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Abstract
In the current study, concentrations of some trace elements (Al, As, Cd, Cr, Cu, Pb, Ni and Zn) in street dust samples collected 
from commercial, residential and industrial regions in the city of Hamedan, Iran, were studied to analyze the possible dust 
contamination rates and also to assess their potential risk to human health. Total 378 street dust samples were obtained from 
18 sampling sites during April to October 2019. After samples preparation, the concentrations of the elements in the street 
dust specimens were measured via ICP-OES. The dust pollution rate and the human health risks (HI) associated with those 
elements were evaluated through enrichment factor (EF), geo-accumulation index (I-geo), contamination/pollution index 
(CPI), integrated pollution index (IPI), pollution load index (PLI) and hazard quotient (HQ). Based on the results obtained, 
the mean concentrations of the analyzed elements (mg/kg) in dust specimens were 11,058 for Al, 2.31 for As, 0.225 for Cd, 
41.3 for Cr, 48.8 for Cu, 65.2 for Pb, 79.2 for Ni and 211 for Zn. About 66% of the street dust specimens appeared to be 
severely polluted with Zn, while the mean CPI value of Al indicated that 95% of dust samples were slightly contaminated 
by this metal. The results of the sources identification of the elements showed that Al had lithogenic sources, whereas oth-
ers resulted from predominantly anthropogenic activities. The PLI values of the analyzed samples with an average value of 
1.00 revealed that 22%, 77% and 1% of street dust specimens were low, moderately and highly contaminated, respectively. 
The results of HI revealed that ingestion is the main exposure pathway to the elements for both children and adults. Also, 
the values of 95% UCL of HI for non-carcinogenic risks of children and adults all were within the safe limit (= 1) for the 
local residents. Moreover, the 95% UCL values of carcinogenic risks (CR) indicated that the CR values of As, Cd, Cr, Pb 
and Ni are lower than the allowable range  (10–6–10–4), and therefore, these elements in the urban street dust cannot pose 
carcinogenesis to the local residents. The results of principal component analyses (PCA) and hierarchical cluster analysis 
(HCA) of the analyzed elements suggested that anthropogenic activities are the most important sources of As, Cd, Cr, Cu, 
Pb, Ni and Zn pollution, whereas natural geochemical processes (crustal soil) are the most important sources of Al. Finally, 
based on the findings, it was recommended that special attention be paid to the determination of the concentrations of other 
trace elements and particularly persistent organic pollutants (POPs) in the urban street dusts of the study area for assessing 
their potential ecological and health risks.
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Introduction

Nowadays, trace elements are known as useful indicators 
of soil contamination. These metals may be accumulated 
in surface soil through atmospheric deposition processes 
and pose a potential threat to public health and local eco-
systems because they constitute toxic pollutants if they 
exist in elevated amounts in an area (Cook et al. 2005; 
Tokalıog and Kartal 2006; Melaku et al. 2008; El-Gammal 
et al. 2011; Li et al. 2013).

Factors such as flushing of street runoff, transport by 
wind and also cleanup make the residence time of street 
dust shorter than soils and sediments (Charlesworth et al. 
2003; Zhang et al. 2013). Although like soil and sediment, 
dust also, originates primarily from the earth's crust, it can 
be considered as the major source of pollutants can pose 
great risks to human health. Street or road dust originates 
from natural (soil minerals) and anthropogenic sources 
such as road construction, vehicle emission, industrial dis-
charges, waste incineration or atmospheric depositions and 
is generally composed of car exhaust, wind transported 
particles and airborne particles (Adachi and Tainosho 
2005; Tokalıog and Kartal 2006; Sobhanardakani 2019). 
It should be noted that abrasion of automobile parts, cor-
rosion of building materials and atmospheric deposition 
can lead to accumulation of trace elements on the street 
(road) dust. Therefore, residents in the vicinity of produc-
tion industries, regions with high traffic intensity, high-
ways and vehicle repair shops are usually at poisoning 
risks associated with such trace elements (Alhassan et al. 
2012; Philip et al. 2017; Sobhanardakani 2018a).

