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Abstract
The main focus of the present study is to develop GEP, ELM, LSSVM, and GMDH soft computing models predicting the 
scour depth of GCSs enhanced by an energy-based approach and to compare the uncertainty of these developed models. A 
new definition of energy parameter was employed to achieve more accurate predictions along with a scenario-based approach 
for input vector selection. The Monte Carlo framework was developed for the uncertainty, reliability, and resiliency analy-
sis of the results. The results confirm the enhancement of the energy-based GEP method for the scour depth prediction in 
comparison with the other models. The results of robustness evaluations show the lowest uncertainty value of GEP with 
reliability 52.63% and resiliency 67.57% in comparison with LSSVM (reliability = 35.53%, resiliency = 40%), ELM (reli-
ability = 34.2%, resiliency = 29.4%), and GMDH (reliability = 26.3%, resiliency = 24.6%) in the testing phase. In addition 
to the simplicity of the extracted equation and adaptability to a wide range of laboratory and field data, the uncertainty and 
robustness analysis indicate that the proposed model is more efficient than the existing equations and artificial intelligence 
models such as ELM, GMDH, and LSSVM in predicting the scour depth. It can be concluded that the GEP is more reliable 
and resilient than the other methods. The developed uncertainty analysis framework in this paper is a new approach reliably 
predicting the scour depth and extracting an equation that can be combined with mathematical modeling of sediment transport 
and scour hole geometry predictions or real-case modeling of scour around hydraulic structures.
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Introduction

The high velocity jet over dam spillways can create deep 
scour holes and riverbed degradation downstream of the 
spillways in alluvial beds (Roushangar et al. 2016; Sattar 
et al. 2017). Scouring is the removal of sediments around 
the hydraulic structure in an alluvial stream. Often, it is 
the structure that changes the flow pattern around it in a 

way that it reinforces sediment transport and thereby ini-
tiates scouring (Aghaee-Shalmani and Hakimzadeh 2015) 
where it can eventually cause damage and destroy hydraulic 
structures (Ebtehaj et al. 2018; Regazzoni and Marot 2011). 
Grade-control structures are structures made of sand, stone, 
wood, concrete, or other materials with the purpose of limit-
ing erosion in riverbeds and downstream of dam spillways 
(Guven and Gunal 2008). These structures are commonly 
used to manage flood streams and prevent bed erosion and 
sediment transport (Galia et al. 2016). Therefore, local scour 
modeling is an important topic in river hydrodynamics, pre-
venting river bed degradation and protecting the integrity 
of grade-control structures (Laucelli and Giustolisi 2011; 
Riahi-Madvar et al. 2019a, b).

During the past five decades, multiple traditional and sta-
tistical equations have been developed based on experimen-
tal and field data to predict the scour depth (Hooshyaripor 
et al. 2014; Riahi-Madvar et al. 2019a). Although empiri-
cal equations can be used easily, they often overestimate 
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or underestimate the scour depth in validation phase 
(Roushangar et al. 2016). Hence, several soft computing 
models were developed using effective parameters includ-
ing upstream water head, weir height, tail water level, bed 
particle grain-size distribution, and particle density (Roush-
angar et al. 2016; Sattar et al. 2017; Eghbalzadeh et al. 
2018; Sharafati et al. 2019). Ebtehaj et al. (2015) applied 
group method of data handling (GMDH) to predict the dis-
charge coefficient of spillways. Mehri et al. (2019) also used 
GMDH to predict the discharge coefficient of a piano key 
weir. Najafzadeh et al. (2015) used this method to estimate 
the scour depth around bridge abutments. In these studies, 
the superiority of GMDH over artificial neural networks 
(ANNs) and nonlinear regression equations was confirmed.

Gene expression programming (GEP) is another type 
of soft computing models frequently applied in hydraulic 
engineering (Guven and Gunal 2008; Najafzadeh and Barani 
2011; Azamathulla 2012; Alavi et al. 2011; Moussa 2013; 
Mesbahi et al. 2016; Riahi-Madvar et al. 2019b and 2021b).

Least-squares support vector machine (LSSVM) is 
another form of expert system models that have been exten-
sively used for predicting the scour depth of various hydrau-
lic structures (Etemad-Shahidi and Ghaemi 2011; Pal et al. 
2011; Chou and Pham 2014, 2017; Najafzadeh et al. 2016; 
Pourzangbar et al. 2017; Goel and Pal 2009; Barzegar et al. 
2019; Chaucharda et al. 2004; Samui and Kothari 2011; Lu 
et al. 2016; Wang et al. 2017; Han et al. 2019; Hoang 2019; 
Seifi and Riahi 2020).

Among ANN-based models, the extreme learning 
machine (ELM) is a novel model (Nourani et al. 2017) which 
has been employed in different sciences due to high perfor-
mance and a creative design (Huang et al. 2012; Sahoo et al. 
2013; Abdullah et al. 2015; Yaseen et al. 2016; Ebtehaj et al. 
2018). Applying ELM model can reduce the training time 
using the single-layer feed-forward neural networks and ran-
dom selection of parameters (Huang et al. 2004; Liang et al. 
2006; Zhao et al. 2018; Imani et al. 2018; Yousif et al. 2019).

Reviewing the recent studies on predicting the scour 
depth states a focus on artificial intelligence (AI) evalua-
tions on training and testing datasets. The rigorous study by 
Scurlock et al. (2012) declared that in most AI approaches, 
the data used in model developments were not satisfactory 
to provide reliable predictions of the scour depth, and model 
errors could reach 300%. Limited training and test datasets 
can restrict the cross-validation of GCS scour depth pre-
diction model results during the model development pro-
cess causing a failure to capture the complex relationship 
between the key factors.

Another major disadvantage of these models originates 
from the selection of input parameters. The scour depth 
downstream of GCSs can be predicted based on different 
parameters including the height of the structure, depth of 
flow, grain size, tailwater depth and etc. (D’Agostino and 

Ferro 2004). Pan et al. (2013) showed the importance of 
the flow energy in the scouring process and its applicability 
for the scour depth prediction. Regazzoni and Marot (2011) 
formulated a new erosion resistance index using energy 
exchange between fluid and sediment. Pagliara et al. (2015) 
reported that the energy method is reasonably accurate for 
predicting the state of scour. Based on previous studies sur-
vey, the energy-based approach has not yet been integrated 
with AI models to estimate scour depth downstream of 
GCSs. Also, the reliability and resilience analysis of devel-
oped models over validation data has not been performed.

