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Abstract
Climate change, which is one of the main determinants of agricultural production, has started affecting the pattern of crop 
growth, productivity, and quality of produce from the last few couple of decades in various agro-climatic zones globally. Any 
change in climatic factors such as temperature, evapotranspiration (ET), and rainfall is bound to have a significant impact 
on agricultural production. Thus, climate monitoring, trend analysis, and model-based prediction are highly significant to 
mitigate the climate change impacts on crop growth patterns, production, and quality traits. A study was thus undertaken 
at Punjab Agricultural University, Ludhiana, India, to (1) estimate reference evapotranspiration (ETo) using FAO-ETo cal-
culator; (2) study and detect trend in long-term (1970–2019) recorded temperature (Tmin and Tmax), rainfall and ETo using 
Mann–Kendall’s test, Sen’s slope test, standard normal homogeneity test (SNHT), and Pettitt’s test in XLSTAT software; (3) 
study correlation of ETo with Tmin, Tmax, and rainfall; and (4) develop regression models for estimating ETo on seasonal and 
annual basis. All the tests indicated a significant trend in Tmin (increasing) and ETo (decreasing) during all seasons (spring, 
summer, autumn, and winter), as well as on annual basis at 5% level of significance, whereas no trend was recorded in Tmax 
and rainfall data. The SNHT and Pettitt’s test confirmed the existence of a change-point in both ETo and Tmin data for all 
seasons as well as on annual basis. Both Mann–Kendall’s and homogeneity tests indicated no trend or change point in Tmax 
(except a change-point during spring) and rainfall data. The  positive  correlation of ETo with Tmax, wind speed (vw), and 
sunshine hours (SSH)  formed an increasing  trend in ETo with increase in these variables and vice-versa. The negative cor-
relation of ETo with relative humidity (RHmin and RHmax), rainfall, and Tmin indicated a decreasing trend in ETo. The study 
offers a basis to predict the futuristic climate scenarios in the region for planning crops and manage irrigation to mitigate 
the climate change impacts on agricultural production. The statistical comparison indicated that the developed models were 
sufficiently accurate and would be useful in simplified estimation of ETo on seasonal and annual basis for the study region.
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Introduction

Climate change, resulting from natural processes and anthro-
pogenic forces, is negatively affecting the water resources 
(hydrology), crop water requirements, and therefore the 
agricultural production globally (Zhang et al. 2009; IPCC 
2014). The extreme events such as floods and droughts are 
the example of negative impacts of climate change (IPCC 
2014; Surendran et al. 2014; Akinsanola and Zhou 2019; 
Gbode et al. 2019). The continuous change in climate sce-
narios is resulting in increased temperature, particularly the 
minimum temperature (Singh 2016). The increase in average 
global temperature may significantly increase the evapora-
tion and land-surface drying (IPCC 2014), subsequently 
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increasing the probability of drought occurrence (Dai et al. 
2004). FAO (2001) has reported about 15–35% reduction 
of crop yields in Africa and West Asia, with increase in 
mean temperature from 2.0 to 4.0 °C, whereas about 25–35% 
reduction in the Middle East. Thus, a continuous monitoring 
and trend analysis of climatic parameters such as tempera-
ture and evapotranspiration (ET) with change point detection 
becomes significant (Vincent et al. 2015) for better man-
agement of water resources. Trend analysis of hydrological 
and climatic variables is frequently carried out to quantify 
the effect of climate change on future agricultural produc-
tion (Jain et al. 2013; Suryavanshi et al. 2014; Kishore et al. 
2016; Malik et al. 2020; Saadi et al. 2019).

For carrying out trend analysis of time-series data and 
change point detection, non-parametric statistical approaches 
can be used, to investigate whether there exists a trend in a 
long-term dataset or it follows any distribution at a fixed sig-
nificance level. The change detection test of time-series data 
is done for reduction in uncertainty in climate information 
(Jaiswal and Lohani 2015). The non-parametric tests such 
as Mann–Kendall trend test (Mann 1945; Kendall 1975), 
Sen’s slope test (Sen 1968), SNHT (Alexandersson 1986; 
Gonzalez-Rouco et al. 2001; Stepanek et al. 2009), Pettitt’s 
test (Pettitt 1979; Mauget 2003), and Buishand’s range test 
(Buishand 1982) are widely used for detection of trend and 
change-point in the time-series parameters such as temper-
ature, humidity, rainfall, sunshine hours, wind speed, and 
ET (Salarijazi et al. 2012; Emmanuel et al. 2019; Ajayi and 
Ilori 2020). The recent studies involving trend analysis and 
change-point detection in long-term time series data using 
Mann Kendall’s test include Malik et al. (2019), Bannayan 
et al. (2020), Elzopy et al. (2020), Ilori and Ajayi (2020), and 
Sharma et al. (2020) for temperature and rainfall, Sharma 
et al. (2020) for relative humidity and solar radiation, and 
Mohsin and Lone (2021), Ndiaye et al. (2020), and Sharma 
et al. (2020) for reference evapotranspiration (ETo).

Any significant change in evapotranspiration (ETo 
or ETc) in relation to different meteorological param-
eters, mainly the temperature (Tmax and Tmin) and rain-
fall (Sharafi and Mir Karim 2020), is bound to have a 
significant impact on agricultural water management, 
crop growth, and the productivity. ET from agricultural 
fields (Penman 1948), which represents the water loss 
through evaporation from soil surface and transpiration 
from plant leaves (Chattopadhyay and Hulme 1997), sig-
nificantly affects the crop productivity. On the basis of 
previous studies, it may be concluded that ET increases 
with increase in global temperature. However, numer-
ous studies have reported decreasing trend of ET in 
some of the regions. In this context, Chattopadhyay 
and Hulme (1997) have reported decreased ETo with 
increased temperature in India, mainly due to increase in 
relative humidity (RH) and reduction in solar radiation. 

Moreover, Bandyopadhyay et al. (2009) have admitted a 
declining trend of ETo throughout India. ET is affected 
by several climatic variables, including temperature and 
rainfall distribution. Increasing temperature and decreas-
ing rainfall may significantly enhance the ET (ETo and 
actual or crop ET, i.e., ETc) and reduce the yields of 
various crops (Lobell et al. 2008). Thus, precise estima-
tion of ETo, followed by computation ETc, can play a 
great role in management of available water resources 
(Zhang, et al. 2015), crop planning (Shuttleworth and 
Wallace 2009), and therefore the agricultural water, par-
ticularly in the water scarce regions globally. Several 
methods (empirical, water balance-based, and physi-
cal approaches) are available for estimating ETo, which 
require temperature (max. and min.), relative humidity 
(max. and min.), sunshine hours, and wind velocity as 
inputs (Peterson et al. 1995; Irmak et al. 2012; Sun et al. 
2016). Any significant change (decrease or increase) in 
these climatic parameters is likely to have a significant 
change (decrease or increase) in ETo. FAO-ETo calculator 
is one of the tools for accurate estimation of ETo, using 
the above listed climatic parameters as input.

Previously, Hundal and Kaur (2002a) have declared a 
steady increase of about of 0.07 °C per year in the mini-
mum air temperature in the present studied region over 
of period of 30 years (between 1970 and 2002). Hundal 
et al. (1997) reported an increasing rainfall trend over 
normal for both annual and kharif season for the past 
30 years at Ludhiana. Further, Gill et al. (2010) reported 
rainfall below normal for 24 years for Ludhiana being 
highest (1334 mm) during 1988 and lowest (379.6 mm) 
during 1974. Furthermore, Hundal and Kaur (2002b) 
have recorded about 150 mm increment in rainfall over a 
period of 30 years for the same region. Furthermore, the 
average decadal minimum and maximum temperatures are 
expected to increase by 29.1 and 12.8%, respectively, by 
the end of the twenty-first century in the region (Singh 
2016), with a significant reduction (13.2%) in average 
decadal rainfall (Singh 2016).

