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Abstract
Small unmanned aerial vehicle structure-from-motion (sUAV-SFM) photogrammetry and the UAV-based light detection 
and ranging (UAV-LiDAR) have been widely applied to acquire topographic data. The point clouds play key roles in both 
the sUAV-SFM and UAV-LiDAR topographic measurements. In order to assess the measurement accuracy and forecast the 
application prospects of sUAV-SFM photogrammetry, in this study, the same point cloud filtering algorithm was used to 
process the dense point clouds generated by sUAV-SFM and UAV-LiDAR. After filtering, the filtered point cloud acquired 
with UAV-LiDAR served as a benchmark, and a point-by-point comparison with the filtered dense point clouds generated 
by sUAV-SFM was performed. It was concluded that (i) the interferences caused by both vegetation and artificial structures 
can be significantly reduced by using the cloth simulation filter (CSF) algorithm to classify these two types of point clouds, 
supplementing manual interpretation to obtain accurate ground points. (ii) sUAV-SFM can be used to obtain high-precision 
dense point clouds at a consistent quality compared with UAV-LiDAR, which was verified by applying the multiscale 
model-to-model cloud comparison (M3C2) algorithm for a comparative analysis of the point clouds. (iii) The accuracy of 
the results derived from the sUAV-SFM point clouds was consistent with that of the results extracted from the UAV-LiDAR 
point clouds. This result was ascertained through an analysis using digital terrain model (DTM) profiles and calculated 
earthwork volumes. (iv) Compared with the UAV-LiDAR, sUAV-SFM has notable advantages ranging from the inexpensive 
equipment required and its ease of operation to a high degree of automation. Therefore, sUAV-SFM has broad application 
prospects in the supervision of construction sites and for earthworks measurements.
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Introduction

A point cloud, which is the coordinate dataset of many 
points in space, represents an atomized description of the 
real world. Airborne light detection and ranging (LiDAR) is 

one of the most important technical means to obtain three-
dimensional (3D) point clouds of ground surfaces. The 
UAV-LiDAR systems, which are based on various light and 
small unmanned aerial vehicles (sUAVs), have emerged with 
the rapid development of technologies such as UAVs and 
micro-laser scanners high-precision positioning and orienta-
tion systems (Jaakkola et al. 2013; Lin et al. 2011). To date, 
UAV-LiDAR technologies have been rapidly and widely 
applied in various fields, including topographic mapping, 
soil erosion, glacial changes, remote sensing of snow cover, 
forestry investigations, and biodiversity (Cavalli et al. 2013; 
Chen et al. 2021; Harpold et al. 2014, 2015; Kolarik et al. 
2019; McClelland et al. 2019; Neugirg et al. 2016; Shellberg 
et al. 2016; Tarolli 2014).

In recent years, another new method to obtain point 
clouds is sUAV-based structure-from-motion (SFM) photo-
grammetry (Park and Lee 2019), integrating computer vision 
algorithms into the photogrammetry process. Not strictly 
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depending on an image’s positioning and orientation data, 
the sUAV-SFM can automatically extract and match the 
features of overlapping images acquired from different per-
spectives and shooting distances. The feature data are then 
combined with multiview stereo (MVS) geometry to gener-
ate dense point clouds. Factors that affect the accuracy of an 
SFM point cloud include the camera, lens, topographic fea-
tures, methods for the control point and image data acquisi-
tion, lighting conditions, and data processing software (Car-
rivick et al. 2016). A way to assess the accuracy of SFM 
data is to perform direct comparisons with the data obtained 
through other measurement methods, such as total stations, 
differential GPS, ground and airborne LiDAR (Stumpf et al. 
2015). Another strategy is to compare the differences in geo-
metric parameters between SFM and other point clouds. For 
instance, the application in surveys on forestry resources 
showed that the accuracies of canopy parameters extraction 
using LiDAR and SFM photogrammetry were very similar 
(Goodbody et al. 2017; Thiel and Schmullius 2016; Wallace 
et al. 2016; White et al. 2015).

As a primary data product, a point cloud is generally not 
directly used but requires further processing to derive digi-
tal elevation models (DEMs), digital line graphs (DLGs), 
or mesh models. A point cloud containing color compo-
nents can also be used to produce digital orthophoto maps 
(DOMs). Overall, the quality of a point cloud determines 
the accuracy of its subsequent data products. Therefore, the 
accuracies of point clouds play critical roles in both LiDAR 
and SFM photogrammetry.

Many methods have been devised to assess point clouds’ 
accuracy; in general, a statistical analysis of the dissimi-
larities between point clouds can be performed by deriving 
their respective grid data before calculating the difference in 
their elevations, Z (Salach et al. 2018; Tonkin et al. 2014). 
However, the detailed topographic information contained 
in the point clouds disappears after rasterization. Instead 
of calculating the difference of the DEM (DoD) based on 
the derived DEMs, directly comparing the point clouds is 
a more reasonable approach (Akca et al. 2010; Erol et al. 
2020; Salach et al. 2018; Tonkin et al. 2014).

The literature mentioned above indicates that LiDAR and 
SFM have been widely used in topographic measurements, 
and the comparison between the two kinds of data collec-
tion methods has often been carried out. However, during the 
digital surface model (DSM) data generation based on SFM, 
a default point cloud filtering algorithm was used to handle 
the point cloud, which may be inconsistent with the ground 
point filtering algorithm used in the DSM data production 
through LiDAR. This difference between different filtering 
methods may lead to inconsistent DSM accuracy. Especially 
at surface discontinuities, surface modeling errors and the ref-
erence frames of the two DSMs inconsistent may lead to large 
differences. Though these shortcomings can be overcome by 

employing the approach where the shortest 3D (Euclidean) 
distance between each reference point and the produced DSM 
is used (Akca et al. 2019; Stylianidis et al. 2020), research 
on the process of the obtained SFM and LiDAR point clouds 
based on the same point cloud filtering method and compari-
son between the processed SFM and LiDAR point clouds and 
the corresponding generated DSMs could help investigate the 
advantages, limitations, and accuracies of sUAV-SFM and 
UAV-LiDAR point clouds, and obtain a clearer understand-
ing of their dissimilarities.

