density of 860 persons per km2 (Sreelek-
shmi et al. 2021). During the 2001–2011 period, the state has 
witnessed an urban population growth of 92.72%. With the 
increase in the standards of living, there has been an upsurge 
in the employment demand along with better opportunities 
for education and health facilities, leading to the migration 
from rural areas towards urban areas across the state, result-
ing in an increased area under urbanisation (State Urbanisa-
tion Report 2012; Praveen and Nair 2017). A distinct shift 
in land use is reported in the state, with a decline in area 
under agroforest and rise in area under non-agricultural use 
with the expansion in migration accompanied by increased 
remittances used for land, infrastructures, and roads (Fox 
et al. 2017; Johnson 2018). Many districts in the state, such 
as Alappuzha (Vadrevu et al. 2015), Wayanad (John et al. 
2020), and Kollam (Sajeev and Subramanian 2003), have 
emphasised alterations in the land use patterns over time due 
to human encroachments. Ernakulam district, a part of erst-
while Kochi, represents the modern phase of Kerala. Kochi 
has a prominent place in the history of Kerala’s age-old trade 
links with the rest of the world and is referred to as the 
queen of the Arabian Sea. In the present study, we analysed 
the changes in the LULC pattern for the past three decades 
of Cochin urban agglomeration within Ernakulam district.

Satellite-based remote sensing (RS) data with GIS tech-
niques are found to be most effective in characterising the 
LULC changes in the spatiotemporal framework and inte-
grating the associated driving factors (Aneesha Satya et al. 
2020; Fichera et al. 2017; Singh et al. 2015). The recent 
researchers are focused on the model-based LULC trends 
and the projection of future LULC scenarios, especially in 
analysing various natural events (Amini Parsa and Salehi 
2016). Several models exist to forecast and simulate land use 
transition dynamics based on conceptual (Gao and O’Neill 
2020) and computational methods (Fondevilla et al. 2016). 
Multi-layer perceptron (MLP) neural network (Mozumder 
et al. 2016; Yonaba et al. 2021), logistic regression (LR) 
(Mozumder et al. 2016), weighted instance-based learn-
ing (Mozumder et al. 2016), and coupled models such as 
Markov cellular-automata (Amini Parsa and Salehi 2016; 
Chanapathi and Thatikonda 2020; Rodrigues and Guimar 
2021; Sang et al. 2011; Singh et al. 2015; Waseem et al. 

2015), LR-CA-Markov (Q. Wang et al. 2021a, b, c), artificial 
neural network-CA (Rahman et al. 2017), and MLP-CA-
Markov (Al et al. 2020; Aneesha Satya et al. 2020; Guidigan 
et al. 2019; Ibrahim and Ludin 2015) are prevalent models 
to forecast LULC. The existing LULC models and forecasts 
differ in the conceptual context, scenario frameworks, the-
matic emphases, spatial features, and modelling approaches 
(Sohl et al. 2016).

The study area is growing exponentially with the emer-
gence of the service sector and industries, reflecting the 
urban growth patterns displayed by most Indian cities. Any 
major or minor changes in LULC induce severe damage 
at a massive scale in the coastal ecosystems of the study 
area due to the prevailing sensitive ecology (Dipson et al. 
2015; Rafeeque et al. 2020). Apex court of India has recently 
ordered the demolition of four big apartment complexes, 
violating coastal zone regulations. Hence, analysing the 
evolving pattern of LULC in the past, and modelling the 
future, offers a unique opportunity to analyse and improve 
the current and forthcoming land use policies (Rahman et al. 
2017). Therefore, a study on LULC dynamics of present 
and future will reduce the risk of vulnerability and address 
the issues related to conservation of natural ecosystem and 
urban planning of the district, through the proper interven-
tion of sustainable land resource management policies. In 
this study, We analysed the spatiotemporal variations of 
LULC from 1994 to 2020. We predicted the scenarios for 
the near (2045), middle (2073), and far future (2100) for 
the benefit of sustainable futuristic urban development and 
management. This study applied maximum likelihood clas-
sification (MLC) on Landsat data for LULC mapping and 
change detection. We used MOLUSCE (Modules for Land 
Use Change Evaluation) model that works in the QGIS 
interface for future LULC forecasts. The forecasted LULC 
scenarios of near, mid, and far future times can support an 
effective land management policy.

Material and methodology

Study area

The study area is Kochi, the coastal urban city of Ernaku-
lam district in Kerala state of India that lies between 9° 48′ 
N and 10° 16′ N latitude and 76° 10′ E and 76° 29′ E lon-
gitude covering an area of 910 km2 (Fig. 1). The climate 
regime is tropical, with mean monthly temperature vary-
ing between 23 and 32 °C, and annual precipitation rang-
ing between 3200 and 3500 mm. Vembanad Lake system, 
listed in Ramsar wetlands, is partly in Ernakulam district. 
The portion of this Lake in and around the Kochi mainland 
is known as Kochi Kayal. Islands named Vypin, Mulavukad, 
Vallarpadam, and Willingdon contained by the Vembanad 
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lake system are (Department of Mining and Geology 2016) 
within the study area. The Vembanad lake system makes 
this area prominent on the world tourism map. The study 
area is the economic capital of Kerala and therefore showed 
steady growth in urbanisation since independence. The rapid 
industrial growth in this area during the recent past could 
be attributed to improved transportation services, including 
a major international airport, international container trans-
shipment terminal, and harbour terminal within the vicinity 
(George 2016).