Another novel contribution in scour modeling down-
stream of the GCSs is the uncertainty analysis of AI model 
results. All engineering design processes have uncertainty, 
and it is not possible to accurately estimate the values of 
model parameters (Seifi et al. 2020a; Riahi-Madvar and Seifi 
2018). Hence, the uncertainty is considered as a part of the 
design in reliability analysis (Johnson 1992; Alimohammadi 
et al., 2019 and 2020). The scale differences and lack of 
data measurement in real-scale analysis can cause uncer-
tainty (D’Agostino and Ferro 2004; Azmathullah et al. 2005; 
Seifi et al. 2020b). The scour equations formulated in pre-
vious studies were simple, and they did not investigate the 
uncertainty of parameters (Khalid et al. 2019; Muzzammil 
and Siddiqui 2009). It was assumed that all model param-
eters were known as certain quantities, while the hydraulic 
parameters such as depth and flow are stochastic in nature, 
and equations based on these parameters are also stochastic 
and uncertain. Therefore, the scour phenomenon and models 
have uncertainty, and a probabilistic method is required to 
analyze the uncertainty of model results. So far, the scouring 
process has not been accurately modeled due to the exist-
ing uncertainty of the parameters, unknown physics of the 
phenomenon, and measurement errors (Yanmaz and Cicek-
dag 2001; Galia et al. 2016; Lenzi and Comiti 2003). The 
Monte Carlo method has been extensively used in differ-
ent study areas to investigate the uncertainty of different AI 
models (Seifi et al. 2020a, b a,b; Riahi-Madvar et al. 2011; 
Brandimarte et al. 2006; Sharafati et al. 2020; Gholami et al. 
2018).

The present study aims to apply a new approach to 
improve major shortcomings of scour modeling at GCSs 
including biased input variables, explicit AI-based predic-
tive equations, and lack of quantification of uncertainty, 
reliability, and resilience of models developed in previous 
studies. The current study discusses the effect of energy as 
a reasonable input variable, a parameter rarely considered in 
the prediction of the scour state downstream of GCSs. Fur-
thermore, the uncertainty, reliability, and resilience analysis 
of developed models for GCSs scour prediction are other 
major drawbacks of the traditional models that are addressed 
here. To achieve these goals, the performance of GEP, ELM, 
LSSVM, and GMDH models developed to predict the scour 



Arab J Geosci (2022) 15:418	

1 3

Page 3 of 18  418

depth downstream of GCSs is compared using the existing 
field and laboratory data with an energy-based approach, and 
validation data are used to evaluate the results.

Materials and methods

Datasets

Development of expert system models was performed using 
318 datasets, including 276 laboratory datasets (Veronese 
1937; Bormann and Julien 1991; D’Agostino 1994; Mossa 
1998; Lenzi et al. 2000; Ben Meftah and Mossa 2020) and 
42 the Missiga stream field data (data pertaining to (Falciai 
and Giacomin 1978; D’Agostino and Ferro 2004)) (Table 1). 
The 13 datasets of Lenzi et al. (2000) were used for cross-
validating, reliability, and resilience analysis of the devel-
oped models over validation data. From the first dataset (318 
datasets), 75% (229 datasets; randomly chosen) were used 
to train the models and 25% (76 datasets) were used to test 
the models.

Identification of influencing parameters 
on the scour depth

Reviewing previous studies implies that the maximum scour 
depth of a grade-control structure caused by the erosive 
power of flow is a function of geometry, hydraulic, and bed 
properties as expressed in the following functional form.

where s denotes the scour depth, Z is the height of the 
grade control structure, B is the width of the structure, b is 
the width of the spillway, H is the difference between the 
depth of water in the upstream and downstream, h is the 
depth at the downstream, Q is the water discharge, ρs is the 
sediment density, ρ is the water density, g is the gravitational 
acceleration, d90 is the diameter of the particle larger than 

(1)s = f(Z,B, b,H, h,Q, ρs, ρ, g, d90, d50)

90% of the weight of all particles, and d50 is the diameter 
of the particle larger than 50% of the weight of all particles 
(Zheng et al. 2021). The box plots of the effective param-
eters on scour depth, based on the collected datasets in this 
study, are presented in Fig. 1. The box plot summarizes the 
distribution of the measured parameters and indicates the 
skewness, center, spread, and the presence of extreme outlier 
values in the used datasets.

Previous studies have shown that using dimensionless 
parameters produces better results than the dimensional 
parameters (Azamathulla et al. 2005; Guven 2011; Najafza-
deh et al. 2014; Mesbahi et al. 2016). Therefore, the Buck-
ingham π theorem is used to obtain dimensionless param-
eters (Zadehmohamad and Bolouri Bazaz 2017) affecting the 
scour depth. Using Z, Q, and ρ as main repetitious param-
eters, the dimensionless parameters of the phenomena can 
be derived as follows:

By combining the above parameters, and rearranging the 
dimensionless numbers, new parameters can be obtained as 
follows:

D’Agostino and Ferro (2004), Najafzadeh (2015) used 
incomplete self-similarity theory and reported that the 
dimensionless parameter A50 had a significant effect on scour 
process. This parameter is defined as follows:

and the functional form of scour depth is rewritten as:

As discussed before, Pagliara et al. (2015) and Pan et al. 
(2013) used the energy parameter in scour analysis. There-
fore, here, the Buckingham π theorem is used to extract the 
parameter. �10 =

E

Z
 The flow energy (E) at GCS is defined 

by Eq. (6):

In which, the h0 = H + h − Z , and u is the flow velocity.
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Table 1   laboratory and field data sets used in this study

