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Abstract
With the application of a large-mining-height working face of a mine in Shanxi as the test surface, segmented water injec-
tion, borehole television and microseismic monitoring were employed to detect the damage height of overlying rock and 
digitally analyse the inclination of cracks before and after mining and the relationship between the number of cracks and 
depth, including the number of cracks and width. A similar simulation test was conducted of the fracture evolution process. 
The results of this study indicated that the height of the caving zone in fully mechanized cave mining reached 40.2 m, and 
the height of the water-conducting fracture zone reached 126.5 m. Premining fractures were dominated by high angles and 
small widths. Upon gradual advancement of the coal mining face, the number of cracks linearly increased, and newly formed 
cracks mainly exhibited low angles and moderate widths. At the early stage of mining, the number and width of cracks 
gradually increased with increasing advancement of the working face location. Due to the presence of overlying strata, the 
mined-out area could be compacted, and the number of cracks could be reduced, thus forming the characteristics of repeated 
cracks. During working face advancement, upon overburden collapse, cracks could appear, thereby gradually increasing 
the number and width of cracks. In the area near the coal wall ahead of the working face, the number of cracks remained 
large due to supporting pressure occurrence, and the crack density in the overburden was distributed in a snake-like pattern.
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Introduction

China’s coal reserves rank third in the world, and the coal 
output of China ranks first globally. According to the coal 
seam thickness, moderate-thick coal seams are the most 
abundant, accounting for approximately 45% of the total 
reserves, which is an important point in the growth of Chi-
nese coal production (Ni et al. 2019; Li et al. 2021a; Fan and 
Liu 2019; Fu and Wang 2020). Coal occupies an important 
position in the energy structure of China and constitutes a 
pillar industry of the national economy. In the future, eco-
nomic development of coal in China will still occupy a 

dominant position. Since the early 1950s, China has mined 
more than 36 billion tons of coal resources (Ekin 2020; Fan 
2020; Tang et al. 2021; Wang et al. 2020a; Wei et al. 2021a; 
Zhao and Fu 2020). The large amount of coal resources 
makes further mining conditions more difficult. With the 
increasing demand for coal resources in China, the speed 
of coal mining is increasing, and resources encompassing 
shallow and deep coal seams have been nearly exhausted, 
resulting in coal enterprises mining deeper (Xie et al. 2019; 
Xia et al., 2021; Yang et al. 2020a; Kang 2020; Zuo et al. 
2019). The aforementioned deep mining results in a higher 
gas pressure and content with a softer coal quality and lower 
coal seam permeability, including gas drainage difficulty and 
the potential for serious coal and gas outbursts. However, 
in recent years, many coal enterprises have pursued coal 
production but have neglected safety concerns, which has 
led to frequent coal mine accidents in China (Zhang and 
Wang; 2020; Su et al. 2021, 2020a; Wang et al. 2020b; Wang 
and Wang 2021; Wang 2019a). Gas and mine water inrush 
accidents are the most serious and have resulted inestimable 
losses to China and its people. In particular, major coal mine 
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accidents negatively influence social stability and the devel-
opment of a harmonious society, so it is urgent to strengthen 
gas and water inrush control in coal mines. Because of the 
unfavourable natural conditions of coal mines and numerous 
accidents, such as gas outbursts, water inrush disasters, roof 
collapses and fires, there occur significant hidden dangers in 
the process of mining working faces (Ju et al. 2020; Hu et al. 
2021; Huang et al. 2015; Xu et al. 2019; Yang et al., 2020b; 
Zhang et al. 2020a). Among these hidden dangers, gas has 
become a threat to the safety of workers and coal mine eco-
nomic efficiency. Among the more than 100 recorded coal 
mines in China, more than 70 production mines are threat-
ened by gas hazards, which seriously affects the sustainabil-
ity of production and mining life and severely restricts the 
development of high-yield and high-efficiency coal mines 
(Zhai 2015; Zhang et al. 2021; Xu and Gao 2020; Wang 
et al. 2021).