About 68% of the population of Ernakulam district live 
in the Kochi urban agglomeration, and hence is the high-
est populated city in Kerala (Thomas 2017). Ernakulam 
registered about a 43% increase in urban population from 
2001 to 2011. Figure 2 depicts the process of urbanisation 
in the Ernakulam district. According to Datta (2006), the 
ratio of people who live in urban areas is referred to as the 
degree of urbanisation. In the current study area, the degree 
of urbanisation was measured using urban and rural popu-
lation percentage and urban–rural population ratio (Fig. 2). 
An alarming situation is evident in the economic base of the 
state. According to the Department of Town and Country 

Planning report in 2011, the study area shows a very promi-
nent declining trend in the primary sector, which comprises 
the agricultural labourers and cultivators, in contrast to 
the service sector/tertiary sector. It is apparent that dur-
ing 2001–2011, the graph of urban growth shows a drastic 
increase in the total population at a steady rate (Fig. 2).

Data collection and preparation

We generated LULC maps using multi-temporal Landsat 
collection-2 level-2 (Landsat 5TM and Landsat 8) satel-
lite imagery. Our analysis utilised Landsat satellite images 
of 30 m spatial resolution for the following years: 1994, 
2002, 2008, 2015, and 2020, obtained from the United 
States Geological Survey (USGS) website. All the images 
were geometrically and radio-metrically corrected and pro-
jected with WGS 1984 UTM Zone 43 N coordinate system. 
We used the MLC technique for feature extraction from 
Landsat images. The secondary ancillary datasets, such 
as socio-economic data (population density), topographic 
factor (slope and DEM), and human–geographic data (dis-
tance from roads and water bodies), were utilised as land 

Fig. 1   Location map of the study area (base map  source: Google Earth © imagery of Cochin, Ernakulum)
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use dynamics or drivers (Chanapathi and Thatikonda 2020; 
Yonaba et al. 2021). The maps generated from secondary 
ancillary datasets for the study area are depicted in Fig. 3. 
The SRTM DEM for the study area was acquired from the 
USGS (website: http://​srtm.​usgs.​gov/). The Survey of India 
topographical sheets were digitised to delineate the drain-
age and major road networks, whereas the population sta-
tistics were acquired from the Kerala State Census website 
for 2011. The Euclidean distance tool in ArcGIS was used 
to obtain the distance from the main road and water body 
variable (Rahman et al. 2017).

Generation of LULC maps with supervised 
classification technique

The classified LULC maps for the years 1994, 2002, 2008, 
2015, and 2020 were generated from the satellite data with 
the MLC technique in the Arc GIS platform. This classi-
fication method is popular and robust due to the minimal 
chances of misclassification (Sun et al. 2013; Sisodia et al. 
2014). From the analysis of the spectral properties of the 
Landsat imageries and field observation, we identified five 
major LULC categories in the present study area, viz., for-
est (forest, rubber/coconut), agricultural lands (agricultural 
fields/shrubs, grass, parks), water bodies, built-up lands 
(high intensity and low intensity), and fallow lands. The 
ground truth is based on field investigations conducted from 
2014 to 2016 validated using Google Earth-based observa-
tions. We have trained the MLC approach with appropri-
ate signature training sets for each feature from the satellite 
image, and the LULC maps were generated for the corre-
sponding years. Subsequently, each pixel is assigned to the 
class with the highest likelihood of association based on 
variance and covariance spectral response patterns (Q.Wang 
et al. 2021a, b, c). The error matrix, overall accuracy, Kappa 

coefficient technique was adopted to assess the accuracy 
of classified LULC maps of Cochin using 170 randomly 
selected sampling points. The binomial probability theory 
was applied to decide the size of the sampling points (Con-
galton 1991; Yonaba et al. 2021). The points were selected 
in such a way that they cover each LULC class in almost 
equal proportion and from all parts of the study area. Fur-
thermore, the error matrix was constructed to evaluate the 
accuracy of the classified LULC maps (Foody 2002).

Markov chain analysis in estimation of transition 
probabilities

Our study utilised the stochastic Markov chain process that 
works on the philosophy that the future event occurrences 
mainly depend on the present state of the event and are inde-
pendent of the past state (Unwin et al. 1977). The Markov 
chain process can quantify the conversion of the land use 
categories and the transition rates (Sang et al. 2011). The 
prediction of future LULC using Markov chain is achieved 
by analysing two different temporal LULC maps. These 
maps can provide insights into the transition from one state 
(j) of a system at time (tn+1) to another state that is predicted 
from the state (i) of system at time (tn) (Unwin et al. 1977). 
The probability of alterations from a particular state to a 
different state is transition probability (Pij). Temporal LULC 
maps can provide insights into the transition from one state 
(j) of a system at the time (tn+1) to another state, which is 
predicted from the state (i) of the system at the time (tn) 
(Unwin et al. 1977).