Author Data count Data type

D’Agostino (1994) 114 Laboratory
Bormann and Julien (1991) 82 Laboratory
Veronese (1937) 36 Laboratory
Mossa (1998) 19 Laboratory
Lenzi et al. (2000) 13 Laboratory
Ben Meftah and Mossa (2020) 12 Laboratory
Falciai and Giacomin (1978) 29 Field data
Missiga stream (D’Agostino and Ferro (2004)) 13 Field data
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The scenario‑based approach for the selection 
of input vectors

In order to investigate the effects of different input parameter 
configurations and evaluate the sensitivity of results of the 
developed expert system models to these configurations, a 
scenario-based approach is applied for the selection of input 
vectors (Seyedian et al. 2014). The seven scenarios listed in 
Fig. 2 are created, and a parameter is eliminated in each 
scenario in order to investigate the effect of various input 

parameters on the model output. In the first scenario, all 
parameters in Eq. 5 except energy, including b

B
,
h

H
,
d90

d50
,A50,

b

Z
 , 

are used as input vector to the models for estimating the 
scour depth, and s

Z
 is the output. In the second scenario, the 

parameter b
B
 is eliminated from the first scenario, and this 

procedure is repeated for all of the scenarios. As discussed, 
energy is a significant parameter in scour studies. Given the 
importance of this parameter, scenario 7 is developed com-
bining the first scenario and the energy parameter as a new 
dimensionless parameter. To this end, four expert system 

Fig. 1   Box plot of parameters affecting scour according to the collected data sets: a dimensional; b dimensionless
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models of GEP, GMDH, ELM, and LSSVM were trained, 
tested, and validated using these seven scenarios.

The soft computing models

GEP

Genetic programming (GP) was first introduced by Cramer 
(1985), expanded by Koza (1992), and developed by Ferreira 
(Ferreira 2001). Gene Expression Programming (GEP) is 
a variant of the genetic algorithm (GA) and belongs to the 
family of evolutionary algorithms based on Darwin theory. 
The main difference between these algorithms is the nature 
of the population members. In GA, the population members 
are strings (chromosomes) of a fixed length. In GP, entities 
with different shapes and sizes are non-linear individuals 
for parse trees, and in GEP, individuals are encoded as a 
linear string of fixed length expressed as non-linear entities 
of different shapes and sizes (Guven and Gunal 2008). In 
general, GEP is an automated technique for finding the solu-
tions to a problem through computer programming. Unlike 
other methods, it can automatically select the inputs having 
the greatest impact on the model.

GMDH

The multi-objective neural network form of group method 
of data handling (GMDH) was developed as a multivari-
ate analysis method for capturing, modeling, and predicting 
the behavior of complex systems without detailed expert 
knowledge about their mechanisms (Ivakhnenko 1971). The 
main purpose of this algorithm is to predict the structure of 
a complex model based on inherent knowledge of the phe-
nomena represented in the data, rather than the trial–error 

and priority of the user (Farlow 1981). The relationship of 
input and output data can be estimated using the Volterra-
Kolmogorov-Gabor series (Ivakhnenko 1971) as follows:

where Yi represents the output, xi, xj, …, xk are the inputs, 
a, bi, cij, dij…k are the polynomial coefficients, and M is the 
number of independent variables (Najafzadeh et al. 2015; 
Dargahi-Zarandi et al. 2017).

ELM

Extreme learning machine (ELM) is a fast-learning algo-
rithm with a high-level generalization function belonging 
to the family of single-layer feed-forward neural networks 
(SLFN), which was first introduced by Huang et al. (2006; 
2012). The learning process in ELM is faster, more general-
izable, robust, and accurate than the traditional algorithms 
such as back-propagation–based artificial neural network 
(BPANN) (Huang et al. 2004; Imani et al. 2018; Mahmoud 
et al. 2018). The SLFN function defines as (Huang et al. 
2006; Liang et al. 2006):

where ai and bi are ELM learning parameters,G
(
ai, bi, x

)
 

is the output of the ith node based on the input x, and �i is 
the weight matrix relating the ith hidden node to the output 
node. The additive hidden node with G (x): R → R as the 
activation function (e.g., radial basis) is presented as follows 
(Huang et al. 2006):

For N optional samples, xi = n × 1 and ti = m × 1 
respectively show the input and output vectors, where (
xi, ti

)
�Rn × Rm . An SLFN with L hidden nodes estimates 

the N samples with a negligible error as follows:

LSSVM

The least-squares support vector machine (LSSVM) is a 
variant of support vector machine (SVM) proposed by Vap-
nik (1995), which was developed based on the statistical 
learning theory and the structural risk minimization in con-
junction with the least-squares error minimization (Suykens 
et al. 2002). As xi and yi respectively show the input and out-
put datasets with i = 1, 2, 3,… n, xI , yi ∈ RN , the non-linear 
LSSVM function is expressed as follows:
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Fig. 2   Input parameters in the seven defined scenarios
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where W represents the weight vector, ∅(X) is a function 
mapping X to an infinite dimensional feature vector, and b 
shows the bias term. The regression function in LSSVM can 
be expressed as an optimization problem:

With the constraints as

where � is a regularization parameter used for adjusting 
the penalties for errors, and ei shows the regression error 
(Chaucharda et al. 2004; Barzegar et al. 2019; Cimen 2008; 
Misra et al. 2009; Kumar and Kar 2009; Kakaei Lafdani 
et al. 2013; Nourani et al. 2015; Zounemat-Kermani et al. 
2016). The parameters used in the LSSVM model are pre-
sented in Table 2.

Existing equations predicting the scour depth

The most well-known existing equations for scour depth 
prediction are presented in Table 3. Six equations are regres-
sion-based, and the other two are AI-based. D’Agostino and 
Ferro (2004) proposed an equation for predicting the scour 
depth using experimental and field data using regression 
analysis. Laucelli and Giustolisi (2011) developed 14 equa-
tions using 312 experimental and field data applying multi-
objective evolutionary paradigms where the two most accu-
rate equations are provided in Table  3. Guven (2011) 
proposed two equations using the multi-output descriptive 
neural network (DNN) and regression analysis. He used Bor-
mann and Julien (1991) 82 datasets derived from large-scale 
experiments to train and test his model. In these equations, 
F_rd is defined as Frd =

q[
bZ×

(�s−�)
�s

×gd50

]0.5.