At present, more than 85% area in the study region is 
under agriculture with net irrigated area of about 98% 
and having a cropping intensity of more than 190%. Out 
of the total area under irrigation, about 72.50% area 
is irrigated with groundwater (> 14 lakh tube wells in 
operation), whereas only 27.50% area is irrigated with 
surface water supplied through canals (Singh 2019). 
Due to the more reliance on groundwater, followed by 
its over-exploitation, the depth to water table in the 
region falls in the range of 20–40 mbgl (Singh 2019). 
Thus, the injudicious surface irrigation water policies 
and excessive ground water pumping are the key rea-
sons for acute depletion of the groundwater resources in 
the region. Furthermore, the rice–wheat crop rotation in 
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relation to uncontrolled water flooding has encouraged 
the water table depletion (about 70  cm/year) during 
few couple of decades (Gulati et al. 2017). Besides, the 
average annual rainfall in the region is decreasing and 
erratic in nature, which fails to contribute significantly 
to the crop water requirement. Thus, the water manage-
ment particularly for major field crops of the region is 
highly needed in relation to irrigation scheduling and 
saving of water to be applied. This can be achieved by 
various techniques, one of which is the study of crop 
evapotranspiration, which is taken equivalent to crop 
water requirement. The trend analysis of ETo may help 
in better understanding of the crop water requirements 
in relation to climate change impacts (Dinpashoh and 
Babamiri 2020).

Keeping the this information in observance, the present 
study was undertaken to (1) estimate ETo using FAO-ETo cal-
culator; (2) study and detect trend in long-term (1970–2019) 
recorded temperature (minimum and maximum), rainfall and 
estimated ETo using Mann–Kendall’s trend test, Sen’s slope 
test, standard normal homogeneity test (SNHT), and Pettitt’s 
test; (3) study correlation of ETo with Tmin, Tmax, and rainfall 
using correlation test in XLSTAT software; and (4) develop 
regression models for easy prediction of ETo on seasonal as 
well as annual basis for the present study region.

Materials and methods

Description of study area

The present investigation was carried out in the Department 
of Soil and Water Engineering, Punjab Agricultural Univer-
sity (PAU), Ludhiana. The study site is located between 30° 
54′ N (latitude) and 75° 48′ E (longitude) at an elevation of 
247.0 m above the mean sea level. Figure 1 demonstrates 
the study area map. The study region is characterized as 
semi-arid with sub-tropical climatic conditions, resulting in 
very hot summer (April to June) and cold winters (December 
to January). The mean temperatures (max. and min.) indi-
cate variations throughout the year. The temperature during 
summer exceeds 38 °C, even touches 47 °C. During winter 
(December and January), frost is experienced, and the mini-
mum temperature drops below 4.0 °C. North-Eastern winds 
dominate in the region during this period. The mean annual 
rainfall of the study region is 680 mm, and about 75–80% 
of it is received in the months of June to September. In win-
ter, only a few showers of rains (cyclonic) are experienced 
through western disturbances. There are mainly four differ-
ent seasons in the study region, viz., spring, March–May 
(pleasant); summer, June–August (warm); autumn, Septem-
ber–October (mild cold); and winter, November–February 
(extreme cold).

Fig. 1   Study area map
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Data collection

The daily climatic data for 50  years (1970–2019) was 
obtained from the meteorological observatory of Punjab 
Agricultural University (PAU), Ludhiana. The climatic data 
included temperature (minimum and maximum), relative 
humidity (minimum and maximum), wind speed, sunshine 
hours, and rainfall.

Methodology for trend analysis

Trend is a significant change (either positive or negative) in 
a random variable with respect to time, which can be meas-
ured using statistical tests (parametric or non-parametric). 
FAO-ETo calculator was used for estimation of daily ref-
erence evapotranspiration (ETo). Trend analysis (trend and 
change-point detection) was carried out for estimated daily 
ETo, temperature (minimum and maximum), and rainfall 
using non-parametric tests, viz., Mann–Kendall’s trend test 
(Kendall 1975), Sen’s slope test (Sen 1968), SNHT test 
(Alexandersson 1986), and Pettitt’s test (Pettitt 1979). The 
estimated ETo and recorded data was transformed to monthly 
basis. The resulting data then divided into four seasons, viz., 
spring (March–May), summer (June–August), autumn (Sep-
tember–November), and winter (December–February). The 
analysis was carried out on seasonal as well as annual basis 
using XLSTAT software. The estimated daily ETo was also 
converted to monthly and then seasonal basis. Correlation 
test was also performed for testing the relationship between 
estimated ETo, temperature (Tmax and Tmin), and rainfall.

Mann–Kendall test

The Mann–Kendall (Mann 1945; Kendall 1948) test is one 
of the most commonly used non-parametric tests for detec-
tion of trends in long-term hydro-meteorological time-series 
data of climate (Bandyopadhyay et al. 2009; Liang et al. 
2010; Tabari et al. 2011; Azizzadeh and Javan 2015; Rahm-
ani et al. 2015; Diop et al. 2018; Bodian et al. 2020), as it 
does not necessitate the data to follow any of the statistical 
distributions (Diop et al. 2015). Moreover, it is not sensitive 
to the extreme values (Shadmani et al. 2012). The test inter-
pretation criteria is based on rejection or acceptance of two 
hypotheses, viz., null hypothesis (Ho), i.e., there is no trend 
in the series, and the alternate hypothesis (Ha), i.e., reject 
Ho, indicating existence of trend in the time series data. If p 
value is less than alpha (α), i.e., 0.05, one should accept Ha, 
which indicates existence of a trend in the time-series data 
(hydrological or climatic data). However, if the p value is 
more than α, one cannot reject Ho, which indicates that there 
exists no trend in the data series.

The formula for Mann–Kendall’s statistical S is expressed 
by Eq. 1. The mean of S is 0. The downward or upward 

trend is indicated by the sign of Z value (negative or posi-
tive), which can be obtained using the variance of S, as given 
below (Eq. 3). For n > 10, Z follows nearly a normal distri-
bution and can be computed using Eq. 4 (Hirsch and Slack 
1984) as reported in Ndiaye et al. (2020).

where xi = value of the variable at time i, xj = value of the 
variable at time j, n = length of the series, and sign () = a 
function as described below as expressed by Eq. 2.

The variance ( �2 ) can be expressed as reported in Pohlert 
(2020):

where p* = number of the tied groups in the dataset and 
tj = number of data points in jth tied group. The statistic S 
is distributed normally providing that Z-transformation is 
employed as given below:

where� = SD =

��
n(n−1)(2n+5)−

∑p∗

j=1
tj(tj−1)(2tj+5)

�

18
 5).

The positive and negative Z values indicate increasing 
and decreasing trends, respectively. The critical values of 
Z are ±1.96 at 5% level of significance. For |Z|> 1.96 at 5% 
level of significance, the null hypothesis can be rejected, and 
a trend can be recorded. In the present study, the hypothesis 
was tested at 5% level of significance (i.e., α = 0.05).