This study aims is to compare the SFM and the LiDAR 
point clouds processed based on the same point cloud filter-
ing algorithm. In order to understand the difference between 
the SFM and the LiDAR point clouds processed by the same 
CSF filtering algorithm, we analyzed the accuracies of the 
point clouds based on the direct and indirect assessment 
methods in some typical application scenarios. The study is 
intended to explore the advantages, limitations, and dissimi-
larities between the point clouds generated by sUAV-SFM 
and UAV-LiDAR based on the same filtering algorithm, and 
verify the feasibility of terrain measurement using light and 
small unmanned vehicles, and try to provide a more eco-
nomical, convenient, and efficient high-fidelity terrain data 
acquisition method.

Materials and methodology

General framework

A research route was designed to analyze the differences 
between the point clouds acquired by sUAV-SFM and UAV-
LiDAR, as shown in Fig. 1.

First, Global Positioning System-Real-Time Kinematic 
(GPS-RTK) was used to measure the image control points 
and checkpoints to obtain the corresponding ground refer-
ence data. Next, consumer-grade sUAVs and UAV-LiDARs 
were separately used for data acquisition, after which the 
acquired data were immediately processed to obtain the cor-
responding point cloud data. Then, the DTMs derived from 
sUAV-SFM and UAV-LiDAR point clouds are obtained, 
respectively. Finally, profile analysis and the calculated 
earthwork volumes were used to evaluate the differences 
between the two types of point clouds. We note that in this 
study, multiple UAVs were used to obtain data on the same 
day. Furthermore, the weather conditions were good, render-
ing the results of the comparative analysis highly reliable.

Data acquisition and processing

UAV platforms

Different types of equipment were used in this study 
to obtain point cloud data to compare and analyze the 

388   Page 2 of 18 Arab J Geosci (2022) 15: 388



1 3

differences between the data acquired via sUAV-SFM 
and UAV-LiDAR. The DJI Phantom 4 Pro UAV platform 
(Fig. 2(a)) was used to acquire sUAV-SFM point cloud 
data. For UAV-LiDAR point cloud data acquisition, the 
DJI Matrice 600Pro six-rotor UAV was used as the air-
borne platform (Fig. 2(b)), which is equipped with the 
Geosun gAirHawk GS-100 UAV-LiDAR System (http:// 
engli sh. geosun- gnss. com. cn/ index. php).

The UAV-LiDAR system is mainly composed of a 
16-channel laser scanner and a high-frequency position-
ing and orientation system. The UAV-LiDAR system can 
achieve high-precision scanning of targets within a 100-m 
range, with an absolute accuracy better than 10 cm for 
point cloud measurements. A simple comparison of the 
two sets of data acquisition equipment for generating point 
clouds was performed from several aspects, including the 
weight, price, operability, and convenience (Table  1). 
Notably, substantial differences exist between the two sets 
of equipment.

GPS‑RTK measurement of image control points 
and checkpoints

First, the horizontal datum of the survey area was set to 
China Geodetic Coordinate System 2000 (CGCS2000) 
Cartesian coordinate system, with Gauss–Krüger projec-
tion, 3° zoning, a central meridian at 114°, and an ESPG ID 
of 4547. The vertical reference used in this study was the 
1985 national height datum (Yellow Sea 1985) for ortho-
metric height with a mean accuracy better than 0.1 m (Li 
et al. 2017). As there were no notable ground features on 
the site, the surfaces of roads and stones were spray-painted 
with crosshairs with side lengths not shorter than 30 cm. The 
exact locations of their center points were measured directly 
after UAV image acquisition using a UniStrong G970II All-
in-one RTK receiver (http:// en. unist rong. com/ Produ ctShow. 
asp? Artic leID= 299) which provides centimeter-accurate 
positioning and a height accuracy with 8–15 mm. A total 
of seven crosshairs were used as ground control points. 

Fig. 1  General methodology of 
this study GPS-RTK measurement of image control points and checkpoints

UAV low-altitude photography 
(DJI Phantom 4 Pro)

UAV-LiDAR scanning 
(gAirHawk)

Measurement using SFM 
photogrammetry

Colored point clouds
(X/Y/Z, R/G/B)

LiDAR point clouds
(X/Y/Z)

Download of point clouds and 
coordinate transformation

Preprocessing of point clouds (cropping, elimination of outliers) 

CSF for extraction of ground points

M3C2

Grid DTM

Comparative analysis 
of profiles

Calculation of 
earthwork volumes
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Subsequently, another 45 checkpoints were measured using 
rover mode. The aforementioned points were distributed at 
approximately equal intervals throughout the survey area. 
One of them is shown in Fig. 3.

Point cloud acquisition and generation

The primary process of acquiring sUAV-SFM point cloud 
data includes selecting and measuring image control points 
and checkpoints, UAV image shooting, image screening, 
and data import into the automatic calculation software for 
point cloud acquisition. Previous studies have extensively 
discussed the operation principles of SFM and MVS, as well 
as the actual procedures for data acquisition and processing 
(Lowe 2004; Snavely et al. 2008; Triggs et al. 2000; Ullman 
1979). The acquisition of sUAV-SFM data was carried out in 
mid-August 2019 under good weather conditions. First, par-
allel flights lines were programmed to have an image sidelap 
of 80% and fore-and-aft overlap of 60% while considering 
the Phantom 4 Pro camera sensor size (13.2 × 8.8 mm) and 
focal length (8.8 mm). The camera was set to shutter-priority 
mode and used a 1/200 s shutter speed with ISO fixed at 100. 
The sUAV captured a total of 260 images of the study area, 
each with a resolution of 5472 pixels × 3648 pixels. The 

image collection process required 30 min. The process of the 
UAV-acquired images was done using Pix4Dmapper desktop 
software (Pix4D SA, Switzerland, https:// www. pix4d. com/). 
The Pix4D software is a highly automated software which 
includes a powerful camera auto-calibration algorithm that 
takes the full information of each pixel of the acquired 
images to estimate the optimal camera and lens calibra-
tion for each flight. This feature is essential to guarantee 
the perfect accuracy under any climatic conditions without 
any manual and tedious user intervention. First, in the pro-
cess of initiation photo camera focal length, principal point 
location and radial, tangential distortions were calculated 
(Visockiene et al. 2014). Then, a series of processes were 
carried out to handle the image alignment and produces a 
sparse point cloud. Next, the 7 GCPs were imported and 
matched (georeferenced) using the rayCloud Editor menu 
available within Pix4D. After the georeferenced, the dense 
point cloud would be generated. During the first two steps, 
different image resolutions may be used (1, 1/2, 1/4, 1/8). To 
get a better quality of point cloud, we used the full resolution 
of all images in the image alignment and densification pro-
cess in this study. Furthermore, the desired point density of 
the final point cloud was set as “optimal density,” minimum 
number of matches was set to 3. Besides, parameters such 