Sattar et al. (2017) developed three GEP models using 
265 large-scale datasets, and their best equations are used 
for comparison in this study. Ben Meftah and Mossa (2020) 
performed 32 experiments and proposed Eq. (21) for predict-
ing the scour depth, where λ represents the downstream face 
angle of the GCS, and Frsd =

q

h0

√(
�s−�

�

)
gd50

.

The developed Monte‑Carlo framework 
for uncertainty, reliability, and resiliency analysis

In this study, to evaluate the uncertainty in the AI model 
results, the models are hybridized with the non-parametric 
Monte Carlo simulation (MCS). Based on the MCS results, 
the probability distribution of scour dimension is determined 
and applied for uncertainty quantification considering the 

(11)f (x) = WT∅(X) + b

(12)Minimize ∶ J (w, e) =
1

2
wTw +

γ

2

N∑
i=1

e2
i

(13)yi = wT∅
(
xi
)
+ b + ei (i = 1, 2,… ,N)

Hsc as a structure of the simulator model for scour hole of 
GCS, the gs as the input vector of parameters with the initial 
value of gso, and Uq as the main source of uncertainty gen-
eration of AI models. The scour depth (S) can be derived in 
the following functional form (Riahi-Madvar et al. 2021a):

where � is the error defined as the difference between the 
observed scour depth (S) and the AI model predicted scour 
depth ( ̂S ). In this way, the AI model uncertainties resulting 
from AI model regulatory parameters, architecture, and data 
clustering in the training phase can be written as

where Uqi is the adaptive parameters of AI model, Ŝi is 
the calculated scour depth by AI model in the ith run of 
MCS, and n is the number of MCS in AI model training. 
The results of AI model over the MCS are quantified by the 
prediction interval (PI) as:

where ĥ(p) is the pth quantile in the ith MCS, wi is the 
likelihood weight of the results at ith training trial in MCS. 
The upper and lower limits are calculated by:

(22)S = Ŝ + ε = Hsc
(
gs, gso,Uq

)
+ ε

(23)Ŝi = Hsc
(
gs,Uqi

)
i = 1, 2, 3,… ., n

(24)P
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�

Table 2   Parameters defined for GEP, ELM, GMDH, and LSSVM 
models

Model Description of parameter Setting of parameters

GEP Function set  + , − , ÷ , × , pow, Sqrt, 
Exp, Ln

Linking function Addition
Fitness function RMSE
Chromosomes 30
Number of genes 3
Mutation rate 0.044
Inversion rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene transportation rate 0.1
Gene recombination rate 0.1

ELM Neurons—input 4–5-6
Neurons—output 1
Learning rule SLFN
Activation function Sin, tribas, radbas

GMDH Max layer neurons 25
Max layers 5

LSSVM Kernel function Radial basis function 
(RBF)

� 0.99–266.57
σ 0.54–85.87
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where Sj is the mean of AI model results over the MCS 
and � j is the variance, v is the degree of freedom, and tv is 
the threshold of empirical cumulative distribution function 
of AI model outputs from MCS runs. The prediction inter-
vals are determined by:

where the PIu and PIl are the upper and lower limits of 
AI model results, and Ŝopt

i
 is the prediction of optimal AI 

model. The confidence interval of the AI results for uncer-
tainty quantification is determined using the 2.5th and 97.5th 
percentiles of 1000 MCS run:

The reliable model is the one resulted from 100% of 
data bracketed by 95PPU. The desirable value of 95PPU is 
greater than 80%. The desirable d-factor value is less than 
one. Furthermore, two metrics are used to quantify the reli-
ability and resilience of AI models for the prediction of sour 
depth downstream of GCS. The first metric is the reliability 
analysis evaluating the overall consistency calculated by the 
value of random error from the simulation model. High reli-
ability occurs when a model produces similar results under 
consistent conditions.

where the ki is calculated based on the relative average 
error (RAE) values of predictions and the threshold value 
of RAE, if RAEi ≤ α then ki = 1; otherwise, ki = 0. The RAE 
is calculated as

In which the Sro,i is the measured value, Srp,i is the esti-
mated model output, and n is the number of data. The second 
index is the resilience evaluation index regarding predicted 
S values over observed values to withstand stressors, adapt, 
and rapidly recover from disruptions of the estimations. The 
higher value of resiliency confirmed the higher levels of the 
robustness of the predicted values to noise and is calculated 
as:

(25)ĥ(p) =

{
PLu = Sj + tv,0.0025σj

PLl = Sj − tv,0.0025σj

}

(26)

{
PIu = PLu + Ŝ

opt
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PIl = PLL + Ŝ
opt
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}
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(28)d − factor =
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N × σ
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�

(29)Reliability =
100

n
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(30)RAEi =
|||||
Sro,i − Srp,i

Sro,i

|||||

In which, the ri is the total cases in which the simulation 
had the possibility of recovering from an inaccurate predic-
tion to an accurate forecast. Also, four criteria are used in 
order to evaluate the expert systems and identify and select 
the most critical parameters for the scour depth prediction. 
The coefficient of determination (R2), root mean square error 
(RMSE), mean bias error (MBE) (Seyedian and Rouhani 
2015), and Akaike information criterion (AIC) are used as 
presented in Eqs. (32–35). The R2 values closer to one rep-
resent better performance and more accurate predictions. 
The MBE index shows the extent of skewness (bias) in pre-
dictions, and ideally, its value should be zero. Positive and 
negative MBE values show that the model tends to overesti-
mate or underestimate, respectively. Both RMSE and MBE 
represent the predictive error of the models. The closer the 
RMSE and MBE values are to zero, the higher the accuracy 
of the model and the closer predictions are to observations. 
In the ideal case where all predicted and observed data are 
equal, the above indicators will be MBE = 0, RMSE = 0, and 
R2 = 1:

In these equations, P denotes predicted values, O denotes 
observed values, O is the mean of observed values, n is the 
number of data, and K represents the total number of model 
parameters including all constant and variable parameters.