Regarding the prevention of mine gas, the main method 
of gas extraction is to drill into the coal seam and gas gather-
ing area, connect the drilling hole to a specific pipeline and 
apply extraction equipment to pump gas from the coal seam 
and goaf to the surface to be used or discharged into the total 
return air stream (Ren 2020; Su et al. 2020b; Chen et al. 
2021a; Cai 2020; Chai et al.2020a). Gas drainage is not only 
an important measure to reduce the amount of gas emissions 
in the process of mining but also an important measure to 
prevent gas from accumulating and exceeding the accept-
able limit (Li et al. 2021b, 2017; Kang 2021; Liu and Wang 
2018; Shi et al. 2019), thus preventing gas explosions or coal 
and gas outburst accidents while also ensuring the effective 
development and utilization of coal-associated resources 
(Jiang et al., 2021;Jia et al. 2018; Cheng et al. 2019; Li et al. 
2020a; Li and Wang 2020). Gas drainage holes are usually 
arranged between the fractured and caving zones, and their 
placement is therefore critical for gas prevention and control 
to accurately obtain the failure characteristics and fracture 
evolution of overlying strata (Zhang et al. 2019; Zhou et al. 
2021; Wang et al. 2011; Wang 2019a, b; Wei et al. 2021b; 
Li and Du 2020; Huang and Wu 2018).

The overlying rock mass affected by the mining stress 
field is referred to as the mining overlying rock mass after 
the extraction of underground coal resources (Ma et al., 
2018; Chai et al. 2020b; Gu et al. 2019; He et al. 2014; Li 
et al. 2020b). The formed caving zone, fracture zone and 
bend zone in the mine overburden are referred to as the 
upper three zones. The caving zone is an irregular caving 
zone, with an irregular arrangement of rock blocks, as well 
as the highest loose coefficient (Trofimov and Shipovskii 
2020; Qie et al. 2021; Hou et al. 2020a; Han 2017; Cheng 
et al. 2020), and the maximum caving height is determined 
by the unique lithology combination and rock physical and 
mechanical properties of the coal seam roof in the working 
face. Determination of the height of the caving zone is the 

key to understanding the distribution of these three zones 
and constitutes the premise to reasonably design the strata 
of high-drawing roadways and final high-drawing boreholes 
(Pan et al. 2017; Miao et al. 2019; Hou et al. 2020b; Jiang 
et al., 2021b; Wang et al. 2020c). The fracture zone is the 
area where rock blocks remain regularly arranged after rock 
layer fracturing and exhibits a low expansion coefficient, 
which is usually denoted as the water-conducting fracture 
zone combined with the caving zone (Wang 2019b; Cai 
et al. 2014; Chen 2020; Cui et al. 2020; Gan et al. 2020; 
Gao 2019). Mining fissures are common in overlying strata 
during continuous advancement of the coal face. Because 
of their nature, mining fissures can be divided into vertical 
fracture fissures, bed-separation fissures and mining joint 
activation fissures. Interlayer fractures in a given rock layer 
entail fractures along the layer surface (Du and Wang, 2020; 
Fang et al. 2018; He et al. 2021; Gao 2021; Zhu et al. 2021; 
Zhang et al. 2020b), which emerge along the layer with rock 
layer sinking. These fractures can expand and deform the 
coal layer, thereby releasing gas pressure, causing gas to 
gush out of fractures in the separation layer along the gas 
and water passages between the upper and lower strata (Wu 
et al. 2021; Xia et al. 2020; Zhu et al. 2019; Zhang et al. 
2014; Yin et al. 2018). The study of overburden structure 
damage and fracture evolution is not only important for mine 
water disaster control but also important for gas disaster pre-
vention and development of coalbed methane resources (Ye 
et al. 2017; Yin et al. 2016; Xue et al. 2016; Xia et al. 2021; 
Wu et al. 2014; Zhu and Teng 2021; Hu et al. 2019).