(1)Pij =
nij

ni

Fig. 2   Urbanisation trend in 
Ernakulam District from 1901 
to 2011 ( Source: Kerala Census 
2011)
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where nij is the total number of pixels of class i transformed 
during the transition period, and nj is the number of pixels 
changed from class i to class j.

The transition probability matrix (Pij) describes the prob-
ability of changing LULC from one type to another, repre-
sented as matrix P.

(2)P = Pij =

⎡
⎢⎢⎣

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎤⎥⎥⎦

where Pij represents the state of the probability of a transi-
tion from i to j.

A Markov chain forecast step is illustrated here using con-
ditional probability theory and the Markov process (Aneesha 
Satya et al. 2020).

where  S(tn+1) represents the land use status at the time tn+1 
and S(tn) land use status at the time tn.

In this study, LULC was modelled with a QGIS plugin 
known as MOLUSCE. It is intended for analysing and 

(3)S
(
tn+1

)
= Pij ∗ S

(
tn
)

Fig. 3   Driving factors of LULC changes. a Population density (persons/km2) map. b Distance from roads. c Elevation map. d Distance from 
water bodies
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simulating existing and future LULC (Guidigan et al. 2019). 
The MOLUSCE plugin is an integration of well-known 
modelling algorithms and simulation approaches. The mod-
elling algorithms can model the LULC change transition 
potential. The probability of one land cover category shifting 
to another is transition probability (Reddy et al. 2017). In 
the MOLUSCE module, four different modelling algorithms 
exist to calculate transition potential, viz., multilayer percep-
tron (MLP) neural network, multi-criteria evaluation (MCE), 
weights of evidence (WoE), and logistic regression (LR). 
The simulation of the LULC map is generated based on the 
cellular-automata (CA) Markov chain approach. MOLUSCE 
has mathematical and arithmetical progression, which will 
be helpful in accurate landscape analysis (Aneesha Satya 
et al. 2020). In all algorithms, LULC data was used as an 
input in deriving LULC transitions. MLP is a suitable global 
parametric model for simulating LULC changes to analyse 
the spatial drivers, which indicate the non-linear land trans-
formation (Mozumder et al. 2016; Yang et al. 2016). The CA 
model is quite popular and gives the spatiotemporal frame-
work for the LULC simulation of a complex system (Sang 
et al. 2011; Yang et al. 2016).

The essential inputs fed into the model for the current 
study include LULC maps (1994, 2008, 2015, and 2020), 
population density, slope and DEM, and distance from roads 
and water bodies. The time sequence from the Markov and 
the spatial estimation with the CA theory is effective in accu-
rate spatiotemporal pattern simulation in the CA–Markov 
model (Sang et al. 2011). Hence, we utilised the combina-
tion of the MLP-CA-Markov models to analyse the spatial 
interaction triggered by current LULC and the forecasting of 
future LULC, which will be helpful in viable land resource 
planning and management.

Driving factors of LULC changes

The selection of the drivers of LULC changes plays a key 
role in the modelling of LULC changes. In the current study, 
socio-economic data (population density), topographic fac-
tor (slope and DEM), and human–geographic or proximity 
data (distance from roads and water bodies) were utilised 
as land use dynamics or drivers. The rise and decline of the 
human population have a massive effect on the LULC pat-
terns of a region (Kafy et al. 2021). In particular, random 
urban population expansion and migration from other parts 
of India were observed for the last three decades in the study 
area. Therefore, population density is considered as one of 
the major driving factors of LULC changes. Topography 
will play a crucial role in development activities such as 
urbanisation, industrialisation, and agricultural intensifica-
tion (Rahman et al. 2017; Sankarrao et al. 2021). Generally, 
the plain areas have more probability for urban expansion 
than sloped regions. The parameters like elevation and slope 

(derived from the DEM) are also considered as drivers in the 
model. Other drivers, such as distance from roads and water 
bodies, are significant in land use change because they pro-
vide access to resources (Aneesha Satya et al. 2020; Guidi-
gan et al. 2019; Leta et al. 2021; Sankarrao et al. 2021). All 
the vector files of driving factors were rasterised in ArcGIS. 
The driver factor maps were normalised and given a continu-
ous suitability scale ranging from 0 to 255, with 0 being the 
least suitable region for LULC change and 255 representing 
the most appropriate.

Before examining the LULC transitions between the vari-
ous periods, the influence of different driving variables on 
the LULC changes was analysed using Cramer’s statistics 
(V). The strength of the correlation between different driver 
variables which causes the changes in LULC is analysed 
using Cramer’s statistics by considering the Chi-square val-
ues (Hakim et al. 2019; Sankarrao et al. 2021). Cramer’s sta-
tistics range from 0 (no relation between the variables) to 1 
(perfect relation between the variables) (Reddy et al. 2017). 
Only driving factors with values greater than 0.15 (Cram-
er’s statistics) were considered for modelling in this study 
(Reddy et al. 2017). A detailed description of the mathemati-
cal incorporation of driving factors in LULC modelling is 
given in standard literature (Gharaibeh et al. 2020; Reddy 
et al. 2017; Sankarrao et al. 2021).