Results and discussion

Scenario‑based evaluation of expert systems

MBE, RMSE, and R2 values of the expert model results of 
the testing and training phases of seven scenarios are pre-
sented in Table 4. The scatter plots of consistency between 
predicted and observed scour depths of different scenarios 
of the testing phase are displayed in Fig. 3. As the first 

(31)Resiliency =

∑n−1

i=1
ri

n −
∑n

i=1
ki

× 100

(32)R2 = 1 −

∑n

i=1

�
Oi − Pi

�2
∑n

i=1

�
Oi − Oi

�2

(33)RMSE =
2

�∑n

i=1
(Pi − Oi)

2

n

(34)MBE =
1

n

∑n

i=1

�
Pi − Oi

�

(35)AIC = n × ln
(
RMSE2

)
+ 2K
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scenario, some points pertaining to the GEP model are 
below the 1:1 line, but the points of this model are gener-
ally less dispersed than the predictions of ELM, GMDH, and 
LSSVM models (Fig. 3a). The results in Table 4 show that 
the GEP model has the highest coefficient of determination 
(R2 = 0.89) and the lowest error (RMSE = 0.95) among the 
other expert models in the testing phase. There is no differ-
ence between the coefficient of determination and error of 
the ELM and GEP models (RMSE = 1.02, R2 = 0.86). For the 
GMDH model, most of the points seem to be close to the 1:1 
line, but according to the coefficient of determination, the 
points have a slightly higher scattering than those of GEP 
and ELM models.

As the second scenario is shown in Fig. 3b, a small num-
ber of points of the GEP model lay outside the ± 25% range, 
and the model has mainly underestimated the scour depth 
(MBE =  − 0.14). In this scenario, the ELM model has a 
lower bias than other models (MBE =  − 0.01) and has almost 
the same coefficient of determination and error as the GEP 
model. According to Fig. 3b and Table 4, the GMDH model 
underestimates the scour depth (MBE =  − 0.16) with about 
15% higher error than the ELM model.

As the third scenario, GEP and the ELM models perform 
almost the same in terms of error and scattering. Compared 
to GEP and ELM, GMDH model predictions show a higher 
scattering, and its coefficient of determination is 20% lower 
than the others while its error is 30% higher.

As the fourth scenario, most of the GMDH model predic-
tions are located below the 1:1 line, which reflects the fact 
that the model significantly underestimates the scour depth. 
As the fifth scenario, the GMDH model fairly underesti-
mates and the LSSVM model significantly overestimates the 
scour depth.

As the sixth scenario, the GEP and ELM models perform 
with a similar rate of error (RMSE = 1.03), and in compari-
son, the GMDH and LSSVM models show a higher error 
and lower coefficient of determination. The scour depth pre-
dictions by the GEP and ELM models are almost the same 
and lay within the ± 25% range. The errors of the two models 
are mostly in the form of underestimation.

As the seventh scenario using the energy parameter as 
a new effective parameter, the GEP model shows the low-
est error (RMSE = 0.88, MBE =  − 0.12) and highest coef-
ficient of determination (R2 = 0.92), and most of its points 

Table 3   Scour depth relationships downstream of GCS

Author No. of equation Equations

Yen (1987) 14
s =

[(
6.42 − 3.10H0.1

)
g

−H

600

(
gH3

q2

) 20+H

600

(
H

d50

) 1

10

(
h

H

) 3

20

]
×
(

q2

g

) 1

3
Regression-based

D’Agostino and Ferro (2004) 15 s

z
= 0.540

(
b

z

)0.593(
h

H

)−0.126

(A50)
0.544

(
d90

d50

)−0.856(
b

B

)−0.751 Regression-based

Laucelli and Giustolisi (2011) 16
s

z
= e

0.6250

√
h0∕z

b∕B

Regression-based

Laucelli and Giustolisi (2011) 17
s

z
= e

1.3168(h0∕h0+z)
2
+0.0368

�
A50×

d90

d50
+0.2322

√
H

b
×

b

z

Regression-based

Guven (2011) 18 s

z
= 0.193

(
Frd

)0.838( h

z

)0.931(
d90

d50

)1.217 Regression-based

Guven (2011) 19 s

z
=

27.591

1+e
1.605

1+e−u1
−

42.203

1+e−u2
−

18.907

1+e−u3
+

21.019

1+e−u4
−

2.233

1+e−u5
+

40.714

1+e−u6
+

2.957

1+e−u7
+2.843

− 1.012

u1 = −24.923Frd − 1.757
h

z
− 12.620

d90

d50
+ 91.155 

u2 = −3.231Frd − 0.403
h

z
− 4.622

d90

d50
+ 32.670 

u3 = −3.297Frd − 0.805
h

z
− 4.053

d90

d50
+ 24.711

 
u4 = −2.537Frd − 0.607

h

z
− 3.267

d90

d50
+ 19.587

 
u5 = −11.581Frd + 1.386

h

z
− 3.006

d90

d50
+ 27.594

 
u6 = −5.278Frd − 0.535

h

z
− 4.378

d90

d50
+ 35.018

u7 = 26.416Frd + 1.346
h

z
+ 12.622

d90

d50
− 125.676

AI-based

Sattar et al. (2017) 20 s

Z
= −0.39

(
z

b

)0.25

+
(

h

Z
×

d90

d90

)0.25

+ 0.039A50 − 0.28

(
h2

z+b

) AI-based

Ben Meftah and Mossa (2020) 21
s =

[
0.24×

(
1 +

z

h0

)0.92

×
(

h

h0

)0.24

×
(

�

�

)−0.34

×
(
Frsd

)0.38]
× h0

Regression-based
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lay within the ± 25% range. The ELM model shows 10% 
higher error than the GEP model. Moreover, all the models 
generally underestimate the scour depth.

In all scenarios, as the results are shown in Table 4 and 
Fig. 3, the LSSVM model shows the lowest prediction accu-
racy, and most of the scour depth predictions of the GEP 
model perform reasonably, as compared to the other three 
models.

