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ABSTRACT​
For successful design of any real-life engineering structures, it is important to quantify the risk of failure. Most of the geo-
technical engineers find it suitable to define risk mathematically in terms of well-known metric called probability of failure. 
The inherent spatial variability of the soil strength parameters also makes the design of soil slopes suitable for stochastic 
interpretations. In the present study, probabilistic slope stability analysis has been performed for both, cohesive soil as well as 
cohesive frictional, i.e., c − � soil. The estimation of the factor of safety of the soil slope has been carried out using ordinary 
method of slices. Probabilistic analysis has been carried out using the single random variable approach with the assumption 
that the cohesion and angle of internal friction of soils follow lognormal distribution. The variation in soil shear strength 
is taken into account with the help of statistical parameter known as coefficient of variation. The effect of the coefficient of 
variation, the spatial correlation length, and local averaging on the probability of failure and the factor of safety has been 
investigated. This phenomenon indicates a gradual variation of probability of failure with respect to the factor of safety at 
higher coefficient of variation values. The presented analyses can be used to determine the factor of safety of a soil slope for 
which the slope should be designed with a predefined probability of failure.

Keywords  Slope Stability Analysis · Ordinary Method of Slices · Probabilistic Analysis · Spatial Correlation Length · 
Local Averaging · Coefficient of Variation · Probability of Failure

Introduction

Cautious investigations of the inherent stability of naturally 
occurring or man-made slopes are crucial to effective and 
successful engineering designs. The occurrences of slope 

failures are numerous and different, in such a manner that 
an effort to model mathematically the mechanism of slope 
failures presents a challenging task for the engineers. What 
is observed, yet, is that numerous forms of instability initi-
ate, or advance, by sliding along critical surfaces located 
inside the soil mass. Thus, it is evident that for many of the 
engineering uses (and also for a number of others), simple 
sliding soil mass models are sufficient. These slope stability 
analysis methods mainly comprise limit equilibrium method 
(LEM) (Bishop 1955; Fellenius 1936; Fredlund and Krahn, 
1977; Janbu 1973; Morgenstern and Price 1965; Sarma 
1973; Spencer 1967), strength reduction technique (SRT) 
based on finite element method (FEM) (Griffiths et al. 2009; 
Griffiths and Fenton 2000, 2004; Griffiths and Lane 1999; 
Griffiths and Yu 2015) and limit analysis method (Drucker 
and Prager 1952; Gao et al. 2014; Wai and Chen 1975; Wu 
2015). Among them, the LEM has gained immense popular-
ity all over the world because of its robustness and simplicity 
of concept.

LEM for stability analysis of soil slopes works on the 
principle of determination of an index, which divides the 
strength of soil in order to bring the soil slope on the verge 
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of failure. This index is popularly known as factor of safety 
Fs. A state of limiting equilibrium in soil is achieved when 
the shear strength of the soil along the slip surface just 
equates to the disturbing forces trying to destabilize the 
slope. The LEM deals with principles of static equilibrium 
only. Most of the real-life slope stability problems are gen-
erally indeterminate in nature. LEM starts with an assump-
tion of pre-fixed shape of the failure surface, i.e., circular, 
logarithmic spiral, parabolic, etc. LEM for the analysis of 
stability of soil slopes basically follows three approaches. 
One approach consists of satisfying the moment equilibrium 
only (Bishop 1955; Fellenius 1936), and another consists 
of satisfying the force equilibrium of individual slices and 
one more approach which satisfies both the overall moment 
equilibrium as well as force equilibrium (Morgenstern and 
Price 1965; Sarma 1973; Spencer 1967). A simple approach 
considering a general slip surface satisfying all the condi-
tions of equilibrium was proposed by Sarma (1973). A gen-
eralized approach for stability analysis which conglomerates 
all the important aspects of earlier discussed methods was 
proposed by Fredlund and Krahn (1977). This method can 
be applied to slip surface of any geometry.

Identification of critical failure surface (CFS) and the 
determination of the associated minimum Fs of the slope 
is an integral part of any slope design based on LEM. A 
grid-based technique can be utilized in which Fs values are 
determined by using various positions of center of the slip 
circle with different radius values and finally choosing the 
circle with minimum Fs as the CFS. This method is limited 
to circular failure surfaces. For non-circular failure surfaces, 
various optimization methods were suggested which works 
toward finding a global minimum value of Fs. Baker and 
Garber (1978) suggested the use of variational formulations 
for optimization. Chen and Shao (1988), Nguyen (1985) 
adopted the simplex method for optimization as it is suitable 
for the case when gradient of global minimum is zero. Celes-
tino and Duncan (1981) made use of alternating variable 
approach. These methods were based on the approach that 
global minimum will be found where the gradient of objec-
tive function is zero. Cheng (2003) suggested that global 
minimum can exist within another domain. With the increas-
ing application of computers in engineering field, various 
heuristic optimization methods gained popularity. Kirkpat-
rick et al. (1983) suggested an optimization algorithm based 
on the heat treatment process termed as simulated anneal-
ing algorithm. Holand (1975) used the concept of genetic 
evolution of living beings and gave the genetic algorithm 
method. Further developments in the field of meta-heuristic 
optimization methods by Kennedy and Eberhart (1995) gave 
birth to particle swarm optimization (PSO) which is based 
on simulation involving simplified social models of flocking 
of birds in search of food source. Geem et al. (2001) and Lee 
and Geem (2005) used the musical method of search for a 

perfect harmony state and developed a meta-heuristic algo-
rithm known as simple harmony search method (SHM) of 
optimization. Cheng et al. (2007) improved the SHM method 
for application to complicated problems and developed the 
modified harmony search method. Dorigo (1992) used natu-
ral metaphors in solving optimization problems and is based 
on the optimization mechanism observed in Ants known as 
Ant-colony algorithm.