Specific characteristics of trace elements including 
long biological half-lives, indestructibility, persistency 
and non-biodegradability, biomagnifications capability 
and bioaccumulation potential in living organism tissues, 
can lead to severe adverse health effects and environmental 
risks. Hence, the environmental pollution by these ele-
ments is a worldwide concern (Rezaei Raja et al. 2016; 
Giri et al. 2017; Sobhanardakani 2019).

Concerning the importance of the studied elements, it 
should be noted that aluminum is easily found at quantifi-
able rates in various tissues and biological fluids (Glynn 
1999). Kidney and liver dysfunctions, osteomalacia, 
fatigue, dementia dialectica, anemia, neurodegenerative 
disorders, dental caries, Parkinson and Alzheimer diseases 
are the main adverse effects of exposure to Al (Storey and 
Masters 1995; López et al. 2002; Rezaei Raja et al. 2016).

Arsenic, as a metalloid, is a human carcinogen even 
at low levels of exposure (Sobhanardakani et al. 2018). 
Anorexia, fever, hair loss, muscle spasms, goiter, herpes, 
kidney and liver damage decreased production of WBCs 
and RBCs and also nausea and vomiting are the main 

adverse effects of exposure to this element (Tasleem Jan 
et al. 2015; Sobhanardakani 2018b).

Cadmium, Cr (VI) and Pb are very toxic elements which 
are widely distributed in the environment through anthropo-
genic activities (Zhu et al. 2011; Chen et al. 2014; Hosseini 
et al. 2015; Sobhanardakani 2018a). Exposure to Cd leads to 
fragile bones, kidney disease, lung damage, anemia, hyper-
tension, cardiovascular disease, arthritis, hypoglycemia, 
diabetes, osteoporosis, and specially cancer (Ju et al. 2012; 
Liao et al. 2015), whereas nose ulcers, wheezing, asthma and 
shortness of breath are some of the symptoms that are asso-
ciated with inhaling high levels of Cr (VI) (Hosseini et al. 
2013, Sobhanardakani 2017, Sabzevari and Sobhanardakani 
2018). Besides, damage to the central nervous system and 
kidneys in adults, and enzymatic, skeletal, endocrine and 
immune system damage and delays in cognitive develop-
ment in children are the main consequences of exposure to 
Pb (Liu et al. 2010; Mohammadi et al. 2018).

Copper has a vital role in biological systems and is 
important for nerve conduction, synthesis of red blood 
cells, healthy hormone secretion, growth of connective tis-
sues and biological transfer of electrons (Saracoglu et al. 
2009; Ghafari and Sobhanardakani 2017; Sobhanardakani 
2017). Allergies, anorexia, adrenal hyperactivity, hair loss, 
depression, hyperactivity, strokes, kidney and liver dysfunc-
tions and also cancer are known as the important adverse 
effects of exposure to critical doses of this element (Ackah 
et al. 2014).

Although deficiency of nickel as an essential 
micronutrient for living organisms can cause nervous 
system damage, neurasthenia, inflammation, teratogenic, 
mutagenic, heart disorders and lung cancer (Das et  al. 
2008; Qu et al. 2013; Al-Khashman, 2014; Sobhanardakani 
2018c), exposure to high amounts of this element has been 
associated with health conditions such as genotoxicity 
hematotoxicity, teratogenicity, immunotoxicity and 
carcinogenicity (Cameron et al. 2011; Mohammadi et al. 
2018;  Akar et al. 2019; Sobhanardakani 2019).

Zinc as a vital structural and functional element for the 
normal growth and development of human body serves 
an important role in biological systems particularly in the 
mediation of redox reactions. However, it has been shown 
that exposure to high levels of this element can interfere 
with some of the vital human physiological processes 
(Mohammadi et al. 2018; Sabet Aghlidi et al. 2020).