Many scholars in China and abroad have conducted much 
research regarding the damage characteristics of overlying 
rock formations, mainly including theoretical methods, field 
test methods and experimental methods (Cai et al. 2020; 
Jia and Hu 2020; Hu et al. 2020; Liu et al. 2020). Theo-
retical methods are mainly based on the three-zone empiri-
cal equation for theoretical calculation purposes. These 
methods integrate mining technology, coal seam thickness, 
inclination angle and other factors influencing the height of 
overburden failure. Finally, in the empirical equation, the 
independent variable is the thickness of the coal seam. With 
improvement of Chinese mining technology and continu-
ous increase in the mining height, this empirical equation 
is no longer suitable under the current mining conditions. 
Experimental methods largely include numerical simula-
tion and similar simulation methods (Chen et al. 2021b; Ma 
et al. 2020; Pan et al. 2020). Regarding numerical simula-
tion, field testing and similar simulation approaches have 
been significantly reduced. This is attributed to insufficiency 
during experiments. However, it is possible to observe the 
characteristics of overburden collapse and crack evolution in 
a more intuitive manner (Yan et al. 2020; Wu et al. 2019; Yu 
et al. 2021; Yuan and Xu 2019). The software used in these 
methods includes RFPA, UDEC, FLAC and other simulation 
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software packages. Although this method can significantly 
reduce the cost and labour intensity, actual mining condi-
tions are hardly simulated, and there are many shortcomings 
in the parameters. Simulations can only be employed as an 
auxiliary means. Similar simulation approaches comprise an 
important scientific research method (Feng et al. 2017; Chen 
et al. 2020; Li et al. 2021b). Simulations are conducted to 
develop prototype models similar to laboratory experiments 
with a similar principle. These experiments apply test instru-
ments to observe the mechanical parameters and distribu-
tion pattern in these models and then consider the obtained 
model experimental results to develop prototypes (Hu et al. 
2019; Su et al. 2021). The possible mechanical phenom-
ena and evolution of the rock mass pressure distribution are 
employed to solve the actual problems in rock mass engi-
neering production. Similarity-based simulation experiments 
follow three similarity theorems. These theorems adhere to 
geometric, kinematic, and dynamic similarities (Zhai et al. 
2022; Kang 2021; Fan 2020). However, when this method 
is applied to simulate the material ratio, the workload is 
high, and it is not easy to accurately formulate consistent 
materials. Field test methods mostly include borehole televi-
sion, segmented water injection, microseismic monitoring, 
geological radar and other methods. However, these meth-
ods measure the failure characteristics of the overburden at 
certain stages but cannot continuously monitor the dynamic 
development process, which considerably reduces the cred-
ibility of the obtained data (Li et al. 2017; Chen et al. 2020).

Based on the above reasons, this paper adopted a mine in 
the Shanxi region as a test mine, thereby applying borehole 
television observation, drilling segmented water injection 
and microseismic monitoring technology to detect the height 
of overburden failure in the mining process of the working 
face, and the development of cracks during the mining pro-
cess of the working face was quantified. Chemical analysis, 
combined with similar models to simulate the evolution 
characteristics of fractures, was also conducted.

Engineering conditions

The selected mine in Shanxi provides a production capac-
ity of 6.0 Mt/a, mainly involving coal seam #3. The aver-
age thickness of this coal seam is 5.8 m. The coal seam 
is stable and exhibits a simple coal seam structure. The 
average inclination angle of the coal seam is 5°, which 
is nearly horizontal. In the working face test, the average 
buried depth of the working face reaches 415.4 m, and the 
direction and inclined length of the working face are 1258 m 
and 278 m, respectively. The coal mining technique of fully 
mechanized cave mining is adopted. The roof of the working 
face consists of fine sandstone and grey sandy mudstone. 
The mineralogical composition mainly includes quartz and 

feldspar. The obtained core is relatively complete. The core 
compressive strength reaches 121.6 MPa. There occur fis-
sures in the #3 coal seam. Nearby outcrops are formed by 
weathering. When broken, the compressive strength of the 
coal seam rock is significantly reduced, and simultaneously, 
the roadway at the open cut is deformed, and the pressure 
is increased.