Fig. 2  UAV platforms of 
SFM and LiDAR: (a) The DJI 
Phantom 4 Pro, and (b) the DJI 
Matrice 600 pro with a built-in 
GNSS/IMU equipped with a 
Geosun gAirHawk GS-100 
UAV-LiDAR System

Table 1  Data acquisition equipment comparisons between sUAV-SFM and UAV-LiDAR

Equipment Weight (kg) Price (RMB) Operability Convenience

DJI Phantom 4 Pro (sUAV-SFM) 1.4 10,000 Simple Compact and highly portable
DJI Matrice 600 and Geosun gAirHawk GS-100 

UAV-LiDAR System (UAV-LiDAR)
12 100,000 Complex Bulky and inconvenient to transport
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as “classifying point cloud” and “merging tiles into one file” 
were selected (“Yes”). Finally, the final point cloud data was 
automatically saved to *.las format for each input image, one 
of the most common formats for exchanging point clouds.

The UAV-LiDAR point cloud for the study area was 
acquired by the gAirHawk light LiDAR point cloud data 
acquisition system. As with the aforementioned image data 
collection method, the UAV flight paths were first estab-
lished based on the scope of the survey area. Next, the UAV-
LiDAR system automatically scanned the terrain according 
to the designed route.

The post-procession of GNSS/IMU data was conducted 
using Shutter software provided by Geosun, which adopts 
the world’s leading single epoch ambiguity algorithm and 
high-order Kalman filter to maximize the integration of the 
GNSS carrier phase and IMU information. Processing of 
UAV-LiDAR was completed using gAirhawk toolkits, which 
were provided with the Geosun gAirHawk GS-100 UAV-
LiDAR System. gAirhawk LiDAR Data Process Software is 
a point cloud computing software self-developed by Geosun 

Navigation. It supports real-time configuration and monitor-
ing of field data acquisition systems, decoding real-time and 
post-process laser scanning data, calculating and display-
ing point cloud data, and supporting software for Geosun 
LiDAR scanning system. The UAV-LiDAR point cloud was 
also successfully processed with no errors detected.

Point cloud data pre‑processing

Before data acquisition and processing, it is necessary to 
determine whether the two data sets are different from each 
other. In order to avoid the absence of translational and rota-
tional difference of the two point clouds, a unified survey 
control network was established in the study area at the very 
beginning, and the two measurement methods are applied 
based on the same geographic reference frame. This was 
corroborated with the checking of the control points in the 
study area.

During point cloud data acquisition, both noise and point 
cloud data from beyond the study area are inevitable, which 
necessitates pre-processing of the point clouds to ensure that 
the acquired point cloud data of the study area are at higher 
precision. In this study, the two types of point cloud data 
were imported into the CloudCompare software (CloudCom-
pare 2019) to eliminate the outliers and error points before 
cropping into the same range. In order to verify the consist-
ency of the two types of point clouds for various underlying 
surface conditions, three sub-regions were extracted from 
the study area based on the vegetation coverage and char-
acteristics of the topographic undulations: flat sub-region, 
sub-region with bare soil, and excavated sub-region (Fig. 6).

The flat sub-region has a gentle slope, and its surface 
comprises low wild grasses, shrubs, isolated trees, and aque-
duct facilities. Tall vegetation cover is absent in the exca-
vated sub-region, this region comprises sparse wild grasses. 
The terrain is steep, with a slope of nearly 90°. The sub-
region with bare soil is an earthwork stacking yard formed 
during the excavation process, which has almost no vegeta-
tion cover. After the boundary polygons of each sub-region 
were drawn using ArcGIS software, the two sets of point 
cloud data were cropped and stored in the LAS format for 
further analysis.

Ground point classification

The original point clouds must be classified to distinguish 
between ground and non-ground points to obtain accurate 
DTM data. In order to avoid the influence of different fil-
tering parameters on the point cloud filtering results and 
ensure the consistency of the point cloud filtering process, 
we chose the same filtering algorithm. There are numerous 
algorithms available for point cloud classification, among 
which cloth simulation filter (CSF) is a ground point 

Fig. 3  Picture of a GCP
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filtering algorithm widely used in recent studies (Zhang 
et al. 2016). This algorithm is similar to the cloth mod-
eling process in computer graphics. First, outliers were 
automatically or manually handled. Second, the reversed 
point cloud is covered by a piece of rasterized and rigid 
virtual cloth. Under the effects exerted by gravity and 
adjacent nodes, the grid node particles are displaced and 
attached to the topographic surface. Then, the cloud points 
and the grid particles are projected to a horizontal plane. 
Next, the nearest cloud point for each particle is found and 
the difference in the elevation between the point cloud and 
virtual cloth is calculated point-by-point when the maxi-
mum height variation of all particles is small enough or 
when it exceeds the maximum iteration number which is 
specified by the user, if the different is equal to or less than 
the threshold, the point is classified as bare earth, other-
wise it is classified as objects (Zhang et al. 2016). Finally, 
the ground and non-ground points are distinguished by 
the method. The CSF algorithm is simple, easy to use, 
and integrated into multiple software programs, includ-
ing Octave, CloudCompare, MATLAB, and 3DF Zephyr. 
In this study, the ground point classification results were 
obtained through the CSF plugin in CloudCompare, an 
open-source software.

During the cloth simulation process, the particle would 
move a certain displacement under the effect of gravity 
and internal force. According to Newton’s second law:

where, m is the mass of the particle which has a default unit 
1, X(t) is the position of the particle at time t , Fext and Fint 
are the gravity and the spring force of the particle at the posi-
tion X(t) respectively, Fint also meets Hooke’s law.