The review of literature shows that many studies have so 
far been carried out on street dust contamination focusing on 
the analysis of the trace elements (Salim Akhter and Madany 
1993; De Miguel et al. 1997; Charlesworth et al. 2003; 
Ordonez et al. 2003; Yeung et al. 2003; Al-Khashman 2004; 
Sezgin et al. 2004; Ferreira-Baptista and De Miguel, 2005; 
Tokalıog and Kartal 2006; Rashed 2008; Christoforidis 
and Stamatis 2009; Lu et al. 2010; El-Gammal et al. 2011; 
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Alhassan et al. 2012; Li et al. 2013; Zhang et al. 2013; Harb 
et al. 2015; Xu et a. 2015; Suryawanshi et al. 2016; Philip 
et al. 2017; Dytłow and Górka-Kostrubiec 2021). However, 
few such studies have been conducted in the Iranian set-
ting (see for example, Saeedi et al. 2012; Salmanzadeh et al. 
2015; Soltani et al., 2015; Kamani et al. 2015, 2017, 2018; 
Heidari Sareban and Saeb 2018; Sadeghdoust et al. 2020).

Currently, due to rapid development of manufacturing 
industries and building activities, population growth and 
traffic density, Hamedan is facing severe environmental 
issues notably dust pollution. As similar studies in terms of 
analysis, source identification and human health risk assess-
ment of trace elements in the street dust had not previously 
been conducted in the city of Hamedan, the current study 
was carried out for the first time (1) to determine the con-
centrations of some trace elements (Al, As, Cd, Cr, Cu, Pb, 
Ni and Zn) in the street dusts collected from commercial, 
residential and industrial regions of the city of Hamedan in 
2019; (2) to identify the possible sources of these elements 
in the collected samples using principal component analyses 
(PCA) and hierarchical cluster analysis (HCA); (3) to assess 
the human health risks associated with the analyzed ele-
ments and (4) to measure the dust contamination rates using 
enrichment factor (EF), geo-accumulation index (I-geo), 
contamination/pollution index (CPI), integrated pollution 
index (IPI) and pollution load index (PLI).

Material and methods

Study area

The city of Hamedan as a metropolitan city in the west of 
Iran with area of 56  km2 and 554,406 residents is located at 
an altitude of about 1850 m above sea level. This city lies 
between longitudes 48° 31' E, and between latitudes 34° 48' 
N. The annual average precipitation and also annual average 
temperature of the study area are estimated as 317.7 mm and 
11.3 °C, respectively (Sobhanardakani 2018a,d).

Sample collection and analysis

In the present study, totally 378 street dust samples were 
obtained from 18 sampling sites (Fig. 1) during mid-April 
to mid-October 2019 through scraping the sidewalk with a 
spatula. Sampling sites were selected considering some cri-
teria such as traffic density; population activity from roads 
and streets at different land use areas including commercial/
business districts (BD), residential areas (RA) and industrial 
estates (IE). The dust specimens were then dried at room 
temperature (25 °C) for one week, were grinded by a mor-
tar and were sieved through a 0.900 mm sieve. For samples 
digestion, 1.00 g of each dust specimen was transferred into 