Kendall’s tau ( � ) is closely related to the statistic S as 
expressed in Pohlert (2020):

Sens’s slope estimator

Mann-Kendal test has a limitation that it only confirms the 
existence of a significant trend if any for a given level of 
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significance, Thus, a non-parametric procedure developed 
by Theil (1950) and Sen (1968), known as Sen’s slope esti-
mator (β), was used to calculate the magnitude of the trend 
(Eq. 7). Once the trend is detected in the time-series data, its 
magnitude or amplitude can also be determined by slope of 
the trend. The negative and positive β value indicates down-
ward and upward trend, respectively. For a linear trend in the 
given time series data, β for n data pairs can be computed as

when n is even, median can be computed as

when n is odd, median can be computed as

Change‑point detection in time series data

Change-point detection in long-term time series data 
is important to examine the time period for a significant 
change. In the present case, standard normal homogeneity 
test (SNHT) and Pettitt’s test (Gallagher et al. 2012; Jaiswal 
and Lohani 2015) were applied using Monte Carlo method 
to check the homogeneity of data or to detect the change-
point (Vezzoli et al. 2012), whether the time series data is 
homogeneous or not (when temporal changes or breaks are 
there). These two tests do not require any assumption related 
to the distribution of temperature (minimum and maximum), 
ETo, and rainfall data. The test interpretation criteria were 
based on two hypotheses, viz., null hypothesis (Ho), i.e., data 
are homogeneous, and alternate hypothesis (Ha), i.e., there 
exists a date at which there is a change in data.

Standard normal homogeneity test (SNHT)

Standard normal homogeneity (SNHT), a non-paramet-
ric test developed by Alexandersson (1986), was further 
improved (Alexandersson and Moberg 1997) for detecting 
a change in a time series data. Test statistic (Tk) can be uti-
lized to compare the mean of first n observations, with the 
remaining mean of n − k observations having n number of 
data points (Stepanek et al. 2009; Vezzoli et al. 2012).

where,

(7)𝛽 = Median

(
xi − xj

i − j

)
∀i < j(1 ≤ i < j ≤ n)

(7a)Median = � n+1

2

(7b)Median =
1

2

(
� n

2

+ � n

2
+1

)

(8)Tk = kZ2

a
+ (n − k)Z2

b∙

where x = mean, σx = standard deviation, and k = change 
point containing a break, at which the Tk value touches its 
maximum. For rejecting the Ho, the critical value must be 
smaller than a test statistic, which is further dependent on 
number of observations (n). The p value is calculated using 
Monte Carlo simulations.

Pettitt’s test

Pettitt’s test was developed by Pettitt (1979) and can be 
advantageous in detecting any single change in hydrologi-
cal or climate series with continuous data (Mu et al. 2007; 
Gao et al. 2011). It is also a non-parametric test and used 
without considering any assumption related to distribution 
of the time-series data. It is widely adopted for change-point 
detection in time series data, due to its sensitivity to changes 
or breaks (Winingaard et al. 2003). Different authors (Kang 
and Yusof 2012; Ilori and Ajayi 2020) have applied the test 
statistics used in Pettitt's test. If t be the change point time 
in an observed data series of x1, x2, x3, … xn, such that the 
first distribution function (G1(x)) for the first part of the data 
series, i.e., x1, x2, x3, … xt, is different from the second dis-
tribution function (G2(x)) for the second part of the data 
series, i.e., xt+1, xt+2, xt+3, … xt+n. According to this test, the 
variables either follow at least one distribution having no 
change for same location (Ho) or do not follow any distribu-
tions, having change in data series (Ha). The non-parametric 
function test statistics (Ut) is expressed as reported in Ilori 
and Ajayi (2020):

If the length of the sample and confidence interval be n 
and ρ, respectively, the test statistics K can be described as 
indicated by Eq. 13.
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If the change-point of the time-series data is located at 
K providing that the statistic is significant, p value can be 
estimated as

At change-point, the entire data series is separated into 
two sub-series. The probability at a change point ( pcp ) can 
be defined by Eq. 15.

Modeling of ETo

Linear regression technique (in XLSTAT software) was used 
to formulate models for predicting ETo on seasonal as well 
as annual basis in the present study region. The ETo data 
for first 30 years (1970–1999) were utilized for developing 
the regression models, and the data from the next 20 years 
(2000–2019) were used for validating the developed models. 
The followings models were developed:

where Tmax = maximum temperature (°C), Tmin = mini-
mum temperature (°C), RHmax = maximum relative humid-
ity (%), RHmin = minimum relative humidity (%), vw = wind 
speed (m/s), and SSH = sunshine hours.

Statistical analysis

The statistical analysis involved computation of mean, 
median, standard deviation (σ), variance (σ2), mean bias 
error (MBE), mean absolute error (MAE), root mean square 

(14)p ≅ 2 × exp

(
−6K2

n2 + n3

)

(15)pcp = 1 − p

(16)
ET

o(Spring) = −0.35736 + 0.11549 × T
max

− 0.00884 × T
min

− 0.00849

× RH
max

− 0.01249 × RH
min

+ 1.02396 × v
w
+ 0.16160 × SSH

(17)
ET
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(Summer) = −1.52235 + 0.13108
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+ 0.03936 × T
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− 0.01611 × RH
max

−0.00643 × RH
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+ 0.64846 × v
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+ 0.25178 × SSH

(18)
ET
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(Autumn) = −0.64190 + 0.06707

×T
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− 0.00752 × RH
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+0.00303 × RH
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(19)
ET

o
(Winter) = 1.37131 + 0.05079 × T
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+ 0.01057

×T
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− 0.00575 × RH
max

− 0.01210 × RH
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+

0.40747 × v
w
+ 0.01372 × SSH

(20)
ET

o
(Annual) = −0.95870 + 0.08887 × T

max

+0.02275 × T
min

− 0.00922 × RH
max

+ 0.00039×

RH
min

+ 0.87735 × v
w
+ 0.18867 × SSH

error (RMSE), and Willmott index of agreement (d). MAE, 
RMSE, coefficient of determination (r2), σ, and d values 
were used in testing the performance of developed ETo 
models.

Mean bias error (MBE)

Mean absolute error (MAE)

Root mean square error (RMSE)

Standard deviation (SD)

Index of agreement (d)

where n = number of data points, Pi = predicted or esti-
mated data, and Oi = observed or standard data.

Results and discussion

Mann–Kendall’s trend analysis

The long-term minimum temperature (Tmin) was recorded to 
be in the range of 15.0–19.8 °C, 23.3–27.5 °C, 14.1–18.8 °C, 
and 4.5–8.5 °C for spring, summer, autumn, and winter sea-
sons, respectively, whereas on annual basis, it was recorded 
as 14.8–18.5 °C. For Tmin, the Kendall’s tau ( � ) value was 
recorded to be positive for all the four seasons, as well as on 
annual basis and varied from 0.468 (winter) to 0.531 (sum-
mer), being 0.631 on annual basis (Table 1). There existed a 
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significant trend (increasing) in long-term Tmin data during 
all the four seasons (spring, summer, autumn, and winter), 
as well as on annual basis (p < 0.05 (α) in each case) for 5% 
level of significance. Earlier, Grover and Upadhaya (2014) 
have reported a significant increase (1.4–2.1 °C) in Tmin dur-
ing kharif season in the present study region. Kaur et al. 
(2016) have also reported an increasing trend in Tmin from 
year 1970 to 1990. Further, Kingra (2018) has confirmed the 
increasing trend in long-term Tmin in the same region for a 
period from 1970 to 2014. However, this increasing trend 
in Tmin with time, particularly during the months of Febru-
ary and March, may significantly reduce the yield of wheat 
crop grown in the region as these two months correspond 
to grain filling in wheat crop (Kaur et al. 2012). The long-
term maximum temperature (Tmax) was recorded to be in 
the range of 29.5–36.6 °C, 33.6–37.3 °C, 28.7–31.9 °C, and 
18.2–22.0 °C during spring, summer, autumn, and winter 
seasons, respectively, with the annual Tmax as 28.2–30.7 °C, 
being lowest and highest during winter and summer sea-
sons, respectively. For Tmax, the � value was recorded to be 
positive for spring and on annual basis, whereas negative 
for rest of the three seasons (summer, autumn, and winter). 
The � value was recorded to be 0.111, − 0.078, − 0.145, − 
0.117, and 0.010 for spring, summer, autumn, winter, and 
annual basis, respectively. No definite trend was recorded 
in the long-term data of Tmax for all the four respective sea-
sons, as well as on annual basis (Table 1). Similar observa-
tion related to trend in long-term Tmax has been reported by 
Kingra (2018). The average temperature (Tmin and Tmax) was 
recorded to be highest during summer followed by spring, 
autumn, and winter (least).