The traditional concept of Fs currently used by practicing 
geotechnical engineers is basically based on experience and 
has long been used in case of soil stability analysis. This Fs 
is applied to various problems of similar nature irrespective 
of the fact that every single one is different. It is basically a 
“one size fits all approach.” The deterministic approach of 
slope analysis does not take into account of the uncertainty 
of the input soil parameters which usually vary from one 
location to another. A better and more realistic approach 
would take into account the unpredictability of input param-
eters with respect to space. The unpredictability arises in the 
form of associated mathematical quantity termed as prob-
ability of failure (pf) which is a measure of the uncertainties 
related to our inability to properly quantify the spatial vari-
ation of various soil properties and also various inaccura-
cies involved during estimation of these properties. Prob-
ability of failure (pf) has become a very useful criterion for 
assessing the risk associated with an entity. The conflicting 
explanation of risk is a major cause of confusion and makes 
it difficult to quantify the acceptable risk. This acceptable 
risk means quantifying an acceptable pf for slope analysis. 
Probabilistic slope stability analysis of soil mass has long 
attracted the attention of many scientists. A number of liter-
ary works are found which have contributed to this field’s 
further evolution. Matsuo and Kuroda (1974) concluded that 
soil properties can be treated as random variables . Whitman 
(1984) supported the need for estimation of risk in early 
stages of project. Phoon and Kulhawy (1999) utilized the 
statistical parameters to quantify geotechnical unpredict-
ability. Griffiths and Fenton (2004) derived the relationship 
between pf and Fs for undrained clay slope using the finite 
element method. Griffiths et al. (2009) determined the pf 
in case of two-dimensional slopes and three-dimensional 
slope by making use of random finite element method . 
Griffiths and Yu (2015) observed a linear increment in und-
rained shear strength with increasing deepness. But most of 
the study was limited to classical techniques incorporating 
limit equilibrium approaches in it. The impact of variation 
basically of spatial nature, of soil properties was ignored, 
also ambiguity was found in the location of CFS along with 
ignorance of local averaging.

Machine learning is the new computer-based approach 
to analyze the stability of soil slopes as it utilizes the 
input data in order to predict the future trends. In this 
process, programmable algorithms are used to predict the 
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invisible patterns to make feasible decisions regarding 
design variables. A number of such algorithms such as 
SRLEM and BPNN have added to the realistic evaluation 
of soil slope stability problem. Chen et al. (2020) pre-
sented probabilistic evaluation of rock slope considering 
bi-planar sliding. BPNN is used to develop a surrogate 
model for factor of safety against bi-planar sliding. Zhang 
et al. (2021) presented the current geotechnical practices 
using deep learning algorithms. Extensive geotechnical 
applications of four major algorithms namely feedfor-
ward neural network (FNN), recurrent neural network 
(RNN), convolutional neural network (CNN), generative 
adversarial network (GAN) in the field of geotechnical 
engineering have been presented in recent literatures. 
Aladejare and Wang (2018) used Bayesian approach to 
indicate the correlation between c and φ and performed 
reliability-based slope stability analysis of rocks. Wang 
et al. (2020a, b) performed probabilistic slope stability 
analysis of Ashigong earth dam using a combination of 
MARS and GeoStudio software taking into account the 
uncertainty associated with soil parameters and water 
level fluctuation velocity. Wang et al. (2020a, b) per-
formed stability analysis of Ashigong earth dam using 
XG-boost based reliability method and has been quite 
successful in predicting the failure probability. Further 
applications of machine learning algorithms in the field 
of slope stability analysis are highly warranted.

There have been numerous instances of catastrophes 
resulting from the failure of soil slopes. In most of the 
above cases, the design value of factor of safety was found 
to be greater than 1.5. One of the possible reasons could 
be the inability to take into account the uncertainty of 
input soil strength parameters. Modern mathematical 
tools of statistics and probability provide us with the 
arsenal to take into account the uncertainty of input vari-
ables. This study is a small initiative to use probabilistic 
tools to predict the failure probability and thus supple-
ment the limit equilibrium method (LEM) based stability 
analysis of slopes. The procedure suggested in the paper 
can be utilized to improve and modify design codes for 
future slope stability analysis. In this study, the stability 
analysis of soil slope is carried out with special consid-
eration toward the theoretical explanation of probabilistic 
approach of implementation procedure. This study aims 
at carrying out stability analysis of a cohesive soil slope 
and c – ϕ soil slope using classical techniques as well as 
using modern theories of statistics and probability. Single 
random variable approach is adopted in case of probabil-
istic analysis and the impact of using locally averaged 
soil properties on the is also studied. The pf versus Fs 
curve attains linearity with negative slope as soon as ν 
approaches unity and greater than unity.