The GEP model estimates better results based on sce-
narios 1 (GEP-1) and 7 (GEP-7) among the evaluated mod-
els. The GEP equations of these best scenarios as the final 
predictive equations of scour depth are derived as follows:

(36)GEP − 1 ∶
s

z
=

���
h

H

�1.27

× 1.42

�
b

B

��
−

h

H

�
+

⎡⎢⎢⎢⎣

��
d90

d50

��
1.11

�
b

B
×

h

H

��
×A50⎤⎥⎥⎥⎦

+

�
d90

d50

�
−0.00234

��
d90

d50

×
b

z

�
− 9.82

���

(37)GEP − 7 ∶
s

z
=

⎡⎢⎢⎢⎣

A
50�

b

B
−

d
90

d
50

�
−

b

B

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
A

50

������
��

d
90

d
50

��
b

B
−

h

H

�
×

h

H
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d90

d50

⎤⎥⎥⎥⎥⎦
+

�
b

B

��
d
90

d
50

+
z

E
+ 2

h

H

���
z

E
−

z

E

���

Input parameter significance

The importance of input parameters in each model was 
assessed by removing them one at a time from the first sce-
nario. The results of the sensitivity analysis of the evaluated 
expert system models are presented in Table 4. Figure 4 dis-
plays the results of the model’s performance based on the 
scenario-based evaluations.

Based on the results in Fig. 4, in the first scenario, where 
all five parameters were included, the GEP model perfor-
mance results a lower error and higher coefficient of deter-
mination than the other scenarios. In the second scenario, 

Fig. 3   Comparison of predicted 
and observed values of scour 
depth at the downstream of 
grade control structures for test-
ing phase: a scenario 1, b sce-
nario 2, c scenario 3, d scenario 
4, e scenario 5, f scenario 6, and 
g scenario 7. (x-axis is observed 
s/Z and y-axis is predicted s/Z)
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with the removal of b/B from the first scenario, the error 
somewhat increases, and the coefficient of determination 
decreases. In the third scenario, the error of the GEP model 
is higher and its coefficient of determination is lower than 
the first scenario. In the fourth scenario, with the removal of 
d90/d50, the error increases, but the coefficient of determina-
tion remains similar to the first scenario. In the fifth sce-
nario, the error is significantly higher than the first scenario (
RMSE5

RMSE1
=

1.29

0.95

)
 , and the coefficient of determination is sig-

nificantly lower ( R
25

R21
=

0.75

0.89
 ). The results of this scenario 

show that removal of A50 in the fifth scenario has a great 
impact on the accuracy of scour depth predictions of GCS 
and proves its significance. In the sixth scenario, with the 
removal of b/z, the error increases, but the coefficient of 
determination also increases by about 0.1 (all compared to 
the first scenario). In the seventh scenario, the addition of 
the parameter Z/E decreases the error from 0.95 (in the first 
scenario) to 0.88 and decreases the MBE from − 0.16 
to − 0.12. In conclusion, these results show that using the 
energy parameter in the GEP model can improve both RMSE 
and MBE.

As the GMDH, LSSVM, and ELM models, the high-
est accuracy of scour depth prediction results from the 
first scenario, and the highest error and lowest coefficient 

of determination are seen for the fifth scenario, where the 
parameter A50 is removed. The addition of the energy param-
eter for the seventh scenario decreases the RMSE of the 
GMDH and ELM models from respectively 1.06 and 1.02 
(the first scenario) to 0.99 and 0.97 and increases their coef-
ficient of determination from 0.84 and 0.86 (the first sce-
nario) to 0.86 and 0.88, respectively. The LSSVM model 
shows almost the same error and coefficient of determination 
for the first and fifth scenarios (R2 = 0.71).

In general, all of the developed expert system models 
exhibit the highest error and the lowest correlation for sce-
nario 5, where A50 is removed from calculations. Therefore, 
it can be concluded that A50 is the most significant parameter 
for predicting the scour depth. This conclusion is consistent 
with the results of Sattar et al. (2017) and Guven (2011). 
A sensitivity analysis performed by Guven (2011) showed 
that removing the parameter d90/d50 significantly decreases 
the accuracy of the scour prediction. This is inconsistent 
with the finding of the present study that the A50 is the most 
significant parameter. A study by Tavakolizadeh and Kashe-
fipour (2008) reported that all of the b/B, A50, h/H, b/z, and 
d90/d50 parameters were significant for scour depth predic-
tion, which partially supports the results of the present study. 
Najafzadeh (2015) also found the b/B to be the most effec-
tive parameter in the prediction of scour depth.

Fig. 4   Comparison of the per-
formance of the tested models 
based on different scenarios in 
terms of evaluation criteria
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In all scenarios, the lowest error and the highest coef-
ficient of determination values are provided by the GEP as 
the most accurate model followed by the ELM and GMDH 
models. The highest error and the lowest coefficient of deter-
mination result from the LSSVM model predictions. Based 
on the results of the present study, the GEP model produces 
more accurate predictions of scour depth than other models. 
This is consistent with the findings of Mesbahi et al. (2016) 
which shows that the GEP model is the best approach for 
predicting scour downstream of structures, as well as the 
results of Moussa (2013) which reported reasonable perfor-
mance of the GEP model predicting the scour depth down-
stream of hydraulic structures. Furthermore, based on the 
findings of this study, the ELM model performs better than 
the LSSVM model which is consistent with the results of 
Nourani et al. (2017). The results of Huang et al. (2012) 
also showed the superiority of the ELM in comparison to 
LSSVM in regression and classification applications. Ebt-
ehaj et al. (2018) also reported that ELM provides signifi-
cantly better results than the regression-based models pre-
dicting the scour depth around bridge piers.