The rainfall during spring, summer, autumn, and winter 
seasons was recorded to be in the range of 9.7–191.7 mm, 
97.6–822.8 mm, 6.7–668.6 mm, and 2.0–202.5 mm, respec-
tively, whereas on annual basis, it varied as 379.6–1334 mm 
with average value of 747.4 mm. The average seasonal rain-
fall during study period was recorded to be highest during 
summer (485.9 mm) followed by autumn (123.3 mm) and 
least during spring (63.7 mm). The � values for rainfall were 
recorded to be positive for all seasons, except during summer 
(negative). The � value was recorded to be 0.071, − 0.019, 
0.138, 0.043, and 0.031 for spring, summer, autumn, win-
ter, and annual basis, respectively. No trend (insignificant) 
was recorded in the long-term rainfall data for all the four 
respective seasons, as well as on annual basis (Table 1). 
Similar observation related to rainfall has been made by 
Kashyap and Agarwal (2020).  A significant trend (decreas-
ing) was recorded in long-term ETo during all the four 
seasons (spring, summer, autumn, and winter), as well as 
on annual basis (p < 0.05 (α) in each case) for 5% level of 
significance. Similar observation related to ETo has been 
reported in Kashyap and Agarwal (2020). ETo was estimated 
to be in the range of 4.69–6.01 mm/day, 4.70–6.43 mm/day, 

2.74–3.66 mm/day, and 1.49–2.27 mm/day during spring, 
summer, autumn, and winter seasons, respectively, whereas 
it varied in the range of 3.57–4.39 mm/day on annual basis, 
being lowest and highest during winter and spring seasons, 
respectively. Similar range of annual ETo (3.52–4.27 mm/
day) has been reported by Kingra (2018) for the same region 
for a study period from 1970 to 2014. Thus, decreasing 
ETo, particularly in relation to increasing Tmin, confirms the 
presence of an evaporation paradox in the study area. The 
declining ETo may result in decreased crop water require-
ments. Kashyap and Agarwal (2020) have reported increas-
ing trend in crop yields (rice and wheat) for the present study 
region with decrease in ETo. In case of ETo, the value of 
� was computed to be negative for all the four seasons as 
well as on annual basis. The � value varied from − 0.663 
(for autumn) to − 0.313 (for spring), whereas it was com-
puted to be − 0.609 on annual basis. The average ETo was 
recorded to be highest during spring (5.44 mm/day) followed 
by summer (5.44 mm/day), autumn (3.66 mm/day), and win-
ter (1.79 mm/day). On annual basis, the average ETo was 
computed as 3.98 mm/day. The estimated ETo was obtained 
in the order as follows: ETo (spring) ≥ ETo (summer) > ETo 
(autumn) > ETo (winter). Irrespective of the higher tempera-
ture during summer as compared to spring, the ETo during 
summer was slightly lower as compared to spring.

Sen’s slope trend analysis

From the results of Sen’s slope test, an upward (increasing) 
trend was recorded in Tmin data during all the four respec-
tive seasons as well as on annual basis. Similar trend in 
Tmin has been reported by Kaur et al. (2012) and Grover 
and Upadhaya (2014) for the same region. The Sen’s slope 
varied from 0.042 to 0.060, having lowest and highest 
values during summer and spring seasons, respectively 
(Table 2). On annual basis, the Sen’s slope was recorded 
as 0.050. The increasing trend in Tmin in the present study 
region (from 1970 to 2006) on annual basis has also been 
reported in Kaur et al. (2006). Further, similar trend in Tmin 
has been reported in Kaur et al. (2016). In case of Tmax, an 
upward (increasing) trend was recorded during spring sea-
son (Sen’s slope = 0.017) as well as on annual basis (Sen’s 
slope = 0.001) as also reported in Kaur et al. (2016), whereas 
during summer, autumn, and winter seasons, a downward 
trend was recorded. Thus, the trend in Tmax was mainly 
downward or decreasing (from 1970 to 2006) as reported 
by Kaur et al. (2006), except during spring season and on 
annual basis. Similar observation has also been made by 
Kaur et al. (2012). The Sen’s slope varied from − 0.010 to 
0.017 (Table 2), having lowest and highest values during 
winter and spring seasons, respectively. On annual basis, 
the Sen’s slope was recorded as 0.001. In case of rainfall, 
an upward (increasing) trend was recorded during spring, 
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autumn, winter, and on annual basis, whereas a down-
ward (decreasing) trend during summer season. Kaur et al. 
(2016) have also reported an increasing trend in rainfall in 
the region from year 1970 to 1990. Further, Krishan et al. 
(2015) have reported an increasing trend in annual rainfall in 
this region (from year 1901 to 2002). Similar trend in long-
term rainfall of the present study region (1970 to 2006) has 
been reported by Kaur et al. (2006). The Sen’s slope varied 
from − 0.297 to 0.830 (Table 2), having lowest and highest 
values during summer and autumn seasons, respectively. On 
annual basis, the Sen’s slope was recorded as 0.663. The 
estimated ETo data indicated a downward (decreasing) trend 
during all the four respective seasons as well as on annual 
basis. The Sen’s slope varied from − 0.0139 to − 0.0084, hav-
ing lowest and highest values during autumn and spring sea-
sons, respectively (Table 2). On annual basis, the Sen’s slope 
was recorded as − 0.0104. The Sen’s slope test indicated a 
downward trend in ETo with increase in Tmin during all the 
four respective seasons as well as on annual basis. Overall, 
the Sen’s slope analysis indicated increasing (upward) and 
decreasing (downward) trend in long-term Tmin and ETo, 
respectively, with time. ETo may also decrease with decrease 
in Tmax (during summer, autumn, and winter) and rainfall 

(during summer season). Unlike Tmin and ETo, the trend in 
Tmax and rainfall were recorded to be either increasing or 
decreasing, indicating no definite trend throughout the year. 
Similarly, Kaur et al. (2012) have reported no definite trend 
in Tmax, unlike Tmin. The Sen’s slope test confirms the results 
of Mann–Kendall’s test for Tmin and ETo.