Analysis of the overlying rock failure 
characteristics

Overburden failure height

Zonal water injection

The segmented water injection test method is a simple and 
accurate method to assess the damage height of the overbur-
den (the structure of the test instrument is shown in Fig. 1). 
In this method, damage is bound to occur. The area near the 
working face is severely affected by mining, and the rock 
formation is notable affected due to damage. With increasing 
distance, the degree of damage gradually decreases, and a 
regular damage zone is eventually formed. The segmented 
water injection test method is applied to investigate the dam-
aged area. The water injection volume in severely affected 
areas must be large, and vice versa. The overburden damage 
height is determined based on the water injection volume 
during drilling.

In the test process, the sealing test is performed first, the 
rubber sealing section is pressurized, the valve is closed, 
and the pressure gauge of the rubber sealing section is 
monitored. If no change occurs within half an hour, this 

Fig. 1  Zonal water injection device
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indicates that the sealing effect is satisfactory. Conversely, 
the device is reconnected. After the sealing test, the rub-
ber sealing section is pressurized. When the pressure 
remains stable, the water inlet pipe is opened, and count-
ing is started after the flowmeter reading remains constant. 
Water in the sealing section is released, and the next stage 
of testing is initiated.

In this test experiment, three test drilling boreholes 
were arranged in the air inlet tunnel of the 4302 working 
face. The drilling length was 200 m, and the elevation 
angle was 45°. The drilling layout is shown in Fig. 2.

In the test, the grouting pressure reached 5.5 MPa, each 
test encompassed 1 m, and the average value over the three 
test boreholes was applied in each section. The segmented 
water injection experimental method was applied to ana-
lyse the overlying rock before and after mining, and the 
obtained data are shown in Fig. 3.

Figure 3 shows that the drilling water injection volume 
before mining is relatively small, essentially exhibiting a 
linear distribution, and the water injection volume is kept 
below 90 L/min, indicating that there are few primary fis-
sures in the overlying rock before mining, and the degree 
of fissure development is low. The water injection volume 
curve of the rear drilling borehole exhibits a step-type 
distribution, and the water injection volume at a drilling 
depth of approximately 178 m returns to the level before 
mining. The water injection volume during the first drill-
ing step ranges from 2200 to 2400 L/min, which is 24–26 
times that before mining. The water injection rate during 
the second drilling step ranges from 1400 to 1500 L/min, 
which is 15–17 times that before mining. According to 
the development characteristics of fractures in the three 
zones in the overburden rock after mining combined with 
analysis of the water injection volume during drilling, the 
first step occurs in the collapse zone area, and the second 
step involves the fault zone area. The failure height of the 
drilling borehole is provided in Table 1. The development 
height of the collapse zone ranges from 38.8 to 40.2 m, 
and the development height of the fault zone ranges from 
123.7 to 126.5 m.

Fig. 2  Diagram of the drilling layou

(a) 

(b) 

(c) 

Fig. 3  Curves of the water injection rate (before and after mining). a 
Borehole number.Type equation here.   b Borehole number. c Bore-
hole number 
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Microseismic monitoring technique

The microseismic monitoring technique is based on acous-
tic emission and seismology and has recently been devel-
oped into new types of high-tech monitoring techniques. 
Microseismic monitoring is a geophysical technique in 
which the impact and underground state of production 
activities are monitored by observing and analysing the 
small earthquakes generated. When underground rock rup-
tures and moves due to human or natural factors, a weak 
seismic wave is propagated. By arranging multiple sets of 
geophones in the space surrounding the rupture zone and 
collecting microseismic data in real time, the principle 
of vibration positioning can be applied to determine the 
rupture location and display it in three-dimensional space.

According to analysis of the overlying rock failure event 
characteristics and energy, the ARAMISM/E microseis-
mic system is adopted, 10 sensors are arranged across the 
working face, and the sampling rate is set to 50 and 100, 
with a positioning accuracy of ± 50 m. Figure 4 shows the 
mining process of the working face. The overlying rock 

microseismic conditions indicate a damage event with a 
measured energy release higher than 1000 J.