Modelling transition potential of each class using 
MLP

An interrelated group of artificial neurons in ANN can pro-
cess the information for computation with a connectionist 
approach. Highly parallel information processing is carried 
out for the hierarchical structure of neural networks, which 
are organised as interconnected units. Each layer consists of 
nodes/neurons which are inter-connected with neurons of 
adjacent layer weightage. The interactions among the linked 
neurons and the alterations of the weights associated with 
the linkages are the critical aspects of ANN (Aneesha Satya 
et al. 2020). Any modifications in the weightage depend on 
the input data and the anticipated outcome from the network. 
This whole procedure is known as the learning process of 
a network resulting in the transition probability matrix that 
depicts the direction in which land use types are transferred 
(Jogun et al. 2019).

The MLP is the most common neural network that con-
tains three-layer types: input, hidden, and output (Pijanow-
ski et al. 2002). These neural networks are trained with a 
standard backpropagation algorithm, and the local transition 
rules are applied for discovering the local transition rules of 
CA (Yang et al. 2016). It can model the multiple transitions 
of LULC for a period with a considerable number of driv-
ing factors (Aneesha Satya et al. 2020; Jogun et al. 2019; 
Yonaba et al. 2021). The identified main driving factors for 
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land use changes for this study are population density, dis-
tance from roads, water bodies, DEM, and slope (Fig. 3). 
The MLP algorithm was fed with input raster images of 
2008 and 2015, along with the five driving factors for the 
calibration. The algorithm training was carried out for 100 
iterations with a neighbourhood value of 3 × 3 (9 pixels), a 
learning rate of 0.001 with ten hidden layers in addition to 
0.050 momentum value. The output of ANN represented the 
likelihood of change from one LULC type into another type. 
A zero value of change probability indicates “no chances” to 
change, whereas a unit value indicates the “highest chances” 
of modification (Pijanowski et al. 2002).

Modelling of future LULC with CA

The CA simulation used in the study is based on the Markov 
chain analysis and its change in the neighbourhood (Jogun 
et al. 2019). The CA–Markov model is one of the most 
extensively adopted approaches for modelling spatiotempo-
ral dynamics of LULC patterns to assist sustainable land 
use development (Reddy et al. 2017; Rodrigues and Guimar 
2021; Sang et al. 2011; Sankarrao et al. 2021). It is an inte-
gration of CA and transition probability matrix generated 
by the cross-tabulation of two different images. The model 
(MLP algorithm) calculates the transition probabilities of 
each transition category, whereas the simulator (CA) con-
structs the raster of the most probable transition. The initial 
state raster (current LULC), driving factor raster, and transi-
tion potentials are inputs to CA in MOLUSCE.

Cellular automation is a cellular entity based on the con-
cept of proximity. The state of each cell was determined 
by the spatial and temporal state of its neighbouring cells 
(Reddy et  al. 2017). The following equation is used to 
express the CA model (Wang et al. 2021a, b, c).

where t and t + 1 are the starting and ending times of the 
simulation, respectively. Si,jt+1 and Si,jt are the state of the 
cell in row i and column j at t + 1 and t.  Ni,j

t is the state of 
neighbours of the cell in row i and column j at time t. V is 
the set of suitability factors; f is the transition rule.

The LULC map of 2015 was used as the base map for the 
simulation of LULC 2020 using the CA-Markov approach. 
Driving factors and transition probabilities from 2008 to 
2015 were used to simulate LULC 2020. Furthermore, we 
validated the model prediction using the observed LULC 
map of 2020 with respect to various kappa statistical com-
ponents. Some of the kappa statistics are kappa for loca-
tion (Kloc), which enhances the model’s ability to predict 
the change of locations, whereas the overall kappa was used 
to assess the model’s overall performance (KOveral) (Yonaba 
et al. 2021). Consequently, the LULC of future scenarios for 

(4)Si,j
t+1 = f

(
Si,j

t
,Ni,j

t
,V

)
−

2045, 2073, and 2100 were simulated with the calibrated and 
validated MLP-CA–Markov model using the base map of 
2020 and transition probabilities from 1994 to 2020.

Future LULC dynamic degree estimation

We have analysed the spatiotemporal dynamics of future 
LULC (FLULC) patterns for various periods ranging from 
2020 to 2100. The rate of gain/loss in each LULC type 
with image differencing (ID) method for the future with 
three cases of 2045–2073, 2073–2100, and 2020–2100 has 
been estimated. We adopted a dynamic degree (DD) model 
approach in representing FLULC change in terms of the spa-
tiotemporal characteristics. The DD of LULC was estimated 
with the following Eq. (5) (Nath et al. 2020).

which denotes the rate of change; Aa is the area in the initial 
year; Ab is the area in the terminal year; and T is the temporal 
scale. In our case, the time comparisons are 26, 28, 27, and 
80 years, respectively.