Methodology

Background

In this part, the theories, mathematical analysis and asso-
ciated terminologies relevant to the study of probabilistic 
slope stability analysis are discussed. First of all, the clas-
sical approach for slope stability analysis of cohesive soil 
slope devised by Skempton (1948) based on the limit equi-
librium approach is illustrated. Here, undrained cohesion 
has been treated as a random variable. After that a simple 
probabilistic analysis is performed using a single random 
variable perspective. The dependency of pf with respect to 
coefficient of variation ν is also investigated in detail. The 
idea of local averaging is used to generate the random data. 
The effect of local averaging and spatial correlation length Θ 
on the desired output is also studied. In the next part, a c – ϕ 
soil slope is analyzed deterministically using the method of 
slices (Fellenius 1936). Further, probabilistic study of the c 
– ϕ slope is carried out and pf has been determined for vari-
ous cases such as keeping cohesion c constant while angle 
of internal friction ϕ has been treated as random variable and 
vice versa. The effect of ν on the pf is also studied.

Random variable

In numerous analyses including components of arbitrariness, 
geotechnical engineers are regularly keen on some math-
ematical quantification related to the potential results instead 
of the actual results. So, to each entity in the sample space W 
a real number is allotted in a helpful manner in order to make 
estimate the probability of occurrence of the event under 
consideration. Mathematically, this approach deals with 
defining a real-valued function Y ∶ U → R which, when 
certain parameters are satisfied, is called a random variable. 
These are of two types:

1.	 Discrete random variable: The random variable, which 
can take at most a fixed number of distinct values, is 
termed as discrete random variable.

2.	 Continuous random variable: A continuous random vari-
able is the one which takes an endless number of con-
ceivable outcomes. A continuous random variable is not 
characterized at particular values. Instead, it is specified 
over an interval of numerical values.

Choice of distributions

In geotechnical engineering, most of the time, situa-
tions arise in which it is necessary to deal with station-
ary random fields. Therefore, it is necessary to choose 
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a distribution that is truly sensible for the soil property 
which is going to be archetype. The Gaussian normal dis-
tribution, though a tremendously popular option, suffers 
from a huge disadvantage that its range varies from −∞ 
to +∞ . For majority of soil parameters, for example, c 
or elastic modulus (E) , negative values are unacceptable. 
So, for nonnegative soil properties, one such candidate is 
lognormal distribution which perfectly shows the distribu-
tion only on the positive side. In the upcoming sections, 
we are going to use lognormal as principal distribution for 
soil properties being used here.

Lognormal distribution

This distribution is termed as distribution of those proper-
ties in engineering which are strictly nonnegative specific to 
geotechnical engineering for example E , c , etc. Lognormal 
distribution is obtained from normal distribution by carry-
ing out a nonlinear transformation. If H is a normally scat-
tered random variable lying in the range −∞ to +∞ , then 
Y = exp {H} will vary from 0 ≤ y < ∞ . This implies that Y is 
lognormally distributed with mean � and standard deviation 
� . The probability density function of Y is given by

where �ln y and �2
ln y

 are the mean and the variance of the 
normal distribution H , respectively. They are obtained as 
follows

Correlation function

The covariance function explains a little regarding the linear 
dependence between Y(u′) and Y(u*). A more feasible alter-
native to it will be correlation function. It is also positive 
definite in nature. It is given by

where �y
(
u′
)
 is the standard deviation of Y at the position 

u′. A numerical value of ρ = ±1 indicates perfect linear cor-
relation either on positive or negative side.

(1)
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1
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Markov correlation function

It is the simplest function of all the functions applicable in geotechni-
cal engineering. This function is formulated on the principle that the 
future is dependent on the present. Most of the existing body of work in 
engineering adopts this principle, Markov property is well applicable 
in today’s era. The function is expressed in the form as defined below:

The parameters � and � are the separation distance and 
correlation length, respectively. Correlation length is defined 
as the distance within which there exists a significant cor-
relation between two points.

Variance function

Engineering properties generally consist of properties which 
are virtually local averages of some type. So, it is of signifi-
cant interest for the engineers to study how the averages of 
random fields behave. A moving local average is expressed 
as

where YU(u) is the local average of Y(u) over a window of 
width U centered at u . Local averaging generally influences 
the variances and the high-frequency components by reduc-
ing and damping out, respectively. But it preserves the mean 
of the random field. Now let us consider the variance part 
which is defined as

where �(U) is called the variance function, which tells how 
much variance is scaled down when Y(u) is averaged over 
the length U . The variance function achieves a value of unity 
when the length U tends to 0 . The variance function over an 
area U1 × U2 in two dimensions is defined as

Considering quadrant symmetry, the above equation can 
be simplified as follows:

Now the two-dimensional variance function in terms of 
� is given as
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where the symbols have their usual meanings. Eq. 10 can be 
evaluated using Gaussian quadrature.

Slope stability analysis

In this part, the determination of factor of safety Fs for und-
rained cohesive soil slope as well as for c − � soil slope is 
discussed in brief. Stability analysis is carried out for both 
uniform soil as well as spatially varying soil. The expres-
sion of factor of safety for cohesive soil slope and for c − � 
soil slope has been presented following moment equilib-
rium approach and the corresponding expressions have been 
depicted in the following text.