The particle moves in the vertical direction under the 
influence of gravity. The displacement of the particle in 
the vertical direction in a certain period can be determined 
by Eq. (2) as followed.

where Δt is the duration of the particle movement, g is the 
acceleration of gravity.

In the model, the internal force is an elastic force of 
spring. When considering the particle’s movement under 
the internal force, the traversal calculation of all springs 
is necessary. If the particles at both ends of a spring are 
fixed, the particle does not move. When the particles at 
both ends of a spring are movable, the particle should be 
moved to the average elevation of the two endpoints of 
the spring. Besides, the particle should be moved by half 
of the elevation difference between the two end particles 

(1)m
�X(t)

�t2
= Fext(X, t) + Fint(X, t)

(2)X(t + Δt) = 2X(t) − X(t − dt) + gΔt2

of the spring. The following equation can calculate the 
displacement of the particle.

where �⃗d is the displacement vector of the particle. b is 1 
when the particle is movable; otherwise, b is 0. ��⃗pi is the posi-
tion of the moving particle, ���⃗p0 is the position of the adjacent 
particle. �⃗n is the standard vector in the vertical direction, 
taking �⃗n = (0, 0, 1)T.

Accuracy assessment methods of point clouds

The accuracies of the point clouds were evaluated from two 
aspects to better understand the differences between the two 
types of point clouds in question. One method was to directly 
evaluate their respective accuracies using the M3C2 algo-
rithm, while the other method was to evaluate the accuracy 
of the raster DTMs generated from the point clouds, thereby 
indirectly evaluating the accuracy of the latter. The second 
accuracy assessment method can be based on the analysis 
of either the DTM profiles or calculated earthwork volumes.

Point cloud accuracy assessment based on GNSS survey

After obtaining the point cloud data, it is necessary to con-
duct an initial check on the accuracy of the point cloud data 
so that subsequent experiments can be carried out correctly. 
The method to check the accuracy of the point cloud data is 
to compare and analyze the point cloud data with the GNSS-
RTK measured checkpoints and use the analysis results as 
the basis of the point cloud accuracy evaluation. In the con-
trast analysis, the accuracy in the z-direction is often used 
to represent the accuracy of the point cloud. The accuracy 
of 3D point clouds was assessed by the mean absolute error 
(MAE) in the vertical direction (Dang et al. 2020; Martinez 
et al. 2021). It was calculated by summing the absolute value 
of actual Z coordinate values of the CPs surveyed ( Zcp

k
 ), sub-

tracting the z values estimated from scanning points closest 
to CP coordinate positions in point cloud ( Zpt

k
 ), and then 

dividing by the total number of surveyed CPs (n). Ideally, the 
error metric should be zero, indicating that the point cloud 
achieved a reasonably good accuracy.

where MAE represents the average absolute error in the 
z-direction, Zcp

k
 is the elevation of the checkpoint k meas-

ured by GNSS, Zpt

k
 is the elevation of the point cloud to be 

evaluated, which is closest to the checkpoint k , n is the total 
number of the checkpoints.

(3)�⃗d =
1

2
b
(
��⃗pi − ���⃗p0

)
∙ �⃗n

(4)MAE =
1

n

∑n

k=1

|||Z
cp

k
− Z

pt

k

|||
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Point cloud accuracy assessment based on M3C2

The accuracy of the point clouds directly affects the digi-
tal topography, such that it is critical to first evaluate the 
accuracy of the acquired point clouds. Although point cloud 
data can express complex topographic structural units in 3-D 
space, the operation to determine the differences between 
point clouds is highly complicated. At present, SFM data 
processing mainly involves using differential GPS to meas-
ure a large number of checkpoints to evaluate data quality. 
However, there are certain limitations: the layout and the 
density of checkpoints are entirely based on the experience 
of field staff; besides, the topographical conditions of the site 
impose certain constraints (such as steep cliffs and danger-
ous locations). M3C2 is a multiscale comparison algorithm 
that directly acts on point clouds to assess their accuracy 
(Lague et al. 2013), providing reliable results (Stumpf et al. 
2015).

The main computational procedure of the M3C2 algo-
rithm includes three steps. In the first step, the core point 
i was selected from the referenced point cloud and the unit 
normal ��⃗N was calculated based on the defined normal scale 
D . In the second step, the two subsets of the reference and 
compared point clouds were defined by the intersection of 
the reference and compared point clouds with a cylinder cal-
culated by the unit normal N, over the core point i , the diam-
eter of projection scale d , and the length of the projection 
L . After that, the distribution of distances which are used to 
define the mean (or median) position of each sub-cloud i1 
and i2 as shown in Fig. 4, would be given along the normal 
direction N when each sub-cloud was projected on the cyl-
inder axis. Finally, the distance LM3C2(i) between the projec-
tion centers is calculated, which was used as the algebraic 
deformation from the reference point cloud to the compared 
point cloud at the core point i . Besides, a confidence interval 
is introduced to estimate the distance measurement accuracy 
and to assess whether a statistically significant change is 
detected or not at the prescribed confidence level, which is 

set at 95% (Lague et al. 2013). The confidence level can be 
calculated by the following equation.

where �1(d) and �2(d) are the roughness figured up from the 
sub-cloud of the reference and the compared point clouds in 
the projection cylinder, respectively. n1 and n2 are the num-
ber of points in each corresponding sub-cloud. reg is the 
stitching error between the point clouds.

Accuracy assessment based on the DTM profile analysis

This method evaluates the accuracy of point clouds by com-
paring the accuracies of the generated DTMs. In order to 
obtain the DTMs, the tool embedded in the ArcGIS LAS 
dataset to raster was used to convert the point cloud into 
DTMs. The parameters including interpolation type, output 
data type, sampling type, and z factor may be specified in 
the rasterization process. In this study, the binning method 
of interpolation technique was selected to determine cell 
values of the output raster, the output data type was set to 
be Float, and the sampling type was set to be Cellsize to 
define the resolution of the output raster. The cell size was 
finally chosen 0.1 m. Z factor was set to default because the 
coordinate system of the project was established initially 
making it unnecessary to change the elevation.