Homogeneity test for change‑point detection 
in Tmin, Tmax, ETo, and rainfall data

In standard normal homogeneity test (SNHT) and Pettitt’s 
test, using Monte Carlo simulations (10,000) was applied 
at 99% confidence interval on the p value (two-tailed test). 
As per both SNHT and Pettitt’s tests, change-points were 
detected in both Tmin and ETo data during all four seasons, 
as well as on annual basis. The p value was recorded to be 
lower than α value (0.05) indicating existence of a date at 
which there is a change in Tmin and ETo data (Table 3), both 
seasonally and annually. Jaiswal et al. (2015) and Ilori and 
Ajay (2020) have also reported change points in long-term 
Tmin and Tmean, respectively, indicating the increasing trend 
with time. The mean Tmin values before and after change-
point during spring, summer, autumn, winter, and on annual 
basis were recorded as 16.6 °C and 18.3 °C, 25.0 °C and 
26.3 °C, 15.6 °C and 17.3 °C, 5.8 °C and 7.2 °C, and 15.7 °C 
and 17.1 °C, respectively (Fig. 2a–e). Figure 2 demonstrates 
the presence of change-point and trend in Tmin during four 
respective seasons as well as on annual basis. In case of 
Tmax, a change-point was detected only during spring sea-
son (Fig. 3a), having the mean Tmax values before and after 
change-point as 32.9 °C and 34.1 °C, respectively (Fig. 3a). 
Whereas during summer, autumn, winter, and on annual 
basis, the mean Tmax value was recorded as 35.2, 30.6, 19.9, 
and 29.8 °C, respectively (Fig. 3b–e), indicating homogene-
ity (absence of change-point) in data series. The rainfall data 
was observed to be homogeneous. The rainfall was recorded 
as 63.7, 485.9, 123.3, 76.8, and 747.4 mm during spring, 
summer, autumn, winter, and on annual basis, respectively 
(Fig. 4a–e). Figure 4 demonstrates the absence of change-
point and trend in rainfall during four respective seasons as 
well as on annual basis. The rainfall and Tmax were observed 
to be homogeneous (i.e., no change-point). The parameters 
of change-point detection in time-series data are presented 
in Table 3. The mean ETo values before and after change-
point during spring, summer, autumn, winter, and on annual 
basis were recorded as 5.68 mm/day and 5.36 mm/day, 
5.66 mm/day and 5.23 mm/day, 3.39 mm/day and 3.03 mm/
day, 1.89 mm/day and 1.66 mm/day, and 4.12 mm/day and 
3.84 mm/day, respectively (Fig. 5a–e), indicating decline in 
ETo after the change-points. Figure 5 demonstrates the pres-
ence of change-point and trend in ETo during four respective 
seasons as well as on annual basis.

Table 2   Sen’s slope values during different seasons as well as on 
annual basis

Sen’s slope

Sen’s slope Confidence interval

Parameter Season Lower bound 
(95%)

Upper 
bound 
(95%)

ETo Spring  − 0.0084  − 0.0970 0.0712
Summer  − 0.0119  − 0.1396 0.1313
Autumn  − 0.0139  − 0.0514 0.0321
Winter  − 0.0091  − 0.0499 0.0365
Annual  − 0.0104  − 0.0561 0.0358

Tmin Spring 0.06 0.04 0.079
Summer 0.042 0.03 0.054
Autumn 0.053 0.035 0.071
Winter 0.049 0.03 0.064
Annual 0.05 0.039 0.061

Tmax Spring 0.017  − 0.012 0.05
Summer  − 0.007  − 0.024 0.009
Autumn  − 0.006  − 0.015 0.003
Winter  − 0.01  − 0.027 0.008
Annual 0.001  − 0.011 0.011

Rainfall (mm) Spring 0.327  − 0.535 0.933
Summer  − 0.297  − 3.682 3.024
Autumn 0.830  − 0.469 2.341
Winter 0.252  − 0.750 1.115
Annual 0.663  − 3.710 4.818

Page 9 of 26    275Arab J Geosci (2022) 15: 275



1 3

The SNHT recorded 1997, 1983, 1984, 1985, and 1984 as 
change-point years in Tmin during spring, summer, autumn, 
winter, and on annual basis, respectively, whereas the Pet-
titt’s test recorded the change-points in years 1997, 1989, 
1996, 1988, and 1997, during four respective seasons and 
on annual basis. For spring season, the change-point (year 
1997) in Tmin was recorded to be same as per both tests. For 
Tmax, both tests (SNHT and Pettitt’s) recorded change-points 
in 1998 and 1997, respectively, for spring season only. Sepa-
rately, in Tmin and Tmax, the change-points were recorded to 
be different by both tests, except in one season (spring) for 
Tmin. However, for ETo which is jointly affected by Tmin and 
Tmax, the change-points during all the four seasons as well 
as on annual basis were recorded to be same. The change-
points recorded by both tests were 1981, 1993, 1996, 1996, 
and 1993, for spring, summer, autumn, winter, and on annual 
basis, respectively. ETo performed as a better representative 
of climate change in relation to temperature variation (Tmin 
and Tmax).

The seasonal lowest Tmin value was recorded to be in the 
range of 4.5–23.3 °C (being lowest and highest for winter 
and summer seasons, respectively), with an average value 
of 14.8 °C. Similarly, the seasonal highest Tmin value was 
recorded to be in the range of 8.5–27.5 °C (being lowest 
and highest for winter and summer seasons, respectively), 
with an average value of 18.5  °C (Fig. 6a–e). Figure 6 

demonstrates the different statistical parameters estimated 
for all the seasons as well as on annual basis. The first quar-
tile (Q1) value for seasonal Tmin was recorded to be in the 
range of 6.0–25.5 °C, with an average value of 16.1 °C. Sim-
ilarly, the third quartile (Q3) for seasonal Tmin was recorded 
to be in the range of 7.3–26.5 °C, with an average value of 
17.3 °C. The median value for seasonal Tmin was recorded 
to be in the range of 6.9–26.1 °C, with an average value of 
16.8 °C. Similarly, the mean seasonal Tmin was computed 
in the range of 6.7–26.0 °C, with a mean value of 16.7 °C. 
The trend in Tmin, Tmax, Q1, Q3, median, and mean was simi-
lar (being lowest and highest for winter and spring seasons, 
respectively, in each case). However, the trend was slightly 
different for variance (σn-1

2) and standard deviation (σn-1) 
values. σn-1

2 value varied from 1.0 to 1.3 (lowest and high-
est values for winter and spring seasons, respectively), with 
an average value of 0.8 (Fig. 6a–e). Similarly, σn-1 value 
varied from 1.0 to 1.2 °C (lowest and highest values for 
winter and spring seasons, respectively), with an average 
value of 0.9 °C.