Results and discussion

The spatiotemporal variation in LULC of the study area 
showed an increase in built-up land from 9.31% in 1994 to 
33.23% in 2020. The map representation of the feature distri-
bution from multi-temporal image data for years 1994, 2002, 
2008, 2015, and 2020 is displayed in Fig. 4. Based on the 
percentage reduction in area, the natural forest cover reduced 
from 34.06 to 27.72%, agricultural lands reduced from 30.23 
to 17%, fallow lands reduced from 10 to 6.9%, and water 
bodies reduced from 16.3 to 15.13% during 1994–2020, as 
illustrated in Fig. 5 with details in Table 1. The percentage 
area coverage of built-up showed a steep increase from 1994 
to 2020, while all other feature classes showed a decrease in 
the percentage area coverage, with forest cover showing the 
highest degree of depletion. The validity of the classifica-
tion was analysed using Kappa statistics (Lu et al. 2019) and 
is detailed in Table S1. Classification accuracy calculated 
based on the classified images obtained using multi-temporal 
Landsat images from 1994 to 2020 is more than 80%, as 
described in Table S1.

In this work, the temporal Landsat images (1994, 2002, 
and 2015) were analysed at a decadal time interval starting 
from 1994 to analyse the historical changes in LULC. To 
maintain the quality of satellite image time series, efforts 
were made to consider images from a particular month for 
different period. In this study, relatively cloud-free April 
month was considered to maintain similarity in inter cluster 

(5)D =

Ab−Aa

Aa

T
X100%
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and intra cluster variability. For example, to understand the 
decadal transformation in agricultural land or natural land 
cover such as forest cover or water bodies, it is always bet-
ter to use the image from a particular season as seasonal 
changes are reflected in the image for such land cover 

classes. If we deliberate decadal period strictly, we have to 
consider images of year 2004 and 2014 instead of 2002 and 
2015. However, in this study, to maintain the image clarity 
and quality of the Landsat images used for image classifica-
tion, Landsat image from 2002 was used instead of 2004 

Fig. 4   Map illustration of LULC feature distribution in the study area. a Year 1994. b Year 2002. c Year 2008. d Year 2015. e Year 2020

Fig. 5   Spatiotemporal dynamics 
in each LULC feature between 
1994 and 2020
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and 2015 was used instead of 2014. This is due to the una-
vailability of cloud-free and noise-free Landsat image data 
for the study area corresponding to 2004 and 2014. For the 
model calibration, we have considered five-year interval of 
Landsat data (2010, 2015, and 2020). Similar to the reasons 
cited above, we considered Landsat image of 2008 instead 
of 2010. Therefore, LULC map of 2008 and 2015 were ana-
lysed to create change scenarios for 2020, whereas 2020 data 
was used for the model validation.

Change detection analysis was performed to analyse 
the rate of change in each LULC class from 1994 to 2020. 
The annual change rate in each LULC class is known as 
dynamic degree (DD) and was computed with Eq. (5). The 
annual change rates for the five LULC classes are found to 
be 0.71%, 1.68%, 1.19%, 0.26%, and 9.87%, respectively 
(Table 2). However, the yearly proportion of transforma-
tion computed using Eq. (5) is inconsistent between 1994 
and 2002, 2002 and 2015, and 2015 and 2020, as shown 
in Fig. 6. We observed an annual decline rate of 1.74% in 
water bodies during 1994–2002, an increasing rate of 0.31% 
in 2002–2015, and 0.72% in 2015–2020. The fallow lands 
show a decreasing rate of 2.17% in 1994–2002, and 1.92% in 
2002–2015. However, for 2015–2020, fallow lands showed 
an increase of 2.25%. Our analysis showed that forest cover 
indicated a positive trend of 0.39% during 1994–2002 and 
a declining trend of 0.95% in 2002–2015 with a maximum 
annual degradation rate of 2% in 2015–2020. We observed 
a continuous degradation in different periods at different 
rates in agricultural lands, such as 1.68% in 1994–2002, 
1.53% in 2002–2015, and 2.18% in 2015–2020. The maxi-
mum increasing rate of 9.03% for built-up land was wit-
nessed during the 1994–2002 period, and the next maximum 
annual increasing rate of 6.4% was reported in 2002–2015, 
followed by 2.6% in 2015–2020. Rapid urbanisation is the 
major cause for reducing agricultural lands, fallow lands, 
forest, and water bodies evident from the net gain in the rate 
of change for built-up lands. Shaji et al. (2017) reported a 
similar observation.

The gain or loss in the areal coverage for each feature 
class, as shown in Fig. 6, indicates the expected pattern of 
an increasing trend in built-up lands and reduction in natu-
ral cover for all the phases. However, we found an atypical 
behaviour for certain classes during particular time inter-
vals. We observed that forest cover increased by 0.4% in 
1994–2002, and water bodies increased by 0.32% between 
2002 and 2015, which could be attributed to the difference 
in the images used in the derivation of the particular LULC 
maps. An analysis on the trend observed for the changes 
in water bodies indicated a positive trend of 0.73% during 
2015–2020. A possible explanation might be the landcover 
alterations post-2018 flood in the region, which is consid-
ered as the largest flood of the century. The increase in fal-
low lands (2.26%) for the same interval was reported, and Ta
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this could indicate the expansion of fallow lands at the cost 
of forest or agricultural lands for the establishment and 
expansion of urban features.