After the DEMs have been generated, several profiles 
are extracted from the same location of the two DTMs. The 
profiles should be distributed to cover the entire study area 
to the greatest extent possible, forming a crisscross pattern 
to reduce random adoption errors. Finally, separate profile 
diagrams are drawn, and the elevation difference (∆Z) of 
the profiles is calculated. In this study, the mean error (ME) 
and root mean square error (RMSE) were used to assess the 
accuracies of the two methods (Javernick et al. 2014; Smith 

(5)LOD95%(d) = ±1.96

⎛
⎜⎜⎝

�
�1(d)

2

n1
+

�2(d)
2

n2
+ reg

⎞
⎟⎟⎠

Fig. 4  Illustration of calculating 
M3C2 distance on referenced 
point cloud and compared point 
cloud
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et al. 2014; Tamminga et al. 2015; Williams et al. 2013). The 
ME and RMSE were calculated as follows:

where n is the number of extracted elevation points, and 
∆Z is the elevation difference (representing the difference 
in elevation values at corresponding points in the DTMs 
generated by the two-point clouds), calculated as follows:

Accuracy assessment based on the analysis of calculated 
earthwork volumes

This method analyzes the accuracy of the point clouds by 
calculating the earthwork results based on the different sets 
of point cloud data. As the study area is located along a sec-
tion of the water transmission lines for the water resources 
allocation project, it has experienced extensive ground exca-
vation processes. Moreover, the excavated earth was piled 
on-site, forming nearby piles of stacked earth. Calculating 
and comparing the difference between these two amounts 
should reflect the disparity in the accuracy between the two 
point clouds.

Traditional methods for earthwork calculations include 
the section, contour, and DTM methods (Chen et al. 2016). 
For the section method, the construction site is divided into 
a number of section planes, which are then used to calculate 
the volume of the surrounding earth. Although the calcula-
tion is simple, this method leads to large errors for complex 
topographies. The contour method uses the contour lines of 
the construction site to calculate the enclosed area, which is 
then multiplied by the contour interval to obtain the volume. 
This method is generally less accurate and not often used. 
The DTM method calculates the difference in the volume 
between the original and designed surfaces of the terrain.

In this study, the DTM method was used to calculate and 
analyze the earthwork volumes based on the two types of 
data, calculated as follows (Li and Jing 2010):

where V  is the earthwork volume, Zbefore and ZAfter are the 
elevation values of a single grid before and after the earth-
work, respectively, and Scell represents the area of a single 
grid. The earthwork volume was obtained by summing the 
volumes of all the grids. We note that the DTM must be 

(6)E =
1

n

n∑
i=1

Δzi

(7)RMSE =

�∑n

i=1
Δzi

2

n

(8)Δz = ZsUAV−SFM − ZUAV−LiDAR

(9)V =
∑(

ZBefore − ZAfter
)
∗ SCell

reversed prior to performing the volume calculation of the 
excavated area, indicating that the excavation pit has to be 
converted to a raised mound.

Case study and results

Study area

The study area (31.62° N, 114.07° E) is located approxi-
mately 118 km northwest of Wuhan, Hubei Province, China. 
The study is part of the Guangshui–Dawu section of the 
water resources allocation project in northern Hubei. The 
study area consists of various surface cover types, including 
low wild grasses, shrubs, isolated trees, water bodies, waste-
land, and bare soil. Slope terrain changes are significant, 
including flat areas and steep slopes after excavation. Power 
lines or residential areas within the study area were absent, 
facilitating the safe operation of UAVs and rendering them 
ideal for conducting this type of research. The study area is 
denoted by the red frame in Fig. 5(b).

Results of the point cloud processing

Following the aforementioned methods, the UAV images, 
image control points, and other data were imported into the 
Pix4Dmapper software to obtain the orthophotos (Fig. 6(a)), 
colored point clouds (Fig. 6(b)), and DSMs. Besides, the 
quality report of SFM from Pix4D was obtained. From the 
report, the mean RMSE was calculated to be 0.08. The ME 
value in X, Y, and Z directions was −0.01, 0.00, and 0.04, 
respectively. The ME and RMSE values of GCPs in the X 
direction were calculated to be −0.01 and 0.07, and in Y 
were 0.00 and 0.07, and in Z were 0.04 and 0.10, which 
indicates the image processing was successful.

Fig. 6(c) shows the rendering result of the UAV-LiDAR 
point cloud. To compare the UAV-LiDAR and sUAV-SFM 
point clouds under the same conditions, the two types of 
point clouds were first cropped into the same range, after 
which their coverage areas were both set to 0.057  km2. A 
statistical analysis of the two types of point clouds was per-
formed, whose results are listed in Table 2. The number of 
sUAV-SFM point clouds was found to be 3-fold higher than 
that of UAV-LiDAR point clouds. The data for the former 
also contained more components: each point concurrently 
contained coordinate and color data. In contrast, the point 
clouds generated by UAV-LiDAR only contained 3-D loca-
tion data.

Results of the ground points classification

The UAV-LiDAR and sUAV-SFM point clouds for the 
flat sub-region, sub-region with bare soil, and excavated 
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sub-region were subjected to CSF filtering to extract the 
ground points. The parameters of the CSF filter were opti-
mized by considering the undulating topographic features, 
such that the maximum number of ground points could be 
extracted (Table 3). Next, the point clouds of the three afore-
mentioned sub-regions were filtered in turn. The points were 
manually verified, and those that were misclassified were 
corrected, yielding the final ground points.

Fig. 7 shows the effects of ground point classification. 
Fig. 7(a1) and (a3) are the two types of original point cloud 
data for the flat sub-region, while Fig. 7(a2) and (a4) are the 
results of the same sub-region after CSF filtering. For both 
types of point clouds, the artificial structure (aqueduct) at 
Position 1 and the vegetation cover at Position 2 were cor-
rectly classified as non-ground points, indicating that the 
filtering results were good. In the UAV-LiDAR point cloud, 
the waterbody at Position 3 on the flat sub-region became a 
hole after filtering.

Fig. 7(b1) and (b3) are the two types of original point 
cloud data for the sub-region with bare soil, while Fig. 7(b2) 
and (b4) show the results of the same sub-region after filter-
ing. The effects before and after filtering were similar for 
this sub-region. The point clouds rendered in Fig. 7(b3) and 
(b4) have stripes traversing them. The cause of this phe-
nomenon was the laser beam, which scanned the ground in 
a rotating manner when the laser scanner was acquiring data, 

resulting in inconsistencies between the longitudinal and lat-
eral sampling rates, with the latter rate being significantly 
higher than the former.