a digestion vessel and then 10.0 ml of nitric acid was added. 
In the next step, the specimens were heated to 90.0 °C, 
and were then let to cool at 20.0 °C and were refluxed for 
15 min. Next, 5.00 ml of 68% nitric acid  (HNO3) was added 
to each specimen and was refluxed again at 90.0 °C for half-
hour. This process was followed by the addition of  ddH2O 
(2.00 ml) and 3.00 ml of hydrogen peroxide  (H2O2) to each 
specimen. After the peroxide reaction started, the process 
was allowed to continue until effervescence subsided and the 
solutions were cooled (Zheng et al. 2005; Sobhanardakani 
2018a). At the end, the concentrations of the elements were 
determined using ICP-OES (710-ES, Varian, Australia) at 
following wavelengths (nm): 308.215 for Al, 188.980 for 
As, 226.502 for Cd, 267.716 for Cr, 324.754 for Cu, 220.353 
for Pb, 231.604 for Ni and 206.200 for Zn. Also, the qual-
ity control (QC) and quality assurance (QA) were both run 
through the method described by Lu et al. (2010) using SRM 
(SQC-001, Sigma-Aldrich, Spain). As the results showed, 
good accuracy in recovery rates (%) was achieved between 
98.2 and 101.5 for Al, 96.4 to 100.8 for As, 97.4 to 101.2 for 
Cd, 95.9 to 100.3 for Cr, 97.1 to 102.6 for Cu, 95.8 to 101.7 
for Pb, 94.8 to 100.3 for Ni and 96.2 to 103.5 for Zn. The 
values of limits of detection (LOD) and limits of quantifica-
tion (LOQ) are presented in Table 2.

Human health risk assessment

To assess the human exposure to trace elements in street 
dusts via the three exposure routes including oral or inges-
tion (Ding), inhalation (Dinh) and also dermal contact 
(Ddermal), the model established by the USEPA was used, 
in which the exposure rates are calculated based on Eqs. 1 
to 3 (USEPA 1989; Li et al. 2014; Sobhanardakani 2019):

where Ding stands for the dose contacted via ingestion of 
dust in mg/kg/day; C indicates the exposure point concentra-
tion of the element in mg/kg; IngR is the ingestion rate; EF, 
ED, BW and AT represent the exposure frequency, exposure 
time, average body weight and average time, respectively. In 
this study, IngR was considered 200 mg/day for children and 
100 mg/day for adults; EF was considered 180 days per year; 
ED was considered 6 years for children and 24 years for 
adults; BW was considered 15.0 kg for children and 70.0 kg 
for adults; and AT was considered ED × 365 days for non-
carcinogens and 26,280 (72.0 × 365) days for carcinogens 
(USEPA 1996).

(1)Ding = C ×
IngR × EF × ED

BW × AT
× 10

−6
,

(2)Dinh = C ×
InhR × EF × ED

PEF × BW × AT
,
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where Dinh (mg/kg/day) represents the dose contacted via 
inhalation of street dust; InhR and PEF show the inhalation 
rate and particle emission factor, respectively. In this study, 
InhR was considered 7.60  m3/day for children and 20.0  m3/
day for adults and PEF was considered 1.36 ×  109  m3/kg 
(USEPA 1996; Xu et al. 2015).

where Ddermal (mg/kg/day) shows the dose absorbed 
through dermal (skin) contact with street dust; SA, SL and 
ABS stand for the exposed skin area, the skin adherence fac-
tor and the dermal absorption factor for the studied elements. 
In the present study, SA was considered 2800  cm2 for chil-
dren and 5700  cm2 for adults, SL was considered 0.200 mg 
 cm2/day for children and 0.070 mg  cm2/day for adults and 
ABS was considered 0.001 for the studied elements (Zheng 
et al. 2010a; Sobhanardakani 2019). 

The carcinogenic risk via inhalation exposure route of As, 
Cd, Cr, Pb and Ni was calculated based on Eq. 4:

(3)Ddermal = C ×
SA × SL × ABS × EF × ED

BW × AT
× 10

−6
,

in this equation, LADD (mg/kg/day) is considered as the 
lifetime average daily dose (USEPA 2001).

Risk characterization

In the present study, the potential non-carcinogenic (HQ) 
and carcinogenic risks (CR) for each element were com-
puted based on Eqs. 5 to 7, respectively:

, where D and RfD stand for the average daily dose 
and a specific reference dose, respectively, as presented in 
Table 1 (Sobhanardakani 2019).