Evaluation of factor of safety (Fs):

Cohesive soil

The Fs is determined using the moment equilibrium approach. Let 
us consider a soil slope as shown in Fig. 1. For the slope shown in 
Fig. 1, Fs is determined using the moment equilibrium approach. 
The factor of safety of the cohesive soil slope is expressed as the 
ratio of resisting moment and the driving moment and is given by

where cu = undrained cohesion La = Length of circular arc 
R = Radius of slip circle W = Weight of failure mass d = 
Lever Arm of the failure mass about center O of the slip 
circle.

(10)
�(U1,U2) =

�2
1
�2
2

4U2
1
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2
2

[
2||U1

||
�1

+ exp

{

−

2||U1
||

�1

}

− 1

]

×

[
2||U2

||
�2

+ exp

{

−

2||U2
||

�2

}

− 1

]

(11)Fs =
cuLaR

Wd

Cohesive frictional (c −�) Soil

One of the earliest methods of analysis generally adopted for 
the evaluation of c − � soil slope was ordinary method of 
slices. For the soil profiles where the effective � is not found 
to be constant over the considered failure surface, the friction 
circle methodology cannot be used. The ordinary method of 
slices is the most appropriate one.

A cohesive frictional soil slope is as shown in Fig. 2. The 
expression of Fs for the slice under consideration is given by

w = weight of slice, α is the angle made by the normal with 
the vertical.

Evaluation of probability of failure (pf)

Cohesive Soil  In this part, undrained cohesion cu has been 
treated as random variable which leads to the following 
expression cuLaR as random variable having lognormal dis-
tribution with statistical properties denoted by mean 

(
�cuLaR

)
 

and standard deviation 
(
�cuLaR

)
 . The pf value for the current 

case has been defined as the probability that the Fs value is 
less than 1. The pf value is defined as

The above expression denotes the expression for determi-
nation of pf value in case of cohesive soil, where Z is the 
standard normal variate. This Z value is used to express a 
random variable with distribution given by N (μ, σ2) to a 
standard form, i.e., having zero mean and unit variance using 
linear transformation.

Cohesive Frictional (c − �) Soil  In the present work, we are 
going to study how c and � are going to affect the Fs if each 
of them is considered separately. First of all, we investigate 
the impact of cohesion upon associated Fs by keeping the � 
value a constant and again the Fs is approximated using the 
following expression.

Similarly, c to be constant, the expression for the Fs 
involved is given by

(12)FS =
cl + w cos � tan�

w sin �

(13)pf = P
[
Fs < 1

]
= P

[

Z <
ln (Wd) − 𝜇ln(cuLaR)

𝜎ln(cuLaR)

]

.

(14)Fs =

∑
cl

∑
w sin � −

∑
w cos � tan�

.

(15)Fs =

∑
w cos � tan�

∑
w sin � −

∑
cl
.

θ

R

Cu 

La 

W 

d

A 

B

O

β

Fig. 1   Cohesive soil slope
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Also, the Fs is determined considering both c and � at a 
time using following expression and hence Fs is obtained.

where FR and FD represent the resisting/stabilizing and driv-
ing/destabilizing forces, respectively. Further, the value of pf 
is determined considering c as the random variable for the 
first case, and then � is treated as a random variable in the 
second case and further, both c and � are treated as random 
variables and corresponding associated pf is determined. The 
calculated pf versus Fs graph is plotted for each case.

When only cohesion (c) is only considered as variable
In this case, the c is assigned lognormal distribution. Fur-

ther, the pf expression is derived as follows

Using Eq. 17, the pf value is determined.
When only angle of internal friction (�) is only consid-

ered as variable:
In this case, � is assigned lognormal distribution. Further, 

the pf expression is derived as follows

When both cohesion (c) and angle of internal friction (�) 
are considered as variables:

Javankhoshdel and Bathurst (2016) gave analytical solu-
tion of pf for cohesive soil by considering undrained strength 
Su and unit weight � as random variables. The analytical 
solution for c − � soil assuming both cohesion c and angle 
of internal friction � as lognormally distributed random 
variables doesn’t seem to be mathematically feasible. When 

(16)Fs =
FR

FD

=

∑
cl +

∑
w cos � tan�

∑
w sin �

(17)

pf = P
�
Fs < 1

�
= P

�
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�∑
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∑
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�
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∑
cl)

𝜎ln(
∑
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∑
w cos 𝛼 tan𝜙)
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.

logarithm is applied on the entire numerator term, i.e., �
FR =

∑
cl +

∑
w cos � tan�

�
 in Eq. 16, individual varia-

tion of c and � cannot be considered. A logical and simple 
alternative would be to apply the variation on the entire FR 
in Eq. 16 when the material parameters are assumed to vary 
lognormally. It should be kept in mind that the numerator 
term FR actually represents the shear strength of the soil 
along the considered slip surface. Therefore, if the variation 
is applied on the entire numerator term FR, it would include 
the effect of variation of the material parameters c and � in a 
crude but simple manner. When Javankhoshdel and Bathurst 
(2016) carried out probabilistic slope stability analysis for 
a purely cohesive soil slope, the variation was applied on 
the undrained shear strength Su which only depends on the 
cohesion cu of the soil. When c and � are both considered as 
lognormally distributed random variables, it seems logical to 
apply the variation on the shear strength along the slip sur-
face. This simplification would allow us to obtain the design 
charts between Fs and pf when the randomness of both c and 
� is taken into consideration. Therefore, when both c and 
� are assigned lognormal distribution, the expression of pf 
expression becomes