Transitional potentials in the LULC dynamics

Multilayer perceptron (MLP) neural network-based tran-
sitional potential model calculates transition probabilities 
among different LULC classes. We calculated transition 
probabilities for two different time phases. The first phase 
is from 2008 to 2015, with an eight-year interval, whereas 
the second phase denotes 27-year interval from 1994 to 
2020 (Table  3). The comparison between the two-time 
phases reveals a similar trend in the transition probabilities 
for different LULC feature classes. However, remarkable 
transformations were reported in the second phase for the 
majority of the classes. The analysis of the transition prob-
ability matrix for 2008–2015 shows that forest and agricul-
tural lands have more prospects to change into built-up lands 
with probabilities of 0.207 and 0.3 than other land use types. 
The likelihood of modifying fallow lands into water bodies 
and forests are 0.1 and 0.12, respectively. Forest cover indi-
cates a probability of 0.14 for its alteration into agricultural 
lands in the same period (Table 3). The LULC transition 
between two same classes (e.g. water body to water body, 
urban lands to urban lands) refers to the probability of no 
change in the class for the time interval. For instance, the 
likelihood of urban land remaining the same is 0.77 from 
2008 to 2015, which indicates that 77% of the pixel remains 
unchanged for that particular class in that particular duration 
(Table 3). Likewise, the transition probability between two 
classes during a specific time interval indicates the chances 
of shifting from one class to another. For example, we found 
the transition probability of 0.3 between agricultural land 
and built-up land between 2008 and 2015, which denotes 
that 30% pixels from the agricultural land cover type of 
2008 are prone to convert into built-up lands by the year 
2015. During the period 1994–2020, the fallow lands were Ta
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Fig. 6   Annual change rates in the areal cover of LULC categories for 
different periods
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modified into forest, agricultural lands, and built-up lands, 
with probabilities of 0.2, 0.236, and 0.142. The chances 
of forest cover converting to agricultural lands and built-
up lands were found to be 0.116 and 0.36. The agricultural 
lands are highly susceptible to transformation into built-up 
lands, as indicated with a high transition probability value 
of 0.45. On average, the probability of getting converted into 
built-up lands from other classes is remarkable, reducing the 
pervious cover in the study area.

Model validation

During the analysis, three different maps, viz., transition 
potential map, certainty raster, and simulated LULC map 
were generated. These maps were produced with the outputs 
from the CA after the transition potential modelling using 
the memory from the MLP-ANN algorithm. The changes 
associated with corresponding LULC (e.g. forest to built-up 
land transition potential, forest to agricultural land transition 
potential, forest to barren transition potential, and forest to 
water body transition probability) were used to construct 
a transition potential map. The certainty raster refers to 
the change between two large transition potentials, which 
depends on the LULC classes and the transition potential. 
Transition potential denotes the certainty of occurrence in 
the predicted LULC map. The greater the change in the cer-
tainty raster, the higher is the confidence in the simulated 
map. Before simulation of future patterns in the LULC using 
the CA–Markov model, the model has been validated with a 
simulated 2020 LULC map as shown in Fig. 7b.

Comparison of the areal statistics for the LULC features 
between observed and simulated data of the year 2020 was 
performed for each class individually and represented in 
Fig. 7c. The comparison also states that the model over pre-
dicts the values in agricultural land type and built-up lands, 
whereas under predicted values are obtained from the model 
for the forest, water bodies, and fallow lands.

The results were validated by comparing the simulated 
and the observed LULC map of 2020 (Fig. 7). Kappa statis-
tics were computed from these observed and simulated maps 
of 2020. The statistics showed Kloc as 0.77, Koveral as 0.72, 
Khisto as 0.94, and the overall percentage of correctness was 
observed to be 87.5%. The coupled MLP-CA–Markov model 
results presented good simulation outputs, with kappa coef-
ficient values and overall accuracy higher than 0.7, hence the 
model to be reliable for the present study region.

Projection of future LULC scenarios

After validation, we adopted the model to predict the 
LULC scenarios of 2045, 2073, and 2100. The spatial 
distribution of simulated LULC future scenarios is rep-
resented in Fig. 8. The areal statistics of future projection Ta
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are illustrated in Fig. 9 and Table 4. The result predicted 
a significant increase in the areal extent of built-up land 
during 2020–2100, along with a considerable loss in 
natural land cover such as forest and agricultural lands 
(Table 4). The model predicted a slight reduction in fallow 
land (6.9 to 4.53%) and water bodies (15.13 to 14.96%). 
The complete analysis of the predicted results indicates a 
need for more significant fortification of the environment 
and preservation of natural land cover and associated rare, 
vulnerable species in the study area. Moreover, the region 
is among the twelve districts of Kerala, which falls under 

the Western Ghats expanse and is one of the World’s eight 
biodiversity spots.

The FLULC for different periods 2045, 2073, and 2100 
(Fig. 8) were generated following the successful simulation 
of LULC changes in 2020 (Fig. 7b). The annual change rate 
in each LULC type was computed with Eq. (5). Figure 10 
denotes the future LULC statistics and the rate of change 
(gain/loss) in each class at an annual scale for different time 
phases (Table 4).