(4)LADD =
C × EF

PEF × AT
×
[

InhRchild × EDchild

BWchild
+

InhRadult × EDadult

BWadult

]

,

(5)HQ =
D

RfD
,

(6)HI =
∑

HQi,

Fig. 1  Sampling sites of urban street dust in city of Hamedan
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The hazard index (HI) is used to estimate the health risks 
through above-mentioned exposure routes and is determined 
by calculating the sum of hazard quotients. When HI ≤ 1.00, 
no adverse effects are expected to occurs via exposure to 
dust, while HI > 1.00 represents possible health effects 
(Zhang et al. 2013).

in this equation, CR represents the carcinogenic risk and 
SF indicates the slope factor as mentioned in Table 1 (Sob-
hanardakani 2019).

Assessment of dust contamination

Enrichment factors (EF)

Enrichment factors (EFs) are used to diagnose the origin of 
elements in dusts including anthropogenic influences and 
natural background concentrations (Han et al. 2006). In this 
regard, EF > 10.0 indicates the anthropogenic origins of ele-
ments, while EF < 10.0 shows their crustal source (Li et al. 
2013; Latif et al. 2014). In this work, based on the reasons 
described by Benhaddya and Hadjel (2014), enrichment fac-
tor values were computed with respect to Al as the reference 
element in accordance with Eq. 8 (Benhaddya and Hadjel 
2014):

where (Cn/Cref) sample is the concentration ratio of a 
studied element in the street dust specimens and (Bn/Bref) 
baseline represents the concentration ratio of Al in the back-
ground topsoil (Sutherland 2000).

Seven contamination classifications have been recognized 
on the basis of the EF values as follows (Wedepohl 1995; 
Tytła and Kostecki 2019):

EF < 1.00 No enrichment (NE)
1.00 ≤ EF < 3.00 Minor enrichment (ME)
3.00 ≤ EF < 5.00 Moderate enrichment (MDE)
5.00 ≤ EF < 10.0 Moderately severe enrichment 

(MSE)

(7)CR = Dinh × SF,

(8)EF =

(

Cn

Cref

)

streetdust∕

(

Bn

Bref

)

background,

10.0 ≤ EF < 25.0 Severe enrichment (SE)
25.0 ≤ EF < 50.0 Very severe enrichment (VSE)
EF > 50.0 Extremely severe enrichment 

(ESE)

Pollution indices

In this work, the contamination level of the studied ele-
ments and consequently the general contamination class 
of dust specimen were assessed using pollution indices 
including contamination/pollution index (CPI), integrated 
pollution index (IPI) and pollution load index (PLI) (Chen 
et al. 2005; Lu et al. 2014):

These indices were computed in accordance with Eqs. 9 
to 11: 

A CPI > 1.00 and a CPI < 1.00 are associated with the 
pollution range the contamination range, respectively.

, where “n” refers to the number of the analyzed 
elements.

Also, the degree of contamination index (DC) was 
computed to assess the additive and synergistic effects of 
elements on human health (Eq. 12) (Hakanson 1980; Sun 
et al. 2010; Wang et al. 2013; Hu et al. 2014; Mirzaei et al. 
2014; Shang et al. 2015):

DC =
∑n

1
CPI , (12).

CPI < 0.100 Very slight contamination (VSC)
0.100–0.250 Slight contamination (SLC)
0.260–0.500 Moderate contamination (MC)
0.510–0.750 Severe contamination (SC)
0.760–1.00 Very severe contamination (VSC)
1.10–2.00 Slight pollution (SLP)

(9)CPI =
Concentrationofelementindustsample

Referencevalue
,

(10)IPI = mean(CPIi),

(11)PLI =
(

CPI1 × CPI2 × CPI3 ×⋯ × CPIn
)1∕n

,

Table 1  Reference dose (RfD) and slope factor (SF) of studied elements (Ferreira-Baptista and de Miguel 2005; Xu et al. 2015; Iwegbue et al. 
2017; Sobhanardakani 2018c)