The seasonal lowest Tmax value was computed to be in 
the range of 18.2–33.6 °C (being lowest and highest values 
for winter and summer seasons, respectively), with an aver-
age value of 28.2 °C (Fig. 7a–e). Figure 7 demonstrates the 
different statistical parameters estimated for all the seasons 
as well as on annual basis. Similarly, the seasonal highest 

Table 3   Parameters of homogeneity analysis

* p value (two-tailed) was computed using 10,000 Monte Carlo simulations (time elapsed: 0 s) (99% confidence interval on the p value)

Parameter Season Standard normal homogeneity test (SNHT) Pettitt’s test

T0 or K t p value* K t p value* α

Tmin Spring 24.72 1997  < 0.0001 506 1997  < 0.0001 0.05
Summer 24.57 1983  < 0.0001 482 1989  < 0.0001 0.05
Autumn 24.25 1984  < 0.0001 450 1996  < 0.0001 0.05
Winter 21.47 1985  < 0.0001 448 1988  < 0.0001 0.05
Annual 28.56 1984  < 0.0001 542 1997  < 0.0001 0.05

Tmax Spring 8.87 1998 0.036 278 1997 0.024 0.05
Summer 4.68 1987 0.33 188 1987 0.252 0.05
Autumn 3.65 1974 0.554 210 1983 0.15 0.05
Winter 2.67 1970 0.738 140 1987 0.583 0.05
Annual 3.25 1998 0.574 174 1998 0.331 0.05

ETo Spring 13.21 1981 0.0036 344 1981 0.0021 0.05
Summer 13.91 1993 0.0028 356 1993 0.0006 0.05
Autumn 30.21 1996  < 0.0001 562 1996  < 0.0001 0.05
Winter 23.37 1996  < 0.0001 516 1996  < 0.0001 0.05
Annual 24.98 1993  < 0.0001 528 1993  < 0.0001 0.05
Spring 4.12 1976 0.421 158.00 1976 0.429 0.05

Rainfall Summer 0.73 2011 1.000 86.00 2001 0.961 0.05
Autumn 4.17 1987 0.406 196.00 1983 0.202 0.05
Winter 3.24 2017 0.612 79.00 2011 0.984 0.05
Annual 1.82 1974 0.907 98.00 1982 0.915 0.05
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Fig. 2   Change-point detection in Tmin during (a) spring, (b) summer, (c) autumn, (d) winter, and (e) on annual basis
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Tmax value was computed to be in the range of 22.0–37.3 °C 
(being lowest and highest values for winter and summer 
seasons, respectively), with an average value of 30.7 °C 

(Fig. 7a–e). The Q1 value was recorded to be in the range 
of 19.2–34.8 °C, with an average value of 29.4 °C. Simi-
larly, Q3 for seasonal Tmax was recorded to be in the range 

Fig. 3   Change-point detection in Tmax during (a) spring, (b) summer, (c) autumn, (d) winter, and (e) on annual basis

275   Page 12 of 26 Arab J Geosci (2022) 15: 275



1 3

of 20.5–35.6 °C, with an average value of 30.2 °C on annual 
basis. The median value for seasonal Tmax was recorded to 
be in the range of 19.8–35.1 °C, with an average value of 

29.8 °C. Similarly, the mean seasonal Tmax was computed 
in the range of 19.9–35.2 °C, with a mean value of 29.8 °C. 
As reported above, the trend in Tmin, Tmax, Q1, Q3, median 

Fig. 4   Change-point detection in rainfall during (a) spring, (b) summer, (c) autumn, (d) winter, and (e) on annual basis
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and mean was similar (being lowest and highest for winter 
and spring seasons, respectively, in each case). However, 
the trend was slightly different for σn-1

2 and σn-1 values. σn-1
2 

value varied from 0.7 to 1.9 (lowest and highest values for 
winter and spring seasons, respectively), with an average 
value of 0.3 (Fig. 7a–e). Similarly, σn-1 value varied from 0.8 

Fig. 5   Change-point detection in ETo during (a) spring, (b) summer, (c) autumn, (d) winter, and (e) on annual basis
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to 1.4 °C (lowest and highest values for winter and spring 
seasons, respectively), with an average value of 0.5  °C 
annual basis.

The seasonal lowest rainfall was recorded to be in the 
range of 2.0–97.6 mm (being lowest and highest values 
for winter and summer seasons, respectively), with a total 
of 379.6 mm. Similarly, the seasonal highest rainfall was 
recorded to be in the range of 191.7–822.8 mm, with a 

total of 1334.0 mm (Fig. 8a–e), being minimum and max-
imum during spring and summer seasons, respectively. 
Figure 8 demonstrates the different statistical parameters 
estimated for all the seasons as well as on annual basis. 
The Q1 value for seasonal rainfall was recorded to be in 
the range of 33.9–358.3 mm (having lowest and highest 
values for spring and summer seasons, respectively), with 
a total of 591.6 mm. Similarly, Q3 was computed to be 

Fig. 6   Depiction of parameters 
of statistical analysis for Tmin 
during (a) spring, (b) summer, 
(c) autumn, (d) winter, and (e) 
on annual basis
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in the range of 87.2–600.6 mm (having lowest and high-
est values for spring and summer seasons, respectively), 
with a total of 909.2 mm. The median value for seasonal 
rainfall was recorded to be in the range of 48.4–483.1 mm 
(having lowest and highest values for spring and sum-
mer seasons, respectively), having a total of 727.0 mm. 
Similarly, the mean rainfall was recorded in the range 
of 63.7–485.9 mm (having lowest and highest values for 
spring and summer seasons, respectively), having a total 
of 747.4 mm. σn

2 varied from 1891.6 to 25,815.2 (low-
est and highest values for spring and summer seasons, 
respectively), having a total of 48,383.6 (Fig.  8a–e). 
Similarly, σn and σn-1 values varied from 43.5 to 160.7 

(lowest and highest values for spring and summer sea-
sons, respectively), having a total of 220.0.

The seasonal lowest ETo was computed to be in the 
range of 1.49–4.70 mm/day (being lowest and highest 
values for winter and summer seasons, respectively), 
with an average value of 5.44 mm/day. On annual basis, 
ETo was computed as 3.57 mm/day. Similarly, the sea-
sonal highest ETo value was computed to be in the range 
of 2.27–6.43 mm/day (being lowest and highest values 
for winter and summer seasons, respectively), with an 
average value of 5.44  mm/day. The annual ETo was 
computed as 4.39 mm/day (Fig. 9a–e). Figure 9 dem-
onstrates the different statistical parameters estimated 

Fig. 7   Depiction of parameters 
of statistical analysis for Tmax 
during (a) spring, (b) summer, 
(c) autumn, (d) winter, and (e) 
on annual basis
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for all the seasons as well as on annual basis. The Q1 
value for seasonal ETo was recorded to be in the range of 
1.66–5.26 mm/day (having lowest and highest values for 
winter and spring seasons, respectively), with an aver-
age value of 3.84 mm/day. Similarly, Q3 for seasonal 
ETo was recorded to be in the range of 1.89–5.67 mm/
day (having lowest and highest values for winter and 
summer seasons, respectively), with an average value 
of 4.08 mm/day. The median value for seasonal ETo was 
recorded to be in the range of 1.79–5.45 mm/day (having 
lowest and highest values for winter and spring seasons, 

respectively), with an average value of 3.98 mm/day. 
Similarly, the mean value for seasonal ETo was com-
puted in the range of 1.79–5.44 mm/day (having low-
est and highest values for winter and summer seasons, 
respectively), with an average value of 3.97 mm/day. σn

2 
values varied from 0.03 to 0.16 (lowest and highest val-
ues for winter and summer seasons, respectively), with 
an average value of 0.04 (Fig. 9a–e). Similarly, σn values 
varied from 0.17 to 0.40 (lowest and highest values for 
winter and summer seasons, respectively), with an aver-
age value of 0.19.

Fig. 8   Depiction of parameters 
of statistical analysis for rainfall 
during (a) spring, (b) summer, 
(c) autumn, (d) winter, and (e) 
on annual basis
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Inter‑correlation test among estimated ETo 
and recorded micro‑meteorological parameters

For obtaining the inter-correlation between ETo, Tmax, Tmin, 
RHmax, RHmin, vw, SSH, and rainfall, a correlation matrices 
were obtained for all the four seasons as well as on annual 
basis using XLSTAT Software (Tables 4, 5, 6, 7 and 8). 
The absolute correlation coefficient values of > 0.9, > 0.75 
(> 0.75 and ≤ 0.90), and > 0.6 (> 0.6 and ≤ 0.75) were used 
as standards for indicating strong, good, and moderate cor-
relation, respectively, as suggested in Meshram and Sharma 

(2015). However, the correlation coefficient value ≤ 0.6 was 
used as a standard to indicate a poor correlation.