The maximum annual growth rate of 1.95% was pre-
dicted for built-up lands between 2020 and 2045, 0.4% was 

Fig. 7   LULC map of 2020. (a) derived from satellite data, (b) simulated using CA–Markov model, and (c) comparison of areal statistics of 
LULC features from satellite-derived and simulated maps for the year 2020
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predicted between 2045 and 2073, and 0.23% between 2073 
and 2100. The maximum urbanisation was expected to hap-
pen during 2020–2045, i.e. in the near future. The model 
also predicted the overall annual growth rate in built-up 
land to be 0.79% per year from 1994 to 2100 (Fig. 10 and 
Table 4).

The maximum annual decreasing rate was predicted in 
agricultural land with an average rate of 1.75% per year 
between 2020 and 2045 (near future), 1.13% in the middle 
future (2045–2073), and 1.6% in the far future (2073–2100), 
indicating the significant declination in the near and far 
future. The model predicts a decreasing trend for the forest 

cover scenario with an annual rate of 1.12% per year, 0.46% 
per year, and 0.16% per year in the near, middle, and far 
future, respectively. The fallow lands are predicted to show 
an annual trend of 0.56% per annum decrease between 
2020 and 2045, whereas the other phases have a very slight 
decreasing rate of 0.01% per year (Table 4). The water bod-
ies are predicted to have a decreasing trend of shallow mag-
nitude (Fig. 10 and Table 4).

Furthermore, we analysed the surface area proportions of 
pervious with respect to impervious from the derived LULC 
maps. It is observed that there is a constantly rising trend in 
the pervious to impervious surface proportions during the 

Fig. 8   Projected LULC maps for future (a) 2045, (b) 2073, and (c) 2100
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Fig. 9   Change detection for the LULC features between 2045 and 2100

Table 4   Annual change rate (%) 
estimation in LULC for various 
phases from 2020 to 2100

LULC classes Total projected area cover (km 2) DD (%) between different time periods

2020 2045 2073 2100 2020–2045 2045–2073 2073–2100 2020–2100

Water bodies 136.37 134.19 132.81 132.75  − 0.02  − 0.01 0.00  − 0.03
Fallow lands 62.27 48.12 41.8 40.96  − 0.56  − 0.01  − 0.01  − 0.44
Forest 249.8 252.44 236.03 201.6  − 1.12  − 0.46  − 0.16  − 0.25
Agricultural lands 153.22 76.29 51.35 45.67  − 1.75  − 1.13  − 1.61  − 0.90
Built-up lands 299.43 392.95 442 483 1.95 0.40 0.23 0.79

Fig. 10   Annual change rate (%) of each Future Land Use Land Cover type at various phases
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study period for the last three decades (1994–2020). Addi-
tionally, we found that this trend is increasing at an alarming 
rate for the projected future scenarios. In 1994, the propor-
tion of pervious land was about 90%, and around 9% was 
impervious. For the recent 2020 scenario, the proportion 
of impervious areas increased to around 30%. However, the 
predicted results for 2100 rose to 58% for the impervious 
surface area with a reduction of 41% for the pervious surface 
area (Fig. 11). The computed ratio of impervious surface 
area to the pervious showed a drastic increase from 0.1 in 
1994 to 0.5 in 2020 to 1.42 in 2100.

From the analysis, the major alterations in LULC are 
predicted during the near future phase (2020–2045), which 
indicates a higher rate of decrease in the previous surface. 
The rapid growth of urbanisation and other anthropogenic 
activities have affected all major LULC classes such as water 
bodies, forest, fallow lands, and agricultural lands from 2020 
to 2100. The LULC map of the year 2100 indicates a vast 
decrease in the previous surface area, pointing to a poten-
tially dangerous environment in the future across the study 
area. The destruction of the natural land cover indicates the 
need for long-term landscape maintenance and development.

Significant growth in the built-up area has been 
observed in the Cochin and Kanayannur talukas of the 
study area. Many major and minor industrial development 
projects have been initiated and established in Cochin in 
the past fifteen years (George 2016). Financial develop-
ment and urban population growth resulted in rapid urban-
isation of the study area. The high rate of migration from 
other parts of India leads to the development and expan-
sion of slums on the periphery of development centres, 
which is an unavoidable result of unplanned city develop-
ment. The increased urban population exerts pressure on 
natural land cover in order to meet infrastructure require-
ments. Previous research suggests that LULC changes in 
peri-urban areas take the form of built-up expansion at 
the cost of agricultural land, forest, vegetation cover, and 

fallow lands (Kale et al. 2016; Naikoo et al. 2020; Obeidat 
et al. 2019; Patra et al. 2018). Following the commence-
ment of Jawaharlal Nehru National Urban Renewal Mis-
sion (JNNURM) of the Government of India, Cochin and 
its surrounding peri-urban areas have witnessed massive 
changes in LULC (Aravindan and Prasanth 2018; George 
2016).