Spatial variation of soil

The spatial variation of soil properties is taken into account 
using the concept of local averaging. Griffiths and Fenton 
(2004) advocated the use of local averaging subdivision 
method for developing random field involving single random 

(19)
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Fig. 2   Cohesive frictional c − � 
soil slope Material Properties 
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variable. The method can be useful in creating random dis-
tribution of any interested parameter (such as c and � ) over 
the domain of interest. Griffiths and Fenton (2004) have 
shown that the effect of local averaging on the lognormally 
distributed random variable can be mapped on a square ele-
ment. Each element denotes a unique value of shear strength 
parameter (s) . Now, the variance reduction factor for square 
element is determined by performing the numerical integra-
tion of variance reduction function. Now the expression of 
�(A) as a result of local averaging over an area element hav-
ing area A is given by

Therefore, the locally averaged value of the variable of 
interest, �ln(s)a in this case can be obtained as

and assuming for two-dimensional isotropic case with 
equal � in all directions, �

(
�1, �2

)
 is defined as

where �1 is the dissimilitude between the horizontal coordi-
nates of two points �2 and is the disparity among the vertical 
coordinates of two points.

Considering a square-shaped element (refer to Fig. 3) 
having side length as a linear function of correlation length, 
let us denote a size parameter � such that area is depicted 
by A = ��ln s × ��ln s . For square element, �(A) as per Van-
marcke (1983) is given by

(20)�(A) =

(
�ln(s)a

�ln(s)

)2

.

(21)�ln(s)a = �ln(s)

√
�(A)

(22)�
(
�1, �2

)
= exp

{

−

2

�ln(s)

√(
�2
1
+ �2

2

)
}

where the symbols have their usual meanings. Using the 
above expression, we can determine values of variance 
reduction function for different values of size parameter 
and is shown in Fig. 4. Eq. 23 can be integrated numerically 
using Gaussian quadrature method as suggested by Griffiths 
and Fenton (2008). The variance reduction function �(A) 
can be calculated by discretizing the domain into square-
shaped elements of size A . For, e.g., if the slope geometry 
is discretized as shown in Fig. 4, it can be seen that there 
are 20 square elements corresponding to the dimension H 
where H represents the height of slope which results in side 
of each square element being equal to H

20
 . While determining 

the variance reduction function for given size parameter � , 
we have considered square element with sides equal to ��ln s 
where �ln s represents the spatial correlation length. Com-
paring these two parameters, the spatial correlation length 
is given by �ln s =

0.05H

�
 and expressing in non-dimensional 

form, i.e., Θ =

�ln s

H
=

0.05

�
 . Expressing spatial correlation 

length in dimensionless form adds to the simplicity of the 
problem and makes it possible to use the subsequent results 
to any size of the problem having same slope.

Using Eq.  23, the value of �(A) is obtained. From 
Eq. 20, it is now possible to determine the locally aver-
aged value of standard deviation �ln(s)a . This value is 
placed in the respective expressions for probability of 
failure pf. This results in different values of probability 
of failure. Spatial correlation length Θ is obtained by 
comparing the no. of elements and the dimensions of 
the soil slope. A plot of pf against Θ for diverse values 
of � is obtained.

(23)
�(A) =

4

(��ln(s))
4

��ln(s)

∫
0

��ln(s)

∫
0

(
��ln(s) − x1

)(
��ln(s) − x2

)

× exp

{

−

2

�ln(s)

√(
x
2
1
+ x

2
2

)
}

dx1dx2

Fig. 3   Discretization of slope geometry into square-shaped elements of size A 
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Results and discussion

This section consists of two parts. In the first part, single ran-
dom variable approach is used which corresponds to spatial 
correlation length Θ = ∞ , i.e., uniform soil properties, while 
in the other part spatial variation of soil properties is consid-
ered through local averaging, i.e., smaller spatial correlation 
lengths Θ are considered. The variation of pf with respect to 
FS is studied for different values of coefficient of variation 
� . The variability of the material parameter throughout the 
soil domain is represented by considering various values of 
� . The obtained plots are useful to arrive at the design factor 
of safety FS for any pre-fixed value of probability of failure 
(pf) of the soil slope.

Variation of pfvs. F
S
 for uniform Soil (2 = ∞)

Cohesive Soil

For an undrained cohesive soil slope, Griffiths and Fenton 
(2004) have shown that the factor of safety FS against failure 
increases linearly with increase in the value of the undrained 
cohesion cu . However, such deterministic estimation of FS 
fails miserably to incorporate the effect of variability of cu 
inside the slope. In case of soil domains where the properties 
show large variation, such incapability of considering the 
effect of variation of soil properties may lead to disastrous 
consequences. In such situations, it would be always desir-
able to take into consideration of the effect of soil variability 
in the slope analysis. In the present work, a cohesive soil 
slope of height H = 5 m , slope angle β=45°, saturated unit 
weight γsat = 18.0 kN/m3 (refer to Fig. 1) has been analyzed 
by considering undrained cohesion cu to be lognormally dis-
tributed over the soil domain.