The two types of original point cloud data for the exca-
vated sub-region are shown in Fig. 7(c1) and (c3), while 
the filtered point clouds are shown in Fig. 7(c2) and (c4). A 
comparison between the two sets of point clouds revealed 
that the vegetation cover at Position 4 had been filtered, indi-
cating that the filtering result for the excavated sub-region 
was satisfactory. Overall, the sUAV-SMF point clouds had 
a higher density, the ground features were more detailed, 
and the rendering of the ground points was smoother. The 
CSF-based classifications of the two types of point clouds 
were accurate, with satisfactory ground points obtained from 
both methods.

Accuracy assessment results of sUAV‑SFM 
and UAV‑LiDAR point clouds

Accuracy evaluation of point clouds based on GNSS survey

In order to assess the accuracy of the point clouds gener-
ated from UAV-LiDAR and sUAV-SFM, the 45 checkpoints 
obtained by the GNSS survey were used for the contrast 
analysis. The distribution of the checkpoints and vectors 
which shows direction and magnitude of the discrepancies 

Fig. 5  Study area: (a) Location within the Hubei Province; (b) satellite image from Google Earth of the study area denoted by the red frame; and 
(c) a site photograph
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were analyzed as shown in Fig. 8.Through Eq. (4), the MAE 
values representing the accuracies of the two-point clouds 
were calculated to be 0.07 m and 0.08 m. Moreover, the 
RMSE of the two cloud points were 0.08 m and 0.10 m. 
From the values of MAE and RMSE, it can be seen that val-
ues of LiDAR were both slightly smaller than that of SFM.

Accuracy comparison of point clouds based on M3C2

Considering the substantial difference in the density of the 
two types of point clouds and the accuracy results assessed 
based on the GNSS survey, the UAV-LiDAR data was used 
as the reference point cloud for M3C2 analysis. Fig. 9 shows 
the results of the comparative analysis of the three sets of 
point clouds. Fig. 9(a2), (b2), and (c2) present the distribu-
tional characteristics of the M3C2 distances in the form of 
histograms. The M3C2 distance of the flat sub-region was 
0.13 m, with a standard deviation of 0.17. In comparison, 
the M3C2 distance of the sub-region with bare soil and exca-
vated sub-region was 0.03 and 0.02 m, respectively. Both 
were lower than that of the flat sub-region. Although the 
M3C2 distances of these two sub-regions were similar, the 
standard deviation of the M3C2 distance for the excavated 

(a) (c)(b)

A A A

B B B

C C C

Fig. 6  Generated images and point clouds: (a) Orthophoto generated 
by sUAV-SFM; (b) sUAV-SFM colored point cloud; and (c) UAV-
LiDAR point cloud. The study area was further divided into three 

sub-regions based on the topographic and land cover characteristics: 
A — flat sub-region, B — sub-region with bare soil, and C — exca-
vated sub-region

Table 2  Metadata for the UAV-LiDAR and sUAV-SFM point clouds

Type of point cloud UAV-LiDAR
point cloud

sUAV-SFM
point cloud

Number of point clouds (pts) 10,110,126 30,694,613
Range of elevation value Z (m) 68.27–103.86 66.44–103.74
Components of point cloud data X/Y/Z X/Y/Z, R/G/B
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sub-region was higher than that of both the flat sub-region 
and the sub-region with bare soil. In general, the M3C2 dis-
tance of the three topographic types in Fig. 9 did not exceed 
0.13 m, indicating that the two types of point clouds had 
excellent goodness-of-fit and comparability.

Accuracy comparison of point clouds based on DTM profile 
analysis

To evaluate the differences between the DTMs generated by 
the two types of point clouds, their profiles were extracted 
and drawn at the same position for an intuitive comparison, 
as shown in Figs. 10 and 11. These two figures compare the 
profiles of the excavation and bare soil sub-regions in the 
DTMs generated by the two point clouds. In the images, the 
solid red and blue lines are the profiles extracted from the 
DTMs generated by the sUAV-SFM and UAV-LiDAR point 
clouds, respectively. In the distribution of sections in Fig. 10 
(excavated sub-region), six sections were extracted in the 
west-east and two sections in the north-south. For Fig. 11 
(sub-region with bare soil), four sections were extracted in 
the north-south and northeast-southwest directions. From 
Fig. 10, it can be seen that Section h was identical but with 
slight deviations within a few centimeters. In addition, the 
curves in the other sections had high levels of conformity, 
indicating that the two DTMs had goodness-of-fit and simi-
lar accuracies. After a more detailed analysis, the sections 
generated by the UAV-LiDAR point cloud had “burrs” and 
were not as smooth as the sUAV-SFM sections, which was 
likely because there were more sUAV-SFM point clouds 
than UAV-LiDAR point clouds.

After extracting the sections of the sub-regions with bare 
soil and excavation, Eqs. (6) and (7) were used to analyze 
the difference and standard error of each section, where 
Figs. 10(B) and 11(B) show the results. Fig. 10(B), for the 
excavated sub-region, shows that the differences in the ME 
and RMSE values of each section in the east-west direction 
were small. The maximum and minimum mean values were 
0.13 and −0.06 m, respectively, while that for the RMSE 
values were 0.064 and 0.012 m, respectively. The ME and 
RMSE values remained at the centimeter level. In the north-
south direction, the mean value of the difference in Section 
h was 0.13 m. Although it was larger than the mean value 

of the section in the east-west direction, the RMSE of the 
difference was still smaller than that of the east-west sec-
tion. Fig. 11(B) shows that the ME and RMSE values of the 
difference between the horizontal and vertical DTMs for the 
sub-region with bare soil were minimal. The maximum and 
minimum values of the mean for the differences were 0.04 
and −0.06 m, respectively, and that of the RMSE values for 
the differences were 0.017 and 0.009 m, respectively. The 
results remained at the centimeter level, consistent with, but 
slightly better than, that of the excavated sub-region.