Figure  4 a shows that the working face advances 
180–240  m, and the overburden failure height reaches 
66 m. Figure 4b shows that the working face advances from 
1080 to 1160 m, and the overburden failure height reaches 
124–128 m at this time. The lower rock formations are all 
destroyed, with partial destruction of the upper rock for-
mations. Based on the characteristics of overburden failure 
during advancement of the 4302 working face, it can be 
observed that with increasing advancement of the working 
face, the space of the mined-out area gradually increases, 
and the damage height of the overburden also gradually 
increases. With increasing working face advancement, the 
maximum height of overburden failure reaches 126 m.

Evolution characteristics of cracks 
in the overlying rock formations

The borehole TV technique is an important research method 
to observe the evolution of overlying rock cracks in coal 
seam mining. This technique relies on similar principles to 
those of CCD optical coupling for real-time acquisition of 
drilling borehole wall images, and through processing sys-
tem transformation, a 360° image display of the borehole is 
generated. Moreover, depth imaging bit test system data used 
for real-time depth monitoring and transmission are sent to 
the processing system, forming images of the cracks in the 
borehole wall, as well as images of the fracture occurrence 
and measured depth. The borehole TV technique employs 

Table 1  Failure height of the drilling borehole

Borehole number Caving zone height Height of the fractured 
water-conducting zone

38.8 m 126.5 m
40.2 m 125.8 m
39.5 m 123.7 m

Fig. 4  Damage to the overbur-
den during panel 4302 caving. a 
Mining distance (180–240 m). b 
Mining distance (1080–1160 m)

(a) (b)
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a computer to control image acquisition and processing and 
realize the transformation between modules and data. The 
imaging system is shown in Fig. 5, and the detection system 
is shown in Fig. 6.

The borehole TV method was applied to detect cracks in 
the overlying strata before and after movement of the mining 
face, and the detection results are shown in Fig. 7.

The borehole television detection data map shows that 
there are almost no cracks in the working face before min-
ing, whereas cracks are clearly developed after mining. The 
characteristics of these cracks before and after mining are 
comprehensively analysed.

Distribution characteristics of the fracture dip angle

After vectorization processing of the borehole TV data map 
after detection, the inclination angle characteristics of the 
three boreholes are integrated, and the inclination angle dis-
tribution pattern is shown in Fig. 8.

Figure 8 shows that among the 42 fractures before mining, 
fractures with an inclination angle lower than 30° accounted 
for 7.14% of the total number of fractures, fractures with 
an inclination angle ranging from 30° to 39° accounted for 
4.76% of all fractures, and fractures with an angle from 40° 
to 49° accounted for 9.52% of all fractures. Fractures with 
an inclination angle from 50° to 59° accounted for 9.52% 
of the total fractures, fractures with an inclination angle of 
60° to 69° accounted for 26.19% of the total fractures, frac-
tures with an inclination angle from 70° to 79° accounted 
for 23.81% of all fractures, and fractures with an inclination 
angle from 80° to 90° accounted for 9.52–19.05% of all frac-
tures. It could be inferred that the premining fractures were 
dominated by high angles. Of the 102 fractures after mining, 
fractures with an inclination angle lower than 30° accounted 
for 14.71% of the total number of fractures, fractures with an 
inclination angle from 30° to 39°accounted for 23.53% of all 
fractures, and fractures with an inclination angle from 40° 
to 49° accounted for 20.59% of all fractures. Fractures with 

Fig. 5  Mechanism of borehole 
wall imaging

Fig. 6  Borehole TV system

(a) (b)

Fig. 7  Fracture characteristics of the borehole wall before and after 
mining (11.0–11.5 m). a Before mining. b After mining
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an inclination angle from 50° to 59°accounted for 8.82% of 
all fractures, fractures with an inclination angle from 60° 
to 69°accounted for 10.78% of all fractures, fractures with 
an inclination angle from 70° to 79° accounted for 9.80% 
of the total fractures, and fissures with an inclination angle 
from 80° to 90° accounted for 11.76% of the total fissures. It 
could be inferred that the newly formed fissures after mining 
mainly exhibited low angles.