Fig. 5 shows the plot of probability of failure of pf versus 
FS for diverse values of coefficient of variation � = �cu

 rang-
ing between 0.0 and 8.0. Eq. 13 has been used to calculate pf 
for different values of FS obtained by considering resisting 

moment cuLaR as the mean input value. The pf vs. FS plots 
for � values are helpful in depicting the effect of variation 
of undrained cohesion cu over the slope domain. The behav-
ior observed at � = 0.00 is interesting as �ln cuLaR → 0 when 
� → 0 which causes pf to take only two extreme values either 
0 or 1 . Further, it is observed that with increasing Fs values 
after 1 , the value of pf increases as � increases. If a certain 
pf is fixed as design requirement, the curves clearly depict 
that a higher Fs value must be achieved for a soil domain 
characterized by higher � signifying larger variation in its 
properties.

Cohesive–frictional (c −�) soil

Effect of variation of cohesion (c)  Further, the study is car-
ried forward by keeping � constant and providing statisti-
cal properties to c using lognormal distribution specified 
mathematically by associated mean and standard deviation 
values. The value of � is kept equal to 35◦ . Fs is determined 
by evaluating Eq. 14 and corresponding pf is found out by 
making use of Eq. 17. The results shown in Fig. 6 is similar 
to earlier case with curves turning out to be steeper dem-
onstrating how the variation of c influences the pf versus Fs 
curves for c − � soil slopes.

Effect of variation of angle of internal friction (�)

The variation in ϕ has been introduced by means of an 
allotment of statistical properties to it assuming it as a ran-
dom variable. The angle of internal friction ϕ is assumed 
to follow lognormal distribution characterized by the mean 
and standard deviation, while c is kept fixed at a value of 
10 kN∕m2 . The obtained results are shown in Fig. 7. In this 
case, Fs has been determined using Eq. 15 and the associated 
probability of failure pf of the c – ϕ soil slope has been esti-
mated by the use of Eq. 18. The curves depict how the vari-
ation of angle of internal friction ϕ affects the pf values when 
the variation of soil properties has been simulated by using 

Fig. 4   Variance reduction 
function as a function of size 
parameter
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different � = �� values. Fig. 7 indicates that as ν increases, 
failure occurs at an inexorably more extensive range of Fs. 
This obtained result is further illustrated by the attainment of 
flat-shaped curves when ν increases gradually. For example, 
corresponding to ν value of 0.5, a Fs value of 1.3 yields a pf 
value of 0.38. In other words, if the slope is designed for a pf 
of 0.38, a minimum value of Fs = 1.3 is required.

Variability of both c and ϕ  The variability of both c and ϕ 
is simulated by applying the variation on the shear strength 
FR appearing in Eq. 16 as shown in Fig. 8. In this figure, the 

symbol used to represent coefficient of variation of soil is 
�c� ≃ �FR

 . The factor of safety Fs of the slope is determined 
using Eq. 16 and corresponding pf is evaluated from Eq. 19. 
If two previous cases are considered, where both c and ϕ 
were varied individually (refer to Figs. 6 and 7), it can be 
seen that the nature of variation of pf vs. Fs follows simi-
lar trend. Although, the curves are comparatively less steep 
compared to the case when only c was treated as the random 
variable (refer to Fig. 6) as evident from the curves corre-
sponding to coefficient of variation � = 0.5 in Figs. 6 and 8.

Fig. 5   pf vs Fs for undrained 
clay slope where cu is a random 
variable
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Fig. 6   pf vs Fs in case of varia-
tion of cohesion c
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Spatially varying soil (2 < ∞)

Cohesive soil

In this section, the effect of correlation length on the probabil-
ity of failure pf of the soil slope is investigated for undrained 
cohesive soil slope characterized by material parameter cu . 
However, in order to express the results in non-dimensional 
form, a modified correlation length Θ = �ln c

H
 is defined. The 

advantage of non-dimensional form is that the results become 
independent of the units being used during calculation. The 
variation of pf  with Θ for different values of � is shown in 
Fig. 9. The Θ is expressed in logarithmic form on abscissa and 
ordinate represents pf. With reference to Fig. 9, the curve cor-
responding to � = 0.42 is almost a straight line, as not much 

change is observed in the value of pf with changing values 
of Θ . Apart from the straight line corresponding to � = 0.42 , 
two types of curves are observed in Fig. 9, one is below the 
curve corresponding to � = 0.42 and the other above it. For 
the first set, that is below 0.42 , positive slope of the curve 
is observed up to Θ > 1 . With an increase in the value of Θ , 
pf value increases. On the other hand, the opposite nature is 
observed for the case when 𝜈 > 0.42 , i.e., negative slope is 
observed for most of curves. It is also evident that pf  value 
decreases with an increase in Θ . Similar behavior of curve is 
observed when the values of Θ > 1 as the curves follow almost 
straight-line paths. The graph also depicts there is increase in 
pf  values with increase in � for different Θ values.