Uncertainty, reliability, and resiliency analysis 
results

A three-aspect comparison is established for each model 
while being compared with the observed dataset (indicated 
by the actual label in the horizontal axis) and is depicted 
in Fig. 5 as a Taylor diagram. Taylor diagram summarizes 
evaluation indices of several model results. In the Taylor 
diagram, the performance of the models is visually displayed 

on the polar diagram by comparing the predicted values with 
the actual ones (Riahi-Madvar et al. 2019b; zhu et al. 2019). 
The reference point denotes the observation values located 
on the horizontal axis (standard deviation). Also, the azi-
muth angle of the correlation coefficient diagram indicates 
the actual and predicted values. Besides, the radial distance 
from the reference point describes the normalized standard 
deviation of the predicted values from the actual ones. Each 
point in this diagram shows the accuracy of each model, 
and the closer the model is to the reference point, the more 
accurate it is. The results of this study show the minimum 
RMSD value of 0.88 in the testing phase, which is related 
to the GEP model. The GEP also displays the highest cor-
relation coefficient compared to the other three models. As 
shown by Fig. 5, GEP is the best and closest model to the 
reference point.

Monte Carlo simulation is employed to determine the 
uncertainty of the modeling process. In this method, the 
input parameters are described using a probability distribu-
tion, and based on this distribution, a single set of input data 
is randomly generated. Multiple simulations (typically 1000) 
must be performed so that the results would not influence 
the probability distribution of the output variable. Here, the 
uncertainty and robustness of the proposed model (GEP-
7) are investigated. Moreover, the quality of fitted models 
is evaluated using three indices of 95PPU, reliability, and 
resiliency. The evaluation results are reported in Table 5.

According to Table 5, the uncertainty of the models at 
the training phase does not significantly differ from each 
other. However, in the testing phase, the GEP model with 
95PPU = 62 is slightly better than LSSVM (95PPU = 64), 
ELM (95PPU = 65), and GMDH (95PPU = 65). The results 
indicate that the scour depths predicted by GEP are more 
reliable (56.96%) and resilient (57.58%) than LSSVM (46.29 
and 45.53), ELM (26.96 and 25.60), and GMDH (28.70 and 
27.44) models. Furthermore, the results associated with the 
testing phase are similar to the training, and GEP with relia-
bility of 52.63 and resiliency of 67.57 has a better rating than 
the other three. In order to perform a more comprehensive 
assessment of the GEP-7 model, two criteria of confidence 
bounds (95PPU) and d-factor are used in the training and 
testing phases. The 95PPU criterion represents the percent-
age of data fitting in 95% confidence bounds. In this section, 
the uncertainty analysis of the GEP-7 model is quantified in 
the training and testing phases using confidence intervals. 
95% confidence intervals (95PPU) are determined by cal-
culating the 2.5th and 97.5th percentiles of the cumulative 
probability distribution function. The d-factor indicates the 
confidence bounds width, and theoretically the best value 
for this criterion is zero, and the higher the d-factor is, the 
greater the uncertainty produced. As the d-factor value 
is higher, a large amount of data will fall into confidence 
bounds, and this shows the two above-mentioned criteria 

Fig. 5   Taylor diagram, performance of different models versus actual 
values in the testing phase
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complement each other. However, the proposed model would 
not be useful due to the high uncertainty, and the best result 
could be achieved when 100% of the predictions were within 
95PPU. As mentioned before, to calculate the uncertainty of 
the GEP model, 1000 simulation runs are performed with 
Monte Carlo method. The model uncertainty would be lower 
with narrower confidence bounds and larger percentage of 
observation data within the 95PPU range. The best model 
is the one with minimum difference between the lower and 
upper bands and the highest percentage of observation data 
within 95PPU.

The values of d-factor and 95% confidence intervals asso-
ciated with scour depth predictions of the best model (GEP-
7) in the training and testing phases are presented in Fig. 6, 
and the values of 95PPU are 69% and 62%, respectively. 
The proposed model is acceptable if more than 80% of the 

observation data would fall within the 95PPU bound. How-
ever, a value of 50% can be acceptable as the measurement 
data endured an imperfect quality (Abbaspour et al. 2007). 
The values of d-factor are obtained as 0.25 and 0.4 for the 
training and testing phases, respectively. Xue et al (2014) 
and Abbaspour et al. (2007) reported that the d-factor value 
of less than 1 would be desirable. Lastly, due to the nar-
rowness of confidence bounds of the training and testing 
phases (d-factor = 0.25, 0.40) as well as the 95PPU values, 
the GEP-7 model achieves an acceptable uncertainty in both 
phases.

Comparison of GEP with existing equations

In order to compare the results of best scenarios (1, 7) with 
the existing equations shown in Table 3, the dataset of Lenzi 

Fig. 6   95PPU band for the 
estimates of scour depth (s/z) 
using GEP-7 in comparison 
with observed value: a training 
phase and b testing phase
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et al. (2000) is applied as validation data where this data is 
not used in model training and testing phases. The exist-
ing equations are classified into regression-based equations 
(Eqs. (14–18, 21)) and AI-based equations (Eqs. (19 and 
20)). The results of these comparisons are presented in 
Table 6. The RMSE values of Yen (1987), Guven (2011), 
and D’Agostino and Ferro (2004) were 3.77, 9.81, and 2.32, 
respectively, and their MBE values were 3.33, 2.85, and 1.99 
respectively. Comparison of these values with the developed 
GEP model results indicates very low accuracy of these 
equations and significant overestimation of the scour depth.

The AIC index is used for a fair comparison of differ-
ent equations with different complexities. AIC evaluates 
different equations using the model parameters. The AIC 
value increases when increasing the number of parameters. 
Therefore, AIC guarantees a fair comparison between simple 
equations with few parameters and complex equations with 
a large number of parameters. In general, a low AIC value 
indicates the higher efficiency of a model. For instance, 
RMSE and MBE of Laucelli and Giustolisi (2011) were 
slightly smaller than those of the Laucelli and Giustolisi 
(2011). Based on these criteria, Eq. (26) would achieve the 
better equation title. However, AIC indicates a better estima-
tion of the scour depth by the Laucelli and Giustolisi (2011) 

because of its lower level of complexity and smaller number 
of parameters.

GEP-7 and GEP-1 models with an AIC value of − 31.65 
and − 13.10, respectively, confirm the best performance pre-
dicting the scour depth, followed by those proposed by Sat-
tar et al. (2017) and Guven (2011). Guven (2011) showed the 
highest AIC value. The equations proposed by Yen (1987) 
and D’Agostino and Ferro (2004) show the lowest perfor-
mance predicting the scour depth.