During spring season, ETo formed moderately good cor-
relations with RHmax (r =  − 0.66) and RHmin (r =  − 0.69), 
whereas poor correlations with Tmax (r =  + 0.59), vw 
(r =  + 0.51), and rainfall (r =  − 0.52). Similar correlations 
of ETo with Tmin, RHmin, and Tmax have been reported by 
Kingra (2018). Tmax formed moderately good correlations 
with Tmin (r = 0.63) and RHmax (r =  − 0.62), whereas poor 
correlations with RHmin (r =  − 0.56) and rainfall (r =  − 0.56). 
Tmin was poorly correlated to vw (r =  − 0.49). RHmax formed 

Fig. 9   Depiction of parameters 
of statistical analysis for ETo 
during (a) spring, (b) summer, 
(c) sutumn, (d) winter, and (e) 
on annual basis
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moderately good correlations with RHmin (r =  + 0.70) and 
rainfall (r =  + 0.63). RHmin also formed a moderately good 
correlation with rainfall (r =  + 0.63). The analysis con-
firmed that ETo decreases with increase in RHmax, RHmin, 
and rainfall, whereas increases with increase in Tmax and 
vw. During summer season, ETo formed good correlations 
with RHmin (r =  − 0.78) and SSH (r =  + 0.82), whereas a 
moderately good correlation with Tmax (r =  + 0.73). ETo 
also formed poor correlations with RHmax (r =  − 0.58), vw 
(r =  + 0.41), and rainfall (r =  − 0.48). Tmax formed good and 
moderately good correlation with RHmin (r =  − 0.77) and 
RHmax (r =  − 0.68), respectively. Tmax was poorly correlated 
with SSH (r =  + 0.41) and rainfall (r =  − 0.57). Tmin formed 
a moderately good correlation with vw (r =  − 0.63) and 

was poorly correlated to RHmin (r =  + 0.30). RHmax formed 
a moderately good correlation with RHmin (r =  + 0.74), 
whereas poor correlations with vw (r =  − 0.34) and rain-
fall (r =  + 0.38). RHmin was poorly correlated with vw 
(r =  − 0.30), SSH (r =  − 0.48), and rainfall (r =  + 0.56). 
SSH was also poorly correlated to rainfall (r =  − 0.29). It 
revealed that ETo decreases with increase in RHmin, RHmax, 
and rainfall, whereas increases with increase in SSH and vw.

During autumn, ETo formed good correlations with vw 
(r =  + 0.79) and SSH (r =  + 0.75), whereas moderately good 
correlations with Tmin (r =  − 0.62) and RHmin (r =  − 0.73). 
ETo formed a negative correlation with Tmin, indicating 
decrease in ETo with increase in Tmin, which confirmed 
the results of Mann–Kendall’s test, Sen’s slope test, and 

Table 4   Correlation matrix 
(Pearson) for spring season

Values in bold are different from 0 with a significance level alpha = 0.05

Variables ETo Tmax Tmin RHmax RHmin vw SSH Rainfall

ETo 1
Tmax 0.5876 1
Tmin -0.0084 0.6261 1
RHmax -0.6632 -0.6176 -0.1526 1
RH min -0.6943 -0.5549 0.0378 0.6966 1
vw 0.5138 -0.2342 -0.4880 -0.0364 0.0089 1
SSH 0.1622 0.0577 0.0042 0.2037 0.0166 0.1438 1
Rainfall -0.5187 -0.5467 -0.1006 0.6340 0.6328 0.1011 0.0470 1

Table 5   Correlation matrix 
(Pearson) for summer season

Values in bold are different from 0 with a significance level alpha = 0.05

Variables ETo Tmax Tmin RHmax RHmin vw SSH Rainfall

ETo 1
Tmax 0.7263 1
Tmin -0.2662 0.1128 1
RHmax -0.5798 -0.6787 0.2236 1
RH min -0.7788 -0.7669 0.2945 0.7359 1
vw 0.4102 0.1376 -0.6326 -0.3375 -0.2994 1
SSH 0.8203 0.4120 -0.1294 -0.1505 -0.4770 0.1431 1
Rainfall -0.4770 -0.5726 -0.1089 0.3820 0.5643 -0.2050 -0.2852 1

Table 6   Correlation matrix 
(Pearson) for autumn season

Values in bold are different from 0 with a significance level alpha = 0.05

Variables ETo Tmax Tmin RHmax RHmin vw SSH Rainfall

ETo 1
Tmax 0.2758 1
Tmin -0.6237 -0.0549 1
RHmax -0.5871 -0.4287 0.4527 1
RH min -0.7268 -0.4662 0.6434 0.7026 1
vw 0.7907 -0.1014 -0.5421 -0.3945 -0.4439 1
SSH 0.7503 0.1506 -0.3515 -0.3119 -0.4930 0.5537 1
Rainfall -0.1609 -0.2121 0.2612 0.1050 0.2159 -0.1012 -0.0490 1
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homogeneity test. Similar observation has been made by 
Kingra (2018). Further, Kashyap and Agarwal (2020) have 
reported decreased ETo with increase in Tmin. ETo also 
formed a poor correlation with RHmax (r =  − 0.58). Tmax 
was poorly correlated with RHmin (r =  − 47) and RHmax 
(r =  − 0.43). Tmin formed a moderately good correlation 
with RHmin (r =  + 0.64), whereas poor correlations with 
RHmax (r =  + 0.45), vw (r =  − 0.54), and SSH (r =  − 0.35). 
RHmax formed a moderately good correlation with RHmin 
(r =  + 0.70) and poor correlations with vw (r =  − 0.40) and 
SSH (r =  − 0.31). RHmin was also poorly correlated with vw 
(r =  − 0.44) and SSH (r =  − 0.49). vw was also poorly cor-
related to SSH (r =  + 0.55). The analysis confirmed that ETo 
decreases with increase in Tmin, RHmin, and RHmax, whereas 
increases with increase in vw and SSH. During winter, ETo 
formed strong and good correlations with Tmin (r =  + 1.0) 
and RHmin (r =  − 0.80), respectively. ETo also formed 
moderately good correlations with Tmax (r =  + 0.68), vw 
(r =  + 0.67), and SSH (r =  + 0.71), whereas poor correla-
tions with RHmax (r =  − 0.49) and rainfall (r =  − 0.30). Tmax 
formed a moderately good correlation with Tmin (r =  + 0.68), 
whereas poor correlations with RHmin (r =  − 0.53), SSH 
(r =  + 0.41), and rainfall (r =  − 0.35). Tmin formed a good 
correlation with RHmin (r =  − 0.80), whereas moderately 
good correlations with vw (r =  + 0.67) and SSH (r = 0.71). 
Tmin also formed poor correlation with RHmax (r =  − 0.49) 
and rainfall (r =  − 0.30). RHmax formed moderately good 

and poor correlations with RHmin (r =  + 0.62) and vw 
(r =  − 0.41), respectively. RHmin was poorly correlated with 
vw (r =  − 0.32), SSH (r =  − 0.53), and rainfall (= + 0.36). vw 
was also poorly correlated to SSH (r =  + 0.54). It revealed 
that ETo significantly decreases with increase in RHmin, 
RHmax, and rainfall, whereas increases with increase in Tmin, 
Tmax, vw, and SSH.