Element Al As Cd Cr Cu Pb Ni Zn

RfDing 10.0 ×  10–1 3.00 ×  10–4 1.00 ×  10–3 3.00 ×  10–3 4.00 ×  10–2 3.50 ×  10–3 2.00 ×  10–2 3.00 ×  10–1

RfDinh 1.43 ×  10–3 43.0 ×  10–1 1.00 ×  10–3 2.86 ×  10–5 4.02 ×  10–2 3.52 ×  10–3 2.06 ×  10–2 3.00 ×  10–1

RfDdermal 1.00 ×  10–1 1.23 ×  10–4 1.00 ×  10–5 6.00 ×  10–5 1.20 ×  10–2 5.25 ×  10–4 5.40 ×  10–3 6.00 ×  10–2

Inhal. CSF 151 ×  10–1 63.0 ×  10–1 5.00 ×  10–3 8.50 ×  10–3 8.40 ×  10–1
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2.10–4.00 Moderate pollution (MP)
4.10–8.00 Severe pollution (SP)
8.10–16.0 Very severe pollution (VSP)
CPI > 16.0 Excessive pollution (EXP)

IPI < 1.00 Low PLI < 1.00 Unpolluted (UP)
1.00 < IPI < 2.00 Middle 1.00 ≤ PLI < 2.00 Moderately polluted 

(MP)
IPI > 2.00 High 2.00 ≤ PLI < 3.00 Strongly polluted (SP)

PLI ≥ 3.00 Extremely polluted 
(EP)

DC < 6.00 Low degree of contamination (LDC)
6.00 < DC ≤ 12.0 Moderate degree of contamination (MDC)
12.0 < DC ≤ 24.0 Considerable degree of contamination (CDC)

Geo‑accumulation index (I‑geo)

In this work, I-geo was computed for the evaluation and 
classification of dust contamination levels based on Eq. 13 
(Gonzáles-Macías et al. 2006; Sabet Aghlidi et al. 2020):

In this equation, Cn and Bn refer to the concentrations of 
the tested elements in the dust samples and the reference 
value of each analyzed element, respectively. In Eq. 13, the 
constant (1.50) was used to minimize the effect of possible 
changes in the geochemical reference values (Mohammadi 
Roozbahani et al., 2015). The classification of I-geo is shown 
in below (Muller 1969; Loska et al. 2004; Benhaddya and 
Hadjel 2014);

I-geo ≤ 0.000 Unpolluted (UP)
0.000 < I-geo ≤ 1.00 Unpolluted to moderately polluted 

(UPMP)
1.00 < I-geo ≤ 2.00 Moderately polluted (MP)
2.00 < I-geo ≤ 3.00 Moderately to strongly polluted 

(MSP)
3.00 < I-geo ≤ 4.00 Strongly polluted (SP)
4.00 < I-geo ≤ 5.00 Strongly to very strongly polluted 

(SVSP)
I-geo > 5.00 Very strongly polluted (VSP)

Statistical analysis

The normality of the obtained data and the homogeneity 
of the variance were examined using Kolmogorov–Smirnov 
(K–S) test and ANOVA, respectively. Moreover, the correla-
tion between the element concentrations of the street dust 

(13)I − geo = log2
Cn

1.5Bn

specimens was checked by Pearson's correlation coefficient 
(PCC). To compare the different sampling sites in terms of 
concentrations of the elements in dust samples, independ-
ent samples t test was run. All statistical analyses were done 
using SPSS version 19.0 (SPSS Inc., Chicago, IL, USA) 
statistical package.

Multivariate analysis and contamination source 
identification

In the present study, principal component analysis (PCA) 
was performed to find out the contamination sources. More-
over, PCA and hierarchical cluster analysis (HCA) were con-
ducted to distinguish the different groups of the analyzed 
elements from different sources.