To analyze the comparison results of the profiles more 
intuitively and comprehensively, we calculated the differ-
ences in the average value of the analyzed results for the sub-
regions with excavation and bare soil. These results indicate 
that the differences in the ME and RMSE of the excavated 
sub-region were −0.03 and 0.035 m, respectively; the dif-
ferences in the ME and RMSE of the sub-region with bare 
soil were 0.00 and 0.005 m, respectively. An analysis of the 
two DTM profiles shows that the difference between the two 
profiles was small and the conformity was high, proving that 
the dense point clouds acquired using sUAV-SFM can have 
the same accuracies as that using UAV-LiDAR.

Accuracy comparison of point clouds based on surface 
volume calculations

To evaluate the difference between the two types of point 
clouds more accurately, the theory of calculated earthwork 
volumes, as described in the “Accuracy assessment based on 
the DTM profile analysis” section, was separately applied 
to the two-point clouds for the sub-regions with excavation 
and bare soil based on the same reference elevation. Table 4 
lists the results of the calculated earthwork volumes. The 
earthwork volumes in the sub-regions with excavation and 
bare soil, calculated based on the two-point clouds, were 
basically similar. The absolute differences were 18 and 20 
 m3, respectively, and in percentage, the absolute differ-
ences between the two point clouds were 0.53% and 0.07%, 
respectively, both of which were within 1%, indicating that 
the results of the calculated earthwork volumes using the 
two types of point clouds were the same. This result again 
proved that dense point clouds acquired using sUAV-SFM 
and UAV-LiDAR could have similar accuracies.

Table 3  Parameter settings for 
CSF filtering of the point clouds

Type of region Flat
sub-region

Sub-region with bare 
soil

Excavated sub-region

Scenes Flat Relief Steep slope
Cloth resolution 0.2 m 0.1 m 0.1 m
Max iterations 500 (default) 500 500
Classification threshold 0.5 (default) 0.5 0.5
Slope processing Yes Yes Yes
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Discussion

In this study, sUAV-SFM and UAV-LiDAR were used to 
obtain point cloud data of the study area, the point cloud 
filtering method was used to extract the ground points, and 
then different methods were used to compare the accuracies 

of the two types of point clouds. Before processing, the 45 
checkpoints obtained through the GNSS survey were used 
for the initial accuracy assessment of the point clouds gener-
ated by UAV-LiDAR and sUAV-SFM. From the assessment 
results, it can be seen that the accuracy of the LiDAR was a 
little better than that of SFM, indicating that the point clouds 

a1

A

B

C

sUAV-SFM UAV-LiDAR

a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

1
2

3

4 4 4 4
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1
2

3

1
2

3

1
2

3

Fig. 7  Comparison of various point clouds before and after CSF fil-
tering: A, B, and C correspond to the three sub-regions of Fig.  6, 
i.e., the flat sub-region, sub-region with bare soil, and excavated sub-
region. a1/a2, b1/b2, and c1/c2 are comparisons of the sUAV-SFM 

point cloud before and after CSF filtering; a3/a4, b3/b4, and c3/c4 are 
comparisons of the UAV-LiDAR point cloud before and after CSF fil-
tering
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of LiDAR, which served as a benchmark, were correct and 
reasonable.

During processing, vegetation cover and water bodies 
partially impacted the classification results of the point 
clouds under different topographic conditions. Previous 
studies have found that vegetation cover and land use/land 
cover changes (LUCC ) affect the accuracy of point clouds 
(Liu et al. 2017; Luo et al. 2019). LiDAR can penetrate the 
canopy of vegetation and acquire ground points covered by 
low grasses and shrubs to obtain the topography underneath. 
However, the laser has limited energy and cannot penetrate 
dense vegetation. Besides, the shadow areas within the sides 
of wooden blocks, the edges of wooden blocks, and the flat 
and textureless evaluation chart area had poor image match 
(Alshawabkeh et al. 2021; Verma and Bourke 2019). Posi-
tion 2 in Fig. 7(a1) contains taller isolated trees and shrubs. 
After filtering, a hole formed at this position in the point 
cloud because sUAV-SFM and UAV-LiDAR only acquired 

the canopies classified as non-ground points during CSF fil-
tering, resulting in data holes.

Position 3 in Fig. 7(a1) is the filtered result of the water 
surface on the point cloud. Both point clouds did not cor-
rectly reconstruct the surface of the waterbody because both 
sUAV-SFM and UAV-LiDAR were unable to acquire surface 
data effectively. The incorrect water surface point clouds 
were generated by sUAV-SFM due to the weak texture char-
acteristics of clean water surfaces, while UAV-LiDAR cre-
ated data holes (the absorption of laser pulses led to a lack 
of point clouds). Therefore, both data acquisition methods 
face limitations when the ground cover consists of dense 
vegetation or water bodies.

Fig. 7(b1)–(b4) shows the filtered results of the sub-
region with bare soil, where there was no major distinc-
tion in the classification between the two types of point 
clouds because there was no vegetation interference in the 
sub-region with bare soil, such that practically all of the 

Fig. 8  The distribution of the 
checkpoints and vectors show-
ing direction and magnitude of 
the discrepancies
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point clouds were classified as ground points. Position 4 in 
Fig. 7(c1) consists of low grasses. Based on the original and 
filtered data of the two point clouds, the UAV-LiDAR point 
cloud had minimal changes at this position before and after 
filtering. After analysis, UAV-LiDAR was able to penetrate 
the low grasses and directly acquire the ground points, such 
that the corresponding UAV-LiDAR accuracy was higher.

Position 4 in Fig. 7(c1) is located at the edge of the exca-
vated steep slope. The CSF filter grid was set to 0.10 m to 
preserve the point cloud of the steep slope (see Table 3) 
before its accuracy was evaluated using M3C2 (see 
Fig. 9(c2)). Although the M3C2 mean value was ideal, the 
standard deviation was significant. The main reason was that 
the small grid spacing caused the CSF particles to errone-
ously classify the vegetation cover at the edge of the steep 
slope as ground points. There was no guarantee that the clas-
sification was entirely correct despite the manual editing of 
the classification.