Distribution characteristics of the fracture width

The fracture width reflects the degree of fracture devel-
opment, and under the conditions of coal seam mining, 
the fracture width near the coal seam is markedly wider. 
Through the obtained statistics of the width of borehole 
fractures (Fig. 9), the fracture width before mining was 
mainly smaller than 15 mm, accounting for 73.81% of the 
total fractures, while after mining, the fracture width mainly 
ranged from 15 to 2 25 mm, accounting for 60.78% of the 
total fractures. The influence of mining could significantly 
increase the width of fissures in the overlying strata, which 
plays an important role in gas drainage and water prevention.

The change in the number of fissures can reflect the 
degree to which the rock mass is affected by mining. Fig-
ure 10 shows the relationship between the number of cracks 
and depth before and after mining.

A mountain-like distribution is observed before and after 
migration of the detected mining face fractures. The number 
of fractures in the overlying strata of the working face was 
small before mining. After mining, the number of fractures 
in the overlying strata affected by the mine working face 
was significantly increased, and the number of fractures first 
increased greatly with the drilling depth, but the number of 

fractures began to decrease after the drilling depth reached 
approximately 56 m.

Similar simulations of the mining fracture 
evolution process

Similar simulations were conducted on the basis 
of the 4302 working face. The model size was 
3000 mm × 2000 mm × 200 mm (length × width × height), a 
stress test bench was employed, fine sand was adopted for 
the aggregates, lime and gypsum were employed as cement-
ing materials, and borax was applied as a retardant. Through 
the proportional test method, a mechanical experiment 

Fig. 8  Dip angle distributions of the fissures before mining and after 
mining

Fig. 9  Distributions of the fracture width before and after mining

Fig. 10  Relationship curves between the drilling depth and number of 
fractures before and after mining operations
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was conducted of the prepared structural material, and the 
mechanical requirements of similar simulation experiments 
were met.

Similar material simulations are based on the principle 
of similarity and comprise the theoretical basis of the three 
theorems of similarity. The first theorem of similarity was 
proposed by Newton in 1686 and rigorously demonstrated 
by French scientist J. Bertrand in 1848. The first theorem 
of similarity can be expressed as follows: when the similar-
ity criterion of similar phenomena is equal, the similarity 
index value is 1, and the single-value conditions are similar. 
The characteristics of individual phenomena under single-
value conditions are different from those of the same types 
of phenomena, which include geometric conditions, physical 
conditions, boundary conditions and initial conditions. Geo-
metric conditions refer to the shape and size of the object 
participating in the process. Physical conditions refer to the 
physical properties of the object participating in the process, 
and initial conditions are the initial characteristics of the 
object. The second theorem of similarity was developed in 
1911 by Russian scholar Feitelmann. The physical equations 
describing similar phenomena can be transformed into syn-
thetic equations composed of similar quasi-numbers. If the 
observed phenomena are similar, the relationships among 
the parameters describing these phenomena can be trans-
formed into functional relationships among the similarity 
criteria, and the comprehensive equations of similar phe-
nomena must be the same. This theorem provides a theo-
retical basis for the generalization of similarity test results. 
If two phenomena are similar, the similarity criterion rela-
tionship can be developed into a prototype according to this 
theorem, and the prototype can be satisfactorily explained. 
The third theorem of similarity was established in 1930 
by Kiir Pichev and Guhlman. In the geometric similarity 
system, two phenomena are similar if their equations with 
the same characteristics are similar under single-value con-
ditions, and a similar number composed of single-valued 
conditions remain equal. According to the first theorem of 
similarity, the similarity criterion obtained from the model 
system can be extended to the original system in the model 
test method, and the test results obtained from the model can 
be applied to similar objects based on the second theorem 
of similitude. The third theorem of similarity points out the 
rules that must be followed when performing model tests. 
The geometric similarity ratio is 1:200, the bulk density ratio 
is 1.6, and the time similarity ratio is 14.1.