Figure 7 displays the s/z values estimated by various 
equations in validation dataset. As evidently seen, the Guven 
(2011) overestimates some of the scour depth significantly. 
The equation proposed by Yen (1987) overestimates mostly 
and predicts the scour depth 3–5 times higher than the 
observed scour depth. Given the large errors of the equations 
proposed by Yen (1987), Guven (2011), and D’Agostino and 
Ferro (2004), their results are not displayed in the scatter 
plot (Fig. 7). The scour depths estimated by Guven (2011) 
are more scattered than other equations, and the range of 
predicted s/z is greater than 1. For instance, the observed 
values of 1.75 and 1.78 for s/z are predicted as 1.97 and 2.61, 
respectively. The corresponding values for 1.22 and 1.29 are 
1.18 and 0.78, respectively.

Based on the results in Fig. 7, all values predicted by Ben 
Meftah and Mossa (2020) are equal or below the − 25% line, 
indicating a significant underestimation. The error of this 
equation increases in higher s/z values. Unlike Ben Meftah 
and Mossa (2020), Laucelli and Giustolisi (2011) overes-
timate the scour depth two times higher than the observed 
depth in most points with the MBE value of 0.93. Nearly all 
points predicted by Laucelli and Giustolisi (2011) are equal 
or beyond the ± 25% line. This equation overestimates the 
lower s/z values and underestimates the higher s/z values.

The equation proposed by Sattar et al. (2017) underesti-
mates the scour depth as s/z increases, but all points are in 
the range of ± 25% at low s/z values as presented in Fig. 7. 
All scour depth predictions in GEP-1 and nearly all points in 
GEP-7 are in the range of ± 25%. GEP-7 confirms that GEP-
based models have succeeded to predict accurately the scour 

Table 5   Comparisons of the uncertainty, reliability, and resiliency 
analysis of the model results

Reliability (%) Resiliency (%) 95PPU (%)

Train
GEP 56.96 57.58 69
LSSVM 46.29 45.53 70
ELM 26.96 25.60 73
GMDH 28.70 27.44 72
Test
GEP 52.63 67.57 67.57
LSSVM 35.53 40.00 40.00
ELM 34.21 29.41 29.41
GMDH 26.32 24.56 24.56

Table 6   Evaluation of the 
developed GEP and existing 
models to predict the scour 
depth for validation data

Author Equation no R2 RMSE MBE AIC

Yen (1987) 14 0.92 3.77 3.33 68.50
D’Agostino and Ferro (2004) 15 0.85 2.32 1.99 43.88
Laucelli and Giustolisi (2011) 16 0.86 1.02 1.01 8.51
Laucelli and Giustolisi (2011) 17 0.84 0.95 0.93 20.67
Guven (2011) 18 0.90 0.37  − 0.14  − 11.85
Guven (2011) 19 0.68 9.81 2.85 221.37
Sattar et al. (2017) 20 0.86 0.29  − 0.10  − 12.18
Ben Meftah and Mossa (2020) 21 0.91 0.38  − 0.32  − 5.16
GEP-1 36 0.83 0.28 0.18  − 13.10
GEP-7 37 0.86 0.16 0.05  − 31.65
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depth at lower and higher s/z values. Hence, the proposed 
model shows better results in prediction of the scour depth 
downstream of GCSs compared to the previously empirical 
and AI models.

Conclusion

Given the importance of the scouring downstream of hydrau-
lic structures, which could destabilize, damage, or even 
destroy the structure, this study investigates the most impor-
tant parameters influencing the scour depth downstream of 
grade-control structures using a scenario-based approach 
applying expert system models. To assess the modeling 
results, some error indices (e.g., R2, RMSE, MBE, AIC) 
and graphical evaluations (scatter plots, boxplots, column 
plots) are used in different phases (training, testing, and vali-
dation). The results indicate the superiority of energy and 
GEP-based approach (R2 = 0.86, RMSE = 0.16, MBE = 0.05, 
AIC =  − 31.65) compared to the ELM, LSSVM, and GMDH 
models. The scenario-based results of developed expert 
system models reveal that eliminating the b/B, h/H, d90/d50, 
A50, and b/Z parameters from GEP-1 model would increase 

the RMSE error 3, 6, 3, 30, and 4%, respectively. By add-
ing the energy parameter to GEP-1, the error decreases 8%. 
Comparison of results shows that A50 is the most significant 
parameter predicting the scour depth. When A50 parameter 
is eliminated, the error in GEP, ELM, GMDH, and LSSVM 
models increases to reach 30, 34, 42, and 63%, respectively. 
The results of this study confirm that the energy-based 
approach increases the accuracy of scour depth predictions. 
In this study, GEP-based equations are reasonably more 
accurate and persistent than the previous equations and in 
good agreement with observed field data over validation 
phase. Since using empirical equations for predicting the 
maximum scour depth is only applicable in a specific range 
of data and laboratory conditions, soft computing methods 
can be recommended for the scour depth prediction. Due 
to the importance of uncertainty in the proposed relation-
ship, the Monte Carlo simulation method was employed to 
assess this parameter. Three methods of 95PPU, reliability, 
and resiliency were employed to analyze the results. The 
results indicate that the proposed relationship shows the least 
uncertainty, and an acceptable percentage of the data would 
fall within 95% confidence intervals in testing phase. The 
proposed model exhibits several advantages over the con-
ventional relations and artificial intelligence models, which 
include providing an explicit relationship to predict the scour 
depth and using flow energy parameter in order to improve 
the prediction accuracy. Further to these, GEP-based model 
can predict the scour depth with higher accuracy, reliability, 
and resiliency compared to other models.

The developed uncertainty analysis framework presented 
in this study is a new approach in reliable scour depth pre-
diction, and the extracted equation can be combined with 
mathematical models of sediment transport and scour hole 
geometry predictions or real-case modeling of scour around 
hydraulic structures. Finally, the authors of this study would 
like to acknowledge that different data measurement and col-
lection methods used in the previous studies would consti-
tute a major limitation of this study and a potential source of 
error while compiling the data set for the machine learning.
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