On annual basis, ETo formed good correlation with vw 
(r =  + 0.76), whereas moderately good correlations with 
Tmin (r =  − 0.64), RHmin (r =  − 0.75), and SSH (r =  + 0.63). 
ETo was negatively correlated to Tmin, indicating decreased 
ETo with increased Tmin, as reported in Kingra (2018). ETo 
also formed poor correlations with Tmax (r =  + 0.31), RHmax 
(r =  − 0.53), and rainfall (r =  − 0.30). Tmax was poorly cor-
related with RHmax (r =  − 0.38), RHmin (r =  − 0.31), and 
rainfall (r =  − 0.36). Tmin formed a good correlation with 
vw (r =  − 0.79), whereas a moderately good correlation 
with RHmin (r =  + 0.65). Tmin also formed poor correla-
tions with RHmax (r =  + 0.42) and SSH (r =  − 0.31). RHmax 
formed moderately good and poor correlations with RHmin 
(r =  + 0.64) and vw (r =  − 0.41), respectively. RHmin was 
poorly correlated with vw (r =  − 0.51) and SSH (r =  − 0.33) 
and rainfall (= + 0.33). vw was also poorly correlated to SSH 
(r =  + 0.50). The analysis confirmed that ETo significantly 
decreases with increase in Tmin, RHmin, RHmax, and rainfall, 
whereas increases with increase in vw, Tmax, and SSH. ETo 
formed a positive correlation with Tmax for spring, summer, 

Table 7   Correlation matrix 
(Pearson) for winter season

Values in bold are different from 0 with a significance level alpha = 0.05

Variables ETo Tmax Tmin RHmax RHmin vw SSH Rainfall

ETo 1
Tmax 0.6749 1
Tmin 1.0000 0.6749 1
RHmax -0.4883 -0.1022 -0.4883 1
RH min -0.7963 -0.5327 -0.7963 0.6220 1
vw 0.6658 0.0712 0.6658 -0.4112 -0.3208 1
SSH 0.7133 0.4105 0.7133 -0.1378 -0.5282 0.5375 1
Rainfall -0.3043 -0.3484 -0.3043 0.0806 0.3629 0.0249 -0.1878 1

Table 8   Correlation matrix 
(Pearson) on annual basis

Values in bold are different from 0 with a significance level alpha = 0.05

Variables ETo Tmax Tmin RHmax RHmin vw SSH Rainfall

ETo 1
Tmax 0.3093 1
Tmin -0.6384 0.2048 1
RHmax -0.5249 -0.3832 0.4222 1
RH min -0.7499 -0.3072 0.6477 0.6398 1
vw 0.7594 -0.0538 -0.7902 -0.4117 -0.5081 1
SSH 0.6239 0.0225 -0.3080 0.0533 -0.3247 0.4979 1
Rainfall -0.2964 -0.3575 0.1117 0.1767 0.3313 -0.1668 -0.0747 1
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Fig. 10   Standardized coefficients of ETo modeling during (a) spring, (b) summer, (c) autumn, (d) winter, and (e) on annual basis
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and winter seasons, indicating increase in ETo with increase 
in Tmax, as also reported in Kingra (2018). Similarly, ETo 
was negatively correlated to rainfall during spring, summer, 

winter, and on annual basis, indicating declining ETo with 
increasing rainfall.

Fig. 11   Relationship between ETo and predicted ETo during (a) spring, (b) summer, (c) autumn, (d) winter, and (e) on annual basis

275   Page 22 of 26 Arab J Geosci (2022) 15: 275



1 3

Model validation

The model coefficients for Tmax, Tmin, RHmax, RHmin, vw, 
and SSH were standardized for all the seasons as well as on 
annual basis as shown in Fig. 10a–e. A relationship was also 
developed between computed and predicted ETo for all the 
respective seasons as well as on annual basis as shown in 
Fig. 11. At the time of model development, the coefficient 
of determination (r2) value varied in the range of 0.90–0.98, 
being lowest and highest during autumn and spring sea-
sons, respectively, with a value of 0.91 on annual basis. The 
RMSE value varied in the range of 0.05–0.11, being lowest 
and highest during winter and summer seasons, respectively, 
with a value of 0.07 on annual basis.

During validation period (2000–2019), the mean bias 
error varied in the range of − 0.08 to 0.04, being lowest 
and highest during autumn and winter, respectively with a 
value of − 0.06 mm/day on annual basis. The mean absolute 
error was recorded to be in the range of 0.00–0.08 (Table 9), 
being lowest and highest during spring and autumn seasons, 
respectively, with a value of 0.06 on annual basis, whereas 

RMSE varied in the range of 0.05–0.11 (Table 9), being low-
est and highest during spring and autumn seasons, respec-
tively, having a value of 0.07 on annual basis. Similarly, 
σ value varied in the range of 0.05–0.07 (Table 9), being 
lowest and highest during spring/winter and summer/autumn 
seasons, respectively, having a value of 0.04 on annual basis. 
The d value varied in the range of 0.99–1.00 (Table 9), being 
lowest and highest values during autumn/winter and spring/
summer seasons, respectively, having a value of 0.99 on 
annual basis. The statistical comparison indicated a fairly 
good agreement between the computed and predicted ETo 
values (Fig. 12). Thus, the developed models would be use-
ful in simplified estimation of ETo on both seasonal and 
annual basis for the present study region.

Conclusions

All the tests (Mann–Kendall’s test, Sen’s slope test, and 
homogeneity tests) confirmed the existence of increasing 
(upward) and decreasing (downward) trends in Tmin and ETo, 
respectively, during all the four seasons (spring, summer, 
autumn, and winter) as well as on annual basis. The decreas-
ing trend in ETo is mainly due to the temporal increase in 
Tmin and homogeneity in Tmax, leading to decreasing tem-
perature differences (i.e., Tmax-Tmin). The homogeneity 
tests indicated change point occurrence in Tmin (increasing 
trend) and ETo (decreasing trend) during all the four seasons 
as well on annual basis, whereas the Tmax (except during 
spring) and rainfall data was observed to be homogene-
ous. The correlation test indicated a significant decrease in 
ETo with increase in RHmin, RHmax, rainfall (except during 

Table 9   Statistical parameters of model validation

Parameter Spring Summer Autumn Winter Annual

MBE (mm/day)  − 0.01 0.00 -0.08 0.04 -0.06
MAE (mm/day) 0.01 0.00 0.08 0.04 0.06
RMSE (mm/day) 0.05 0.07 0.11 0.07 0.07
r2 0.98 0.96 0.90 0.94 0.91
σ (mm/day) 0.05 0.07 0.07 0.05 0.04
d (-) 1.00 1.00 0.99 0.99 0.99

Fig. 12   Comparison between 
predicted and observed ETo data 
during  model development and 
validation
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autumn), and Tmin (except during spring, summer, and win-
ter), whereas increase with increase in vw, SSH (except dur-
ing spring season), and Tmax (except during summer and 
autumn). The statistical comparison indicated a fairly good 
agreement between the computed and predicted ETo values. 
The developed models would be useful in simplified esti-
mation of ETo on seasonal and annual basis. Such studies 
may be useful for predicting the location-specific futuristic 
climate scenarios in relation to long-term historical climatic 
data and therefore in mitigating the climate change impacts 
on agricultural production. Moreover, the modeling of ETo 
would be useful to predict the crop water requirements or 
irrigation amounts, which in turn can help in planning crops 
and scheduling irrigation.
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