The variation of pf with Fs in case of using locally averaged 
statistics is illustrated in Fig. 10. This curve is plotted for constant 

Fig. 7   pf vs Fs in case of varia-
tion of friction angle ϕ 
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Fig. 8   pf vs Fs in case of varia-
tion of both cohesion c and fric-
tion angle �
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value of � = 0.50 for different values of Θ ranging between 0 and 
∞ . Most of the curves are similar except the one corresponding 
to Θ = 0 . In this case, i.e., for Θ = 0 , size parameter �→ ∞ , 
which results in �(A) → 0 . In this case,�ln(cuLaR)A → 0 , which 
makes the value of Z either −∞ or +∞ and just provides scope 
for two values of pf  either 0 or 1 . For other values of Θ > 0 , 
most of the curves are coinciding with each other and not much 
difference is observed, i.e., the curves corresponding to Θ = 10 
and that due to Θ = ∞ are quite similar and almost no difference 
is observed in specific values.

Cohesive–frictional soil

Variation of c  The effect of variation of Θ on the pf is exam-
ined in the case of c assigned lognormal distribution having 

a mean value of 7.5 kN∕m2 which corresponds to Fs value 
of 1.36 . The value of � is kept fixed at 35◦ . With an increase 
in Θ , the effect on pf is not much pronounced due to the flat-
tening of curves. As evident from the curves in Fig. 11, the 
pf values increase with an increase in Θ.

The variation of pf with Fs in case of using locally averaged 
statistics is illustrated in Fig. 12. This curve is plotted for 
constant value of � = 0.50 for different values of Θ ranging 
between 0 and ∞ . Most of the curves are similar except the 
one corresponding to Θ = 0 . In this case, i.e., for Θ = 0 , 
size parameter �→ ∞ , which results in �(A) → 0 . In this 
case,�ln(cuLaR)A → 0 , which makes the value of Z either −∞ 
or +∞ and just provides scope for two values of pf either 0 

Fig. 9   pf vsΘ for different 
values of � in case of locally 
averaged statistics
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values of Θ in case of local 
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or 1 . For nonzero values of spatial correlation length Θ , with 
increase in Θ the curves start to coincide with each other.

Variation of ϕ  The effect of variation of Θ on the pf is exam-
ined in the case of ϕ assigned lognormal distribution hav-
ing a mean value of 34.9◦ which corresponds to Fs value of 
1.13 . The value of c is kept constant at 10 kN∕m2 . With an 
increase in Θ , the effect on pf is not much pronounced due 
to the flattening of curves. As evident from the curves in 
Fig. 13, the pf values increase with an increase in Θ.

The variation of pf with Fs in case of using locally aver-
aged statistics is illustrated in Fig. 14. This curve is plotted 
for constant value of � = 0.50 for different values of Θ rang-
ing between 0 and ∞ . Most of the curves are similar except 
the one corresponding to Θ = 0 . In this case, i.e., for Θ = 0 , 
size parameter �→ ∞ , which results in �(A) → 0 . In this 
case,�ln(cuLaR)A → 0 , which makes the value of Z either –∞ 

or +∞ and just provides scope for two values of pf either 0 
or 1. For nonzero values of spatial correlation length Θ, with 
increase in Θ the curves start to coincide with each other.

Conclusions

Stability analysis of 1:1 cohesive soil slope and 2:1 c – ϕ soil 
slope is carried out using probabilistic approach. The LEM is 
used in both cases. Skempton (1948) approach has been followed 
for the case of cohesive soil while Fellenius (1936) approach has 
been followed in case of c – ϕ soil. The Fs was determined fol-
lowing the above-mentioned respective cases. Expressions for 
the pf considering lognormal distribution of soil properties are 
also derived and pf value in each case is obtained. A plot of pf 
vs Fs is generated. Local averaging is performed over a square-
shaped element and variance function is calculated using Markov 
correlation function for different values of scale of fluctuations/

Fig. 11   pf vsΘ considering 
local averaging
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Fig. 12   pf vs Fs for different 
values of Θ in case of local 
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correlation length. Now the statistical soil parameters are modi-
fied after local averaging and using these modified values, pf 
value is again calculated. A plot of pf vs Θ and pf vs Fs is gener-
ated. From these plots, following observations are made.

In case of earlier approaches, the idea of declaring a par-
ticular slope safe was limited to the attainment of a particular 
value of Fs preferably above 1.0, which is a quite ambiguous 
approach as we have seen that even if a higher magnitude 
of Fs is achieved, there is always an existence of finite mag-
nitude of pf. The variation of soil shear strength property is 
taken into cognizance by adopting the concept of � which is 
helpful in depicting soil strength as lognormal distribution 
specified by associated parameters � and �.

It is observed that with an increment in the coefficient of 
variation ν, respective pf increases for same value of Fs for 

both cohesive and c – ϕ soil slopes. Similarly, for smaller 
pf, Fs can be limited if value of ν is small, i.e., while design-
ing for a given value of pf, Fs should be provided as per the 
variation of soil properties governed by ν. The impact of Θ 
upon the pf is discerned up to unit value of spatial correla-
tion length after which their impact becomes negligible, i.e., 
not much change is observed in pf with increasing correla-
tion lengths. The study highlights the need for adopting a pf 
based design approach of slopes. Such approach will drasti-
cally minimize the occurrences of frequent slope failures.