According to the similar simulation process, the final 
development height of the caving zone reaches 40.2 m, and 
the development height of the water-conducting fault zone is 
124.8 m. The overlying rock exhibits an irregular trapezoidal 
shape and contains an arched structure at the open cut and 
coal wall. Moreover, the middle part of the goaf tends to be 
compacted, and the upper separation space is closed.

To visualize the failure characteristics of the overburden 
rock after mining, the crack density is adopted as an index to 
comprehensively analyse the characteristics of crack devel-
opment, and a density curve of the number of cracks in the 
overburden rock under different distances of the working 
face is shown in Fig. 11.

Figure 11 shows the following crack density curve fea-
tures: (1) during advancement of the working face, as the 
overburden collapses, cracks appear, and as the working 
face advances, the number and width of cracks gradually 
increase. (2) When the working face advances to a cer-
tain position, the overburden damage height can no longer 
increase with increasing advancement of the working face. 
Simultaneously, due to the presence of the overburden, the 
mined-out area can be compacted, and the number of cracks 
can decrease accordingly. The formation of characteristic 
fissures again varies. (3) In the area near the coal wall ahead 
of the working face, due to the occurrence of the supporting 
pressure, the number of cracks is large, and the density of 
the observed overburden cracks is distributed in a snake-like 
pattern.

Discussion

In the process of halting the advancement of the work-
ing face, fractures gradually developed from the bottom to 
the top under the influence of mining and formed various 
fracture network distributions under the different advanc-
ing distances. With continuous advancement of the work-
ing face, the immediate roof of the overlying strata began 
to collapse, while under the action of mining stress, the 
fractures on the left and right sides were extended towards 
the inner and outer sides of the goaf, respectively. With 
increasing advancement of the working face, the cav-
ing zone did not develop upwards, the central part of the 
mined-out area was compacted, the caving zone remained 
highly stable, and the original fracture network in the 
mined-out rock mass was altered. Simultaneously, new 
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mining fractures were superimposed. As a result, the dis-
tribution of fractures in the rock mass of mining-induced 
coal became increasingly complex. When the working 
face was finished, the central part of the mined-out area 
was completely compacted, and the fractures were closed. 
Under the action of tensile stress, a large number of frac-
tures either perpendicular or oblique to the bedding plane 
were produced. Mining plays an important role in promot-
ing the development of cracks in the overlying strata.

Conclusion

With the application of borehole television observations, 
segmented water injection and microseismic monitoring 
technology were employed to detect the height of over-
burden failure in the mining process of the working face, 
quantitatively analyse the development of cracks in the 
mining process of the working face, and simulate the evo-
lution characteristics of the observed cracks in combina-
tion with similar models. The following conclusions were 
obtained:

1) The development height of the caving zone in fully 
mechanized mining is 40.2 m, and the development 
height of the water-conducting fracture zone reaches 
126.5 m. Digital analysis of the borehole television 
detection results indicates that the premining cracks are 
mainly high-angle and small-width cracks, the number 
of cracks linearly rises with gradual advancement of the 
coal mining face, and the newly formed cracks are small 
in length but mostly wide. At the early stages of mining, 
the number and width of cracks gradually increase with 
increasing advancement of the working face, but when 
the working face has advanced to a certain position, 
due to the occurrence of overlying strata, the mined-
out area can be compacted, and the number of cracks 
can accordingly decrease. This compaction constantly 
features additional fissure changes.

2) During advancement of the working face, as the over-
burden collapses, cracks emerge, with the number and 
width size of these cracks gradually increasing, mostly 
in the area near the coal wall ahead of the working face, 
due to supporting pressure occurrence. While the num-
ber of cracks in the mine always remains large, the den-
sity of fissures in the overlying rock is distributed in a 
snaking pattern.

3) Because of the influence of working face mining, the 
development degree of overburden rock fractures is con-
siderably increased, and a large number of fractures can 
greatly increase the permeability of the coal seam and 
improve the efficiency of gas extraction.
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