Moreover, the natural land cover such as agricultural 
lands, forests, fallow, and water bodies has significantly 
reduced its area. Agricultural and forest land are the main 
land use types that have experienced the most adverse 
change and are being converted into built-up land as part 
of the urban infrastructure development process (Devi 
and Nair 2021; Dipson et al. 2015; Krishnan and Firoz 
2021; Nair et al. 2016). In a recent study conducted by 
Dipson et al. (2015), it was mentioned that the estuaries 
(Cochin backwater) in the study area had been reduced due 
to the development activities and real estate boom. Simi-
larly, Shaji et al. (2017) observed a significant decline in 
agricultural, mangrove, and barren lands due to increased 
built-up lands in Cochin.

Among all natural resources, the land is the most impor-
tant and readily accessible resource for humans and is used 
in numerous ways and for various applications. Hence, 
population change directly impacts the LULC pattern of a 
region (Naikoo et al. 2020; Showqi et al. 2014; Wang et al. 
2021a, b, c). The majority of population changes happen 
as a result of natural population growth or migration. 
Massive migration to urban areas is the main driver for 
urban population growth in the current study area, and it is 
expected to extend further. The main national and interna-
tional commercial activities, such as chemical industries, 
harbour exports, imports, information technology (IT), 
and tourism, attract many labours towards the study area. 
Hence, in recent three decades, an urban population rise 
and the expansion of the tertiary sector are considerably 
changing the LULC pattern of Cochin.

Fig. 11   Variations in the pervi-
ous and impervious surface 
areas between 1994 and 2100
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Model limitations

There are possible limitations with the model study despite 
effective simulations and consistent outputs. The accuracy 
of the simulated results is affected by several factors which 
incorporate several uncertainties in the predicted results. 
Firstly, there are chances of systematic biases in the input 
raster due to the different sensor systems involved in the 
satellite image acquisition (Lu et al. 2019). The classifica-
tion accuracy of LULC maps used in this study is differ-
ent, due to which independent mistakes might disturb the 
forecast precision of the model. The simulated results have 
a higher convergence to the Landsat data, but the consist-
ency in prediction accuracy varies with the satellite data, 
thereby incorporating model uncertainties. The comparison 
also states that the model over predicts the values in the 
case of agricultural land type and built-up lands, whereas 
it underpredicts the values for the forest, water bodies, and 
fallow-lands.

Additionally, the drivers chosen for the simulations 
were thorough but not exhaustive. Several factors such as 
the economy, global legislation, and administrative resolu-
tions were not considered. The use of an increased number 
of drivers can enhance the model’s ability to forecast the 
changes across the area (Kale et al. 2016).

Conclusions

This study attempts to forecast future LULC scenarios for a 
highly urbanised Cochin region in Ernakulam district using 
the MOLUSCE module in the QGIS platform. The LULC 
dynamics are analysed and modelled successfully with the 
integration of GIS techniques and MOLUSCE. Furthermore, 
MOLUSCE was integrated with the MLP-ANN algorithm 
and cellular-automata-Markov model to attain better simula-
tion results. We used the maximum likelihood classification 
technique for the LULC map generation from 1994 to 2020 
with Landsat data. The spatiotemporal analysis of LULC 
maps indicates substantial growth in the built-up land with 
decreasing natural land cover for the mentioned period. The 
socio-economic development and human encroachments in 
the natural land cover have intensified the changes in the 
LULC.

Additionally, computation of the annual growth rate in 
terms of the dynamic degree of LULC yields an overall 
decreasing trend in the natural land cover such as forest, 
agricultural land, fallow lands, and water bodies at annual 
rates of − 0.71% per year, − 1.68% per year, − 1.19% per year, 
and − 0.26% per year, respectively. Moreover, the develop-
ment of built-up land is primarily around the estuaries of the 
region. Estuaries are the most ecologically sensitive zones 
in the chosen study area. We derived the LULC transition 

potential using the classified LULC maps along with the 
driving factors such as DEM, slope, distance from roads, 
distance from water bodies, and population density in the 
MLP-ANN algorithm. The future LULC maps were fore-
casted with the simulation of the CA–Markov model. The 
model performance was tested by comparing the observed 
with the simulated LULC map of 2020 using kappa statis-
tics and overall accuracy. The model reliability is known 
from the overall accuracy of 87.5%, with the kappa statistics 
higher than 0.7.

Following the validation, the MLP-ANN algorithm is 
used to simulate future transformations in 2045, 2073, and 
2100. CA Markov model was used to predict future LULC 
maps for the corresponding years. The results predict a 
drastic increase in urbanisation for the study area in the 
immediate next 25 years with high rate of deforestation and 
degradation of agricultural fields. From 1994 to 2100, a sub-
stantial shift of pervious surface to the impervious surface 
was observed (0.1 to 1.42). Therefore, the development and 
implementation of a reasonable land use policy can reduce 
the threat of degradation of natural resources, and it will 
be helpful in sustainable development. The governments 
may be advised to pay immediate attention to rigorous land 
expansion, and maintain regulations in land use for devel-
opment activities, as they are often the primary triggers to 
the environmental balance disturbance. This study can offer 
strategic guidance to urban and rural land use planners to 
achieve efficient land use management.
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