The limitations of the present study include a) the mathemati-
cal formulation for probabilistic analysis of soil slope has been 
able to well represent the separate effects of cohesion and fric-
tion, but the mathematical limitation to separate the cohesion 
and friction bound by logarithmic interpretation has hampered 

Fig. 13   pf vs Θ considering 
local averaging
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the initiative. However, when the probabilistic analysis of c – ϕ 
soil has been carried out, the material parameters have been con-
sidered to be uncorrelated. There has been inherent inability to 
develop a relationship between cohesion and angle of internal 
friction so as to define a factor of safety in terms of single soil 
strength parameter which represents the effect of both cohesion 
and angle of internal friction. Nevertheless, the future scopes of 
this study may include a) in this study, ordinary method of slice 
has been used to estimate factor of safety of the slope. More rig-
orous slope stability analysis methods such as Bishop’s method, 
Janbu’s method, Morgenstern–Price method, may be used to esti-
mate factor of safety of a slope and its subsequent probabilistic 
analysis; b) the effect of pore water pressure and earthquake loads 
can be incorporated and probabilistic study may be performed; c) 
a formulation may be suggested where the correlation between 
strength parameters (i.e., c and ϕ) are considered; d) the present 
study is based on the consideration of a specific geometric con-
figuration of the slope. If the slope angle changes or provisions of 
berms are considered, the design charts will change. Therefore, it 
may be interesting to develop design charts involving probability 
of failure and the factor of safety of slope for another geometric 
configuration; and e) application of different machine learning 
algorithms such as artificial neural network (Asteris et al. 2021; 
Jalal et al. 2021; Kardani et al. 2021b; Onyelowe et al. 2021), 
adaptive neuro-fuzzy inference system (Jalal et al. 2021; Kaloop 
et al. 2021), gene-expression programming (Jalal et al. 2021) and 
extreme learning machine (Kardani et al. 2021a) can be used to 
perform reliability analyses of soil slopes considering uncertain-
ties in soil characteristics.

APPENDIX

The probability of failure pf against slope failure has been defined 
as the probability that the Fs value is less than 1. The derivation 
of the expression of pf for different cases is shown below:

Cohesive Soil

For cohesive soil slope, the factor of safety Fs against failure 
is earlier mentioned in Eq. 11 and is given by

From Eq. A1, pf is derived as follows:

Taking logarithm on both sides, we get

(A1)Fs =
cuLaR

Wd
.

pf = P
[
Fs < 1

]

= P
[
cuLaR

Wd
< 1

]
.

Subtracting �ln(cuLaR)
 and dividing by �ln(cuLaR) on both 

sides, we get

Cohesive Frictional Soil

In case of cohesive frictional, i.e., c – ϕ soil, different cases 
are considered in which soil properties such as cohesion and 
angle of internal friction are treated as lognormally distrib-
uted random variables. The respective expressions for factor 
of safety Fs against failure and the associated probability of 
failure are as described below.

For cohesion

In this case, the cohesion parameter is assigned lognormal 
distribution. The factor of safety Fs against failure is earlier 
mentioned in Eq. 14 and is given by

Further, the probability of failure pf expression from A3 
is derived as follows

Subtracting �ln(
∑

cl) and dividing by �ln(∑ cl) , we get

For angle of internal friction

In this case, the angle of internal friction is assigned log-
normal distribution. The factor of safety Fs against failure is 
earlier mentioned in Eq. 15 and is given by

= P
[
ln
(
cuLaR

)
− ln (Wd) < 0

]

= P
[
ln
(
cuLaR

)
< ln (Wd)

]
.

(A2)
= P

[
ln(cuLaR)−𝜇ln(cuLaR)

𝜎ln(cuLaR)
<

ln (Wd)−𝜇ln(cuLaR)

𝜎ln(cuLaR)

]

= P

[

Z <
ln (Wd)−𝜇ln(cuLaR)

𝜎ln(cuLaR)

]

.

(A3)Fs =

∑
cl

∑
w sin � −

∑
w cos � tan�

.

pf = P
�
Fs < 1

�
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� ∑
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∑
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Further, the probability of failure pf expression from A5 
is derived as follows

Subtrac t ing  �ln((
∑

w cos � tan�)) and  d iv id ing  by 
�ln(

∑
w cos � tan�) , we get

For both cohesion and angle of internal friction

In this case, both cohesion and angle of internal friction 
are assigned lognormal distribution. The factor of safety Fs 
against failure pf is earlier mentioned in Eq. 16 and is given 
by

Further, the probability of failure pf expression from A7 
is derived as follows

Subtracting �ln(
∑

cl+
∑

w cos � tan�) and dividing by 
�ln(

∑
cl+

∑
w cos � tan�) , we get

(A5)Fs =

∑
w cos � tan�

∑
w sin � −

∑
cl
.

pf = P
�
Fs < 1

�

= P

� ∑
w cos 𝛼 tan𝜙

∑
w sin 𝛼 −

∑
cl

< 1

�

= P
�
ln(

�
w cos 𝛼 tan𝜙) − ln

��
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�
cl
�
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�
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�
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��

.
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