Position 5 in Fig. 7 is a disorganized stacking of soil and 
rocks formed during excavation. The surface roughness is 

large, and the texture feature is weak, causing sUAV-SFM to 
create matching errors, leading to a significant M3C2 stand-
ard deviation. Fig. 7(c3) and (c4) contain holes in the point 
clouds. Testing and analysis of the CSF algorithm revealed 
that when the grid was set to excessive size, a large number 
of ground points on the steep slopes that formed in the exca-
vated sub-region were incorrectly classified as non-ground 
points. Therefore, holes were generated on the steep slopes, 
causing data loss, indicating that the results of the CSF algo-
rithm were more sensitive to the parameter settings.

Slope affects the quality of the point cloud data 
(Guerra-Hernandez et al. 2018). By analyzing the origi-
nal point cloud data, we found that UAV-LiDAR could 
properly acquire point clouds in the flat sub-region, but 
the point cloud density decreased rapidly in topographic 
environments with greater slopes. In comparison, sUAV-
SFM used oblique photography to acquire images of the 
steep slope and could thus obtain detailed data. Position 4 
in Fig. 7 is a steep slope in the excavated sub-region with 
low grasses. Comparing the two types of point clouds at 

c2b2

a1 b1 c1

a2

Fig. 9  Comparison of the sUAV-SFM and UAV-LiDAR point clouds 
based on the M3C2 method: a1, b1, and c1 are the M3C2 distances 
of the two types of point clouds for the flat sub-region, sub-region 

with bare soil, and excavated sub-region, respectively. a2, b2, and c2 
are the corresponding M3C2 distance histograms, with the mean and 
standard deviation of the respective M3C2 distance stated at the top
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this position shows a significant difference, possibly due to 
the slope, which caused the point cloud density to decrease 
here, yielding the notable contrast between the two-point 
clouds.

Table 2 indicates that the sUAV-SFM point cloud con-
tained RGB color components, which can generate ultra-
high resolution and real orthophotos. These are helpful 
for the interpretation of ground objects. After analyzing 
the acquired results of the two types of point clouds, we 
found that sUAV-SFM could accurately acquire the eleva-
tion data of bare ground. The point cloud density was high, 
and the noise was prevalent. Although the CSF method can 
effectively extract the ground points in areas with vegeta-
tion cover, CSF filtering was observed to be sensitive to 
the parameters for topographic features. Through further 
analysis, SFM photogrammetry based on optical images 
was found to possibly create incorrect results when mod-
eling areas with vegetation cover. The texture of areas with 
vegetation cover is similar, such that features with the same 
name cannot be extracted for matching; in contrast, the 
leaves on trees are susceptible to the effects of winds, caus-
ing mismatching.

A comparative analysis of the profiles and results of the 
calculated earthwork volumes in the point cloud rasterized 
DTMs revealed that both types of point clouds maintained 
a high degree of conformity on the DTM profiles, and the 
difference between the earthwork volumes remained within 
1%, indicating that both types of point clouds had similar 
levels of accuracy.

This analysis and discussion show that sUAV-SFM point 
clouds acquired by consumer UAVs have similar accuracies 
as UAV-LiDAR point clouds. However, the former incurs 
lower equipment costs, and UAVs are more portable and 
easier to operate, such that data acquisition based on sUAV-
SFM has extensive applicability.

Conclusion

The UAV airborne platform was used to concurrently 
acquire two types of point cloud data for the study area. 
First, the CloudCompare software was used for pre-process-
ing of the two datasets. Subsequently, the same CSF algo-
rithm was used to filter the two kinds of point clouds for the 
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ME=-0.06,  RMSE=0.064 ME=-0.01,  RMSE=0.032
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Fig. 10  Comparison of the profiles for the excavated sub-region: (A) 
Distribution of Sections a–h and (B) Sections a–h, where the red and 
solid blue lines represent the sections extracted from the DTMs gen-

erated from the sUAV-SFM and UAV-LiDAR point clouds, respec-
tively, ME is the difference in the mean elevation, and RMSE is the 
standard error of the difference in the mean elevation
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different sub-regions within the study area before extracting 
ground points. Finally, direct and indirect evaluation meth-
ods were used to assess the accuracies of the sUAV-SFM 
and UAV-LiDAR point clouds. Before comparing the two 
point clouds, the 45 checkpoints were used to assess the 
initial accuracies of the two kinds of cloud points, and the 
results suggested the accuracy of the point cloud generated 
through LiDAR was little better than that of SFM. Given 
this, the point cloud obtained from LiDAR was chosen as the 
benchmark in the following comparison analysis. The direct 
evaluation method was based on the M3C2 algorithm, which 

assessed the accuracies of the point clouds under the condi-
tions of distinct topographic features; the indirect evaluation 
method used the rasterized DTMs of the point clouds to 
analyze the generated profiles and calculate the earthwork 
volumes. The M3C2 comparison results revealed that the 
mean M3C2 distances under various topographic conditions 
were almost zero, indicating conformity in the accuracy of 
the two types of point clouds. The results of the DTM profile 
analysis showed that the DTMs generated by the two types 
of point clouds were basically consistent and only had minor 
errors. The results of the calculated earthwork volumes indi-
cated that the surface volumes of the sub-regions with bare 
soil and excavation in the two types of point clouds were 
relatively close, indicating that both types of point clouds 
had similar accuracies for this calculation method. Over-
all, under complex topographic conditions, sUAV-SFM can 
obtain dense point clouds with the same accuracies as UAV-
LiDAR. In addition, we note that data acquisition based 
on consumer-grade UAVs has the advantages of low cost, 
convenient operation, and easy portability. Thus, sUAV-
SFM has broad application prospects in construction sites 
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Fig. 11  Comparison of the profiles for the sub-region with bare soil: 
(A) Distribution of Sections i–p and (B) Sections i–p, where the red 
and solid blue lines represent the sections extracted from the DTMs 

generated from the sUAV-SFM and UAV-LiDAR point clouds, 
respectively, ME is the difference in the mean elevation, and RMSE is 
the standard error of the difference in the mean elevation

Table 4  Results comparison of the calculated earthwork volumes

Type of point cloud Sub-region with 
bare soil

Excavated 
sub-region

UAV-LiDAR  (m3) 3398.3 30,127.7
sUAV-SFM  (m3) 3416.3 30,107.7
Absolute difference  (m3) 18.0 20.0
Percentage of the difference 0.53% 0.07%
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monitoring, earthwork measurement, glacial degradation, 
river restoration assessments and so on.
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