Results and discussion

Table 2 illustrates the descriptive statistics for the concentra-
tions of the analyzed elements in the dust specimens of the 
study area. As shown in Table 2, the Kolmogorov–Smirnov 
test confirmed that all the obtained data about the analyzed 
elements are normally distributed. Based on the results, the 
concentrations of the elements (mg/kg) varied between 1234 
and 19,300 for Al, 0.150 and 6.20 for As, 0.030 and 0.940 
for Cd, 6.00 and 87.4 for Cr, 10.4 and 164 for Cu, 22.0 and 
159 for Pb, 55.0 and 107 for Ni and 85.2 and 426 for Zn. The 
average concentrations for the elements were 11,058, 2.31, 
0.225, 41.3, 48.8, 65.2, 79.2 and 211 mg/kg, respectively. 
The descending order of the median values for the total 
concentrations of the analyzed elements (Al > Zn > Ni > P
b > Cu > Cr > As > Cd) could be taken to indicated distinct 
changes in the rates of elements among the dust specimens 
as well as the diversity in the levels of elements due to their 
origins and the intensity and the manner of anthropogenic 
activities (Xu et al. 2015). Besides, the high amounts of 
Zn in dust samples compared to other analyzed elements 
(except Al) may have been related to the tire dust produced 
by the cars speeding up on mostly worn-out and rough pave-
ment surfaces beside corrosion of vehicular parts, exhaust 
emissions and also industrial activities in the study area. 
This elevated concentration of zinc might also have been 
the result of the population density in the study area and 
could have commercial and domestic roots. These findings 
are in line with those of the other researchers (see, for exam-
ple, Chon et al. 1995; De Miguel et al. 1997; Kim et al. 1998; 
Sutherland et al. 2000; Rasmussen et al. 2001; Banerjee 2003; 
Charlesworth et al. 2003; Ordonez et al. 2003; Robertson et al. 
2003; Yeung et al. 2003; Duzgoren-Aydin et al. 2006; Han 
et al. 2006, 2008; Christoforidis and Stamatis 2009; Lu et al. 
2010; Zheng et al. 2010a; Duong and Lee 2011; El-Gammal 
et al. 2011; Li et al. 2013; Zhang et al. 2013; Xu et al. 2015; 
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Kamani et al. 2015, 2017) who attributed the high amounts 
of Zn in the street dust to tire abrasion, lubricants, corro-
sion of vehicular parts, brake abrasion, industrial activi-
ties, exhaust emissions and also the population density. The 
results of other similar studies conducted in cities of Tehran, 
Eslamshahr and Isfahan, Iran, documented the descending 
order of the mean concentrations of the analyzed elements 
as Zn > Cu > Pb > Ni > Cr > Cd; Zn > Cu > Pb > Cd > Ni > Cr 
and Zn > Pb > Cu > Ni > As > Cd (Soltani et  al., 2015; 
Kamani et al. 2017, 2018). On the other hand, Saeedi et al. 
(2012), reported that the minimum and maximum mean con-
centrations of the analyzed elements in the street dusts of the 

city of Tehran were found to be related to Cd and Zn with 
10.7 mg/kg and 873 mg/kg, respectively.

In the current study, the total concentrations of all the 
tested elements except Pb in different sites decreased in the 
order of IA > CA > RA, while for Pb was: CA > IA > RA. 
Similarly, Kamani et al. (2015) argued that the higher con-
centrations of Pb in the street dust of the commercial regions 
of the city of Zahedan, east of Iran, as compared to Pb rates 
in the residential and industrial areas could be due to vehicle 
emissions, historical long-term use of leaded fuels and ongo-
ing emissions from tire wear, bearing wear and lubricating 
oils.

Table 2  Descriptive statistics and LOD and LOQ values for the concentrations of the selected elements in the street dust samples of the com-
mercial, residential and industrial regions of the study area

*  Turekian and Wedepohl (1961); Azimzadeh and Khademi (2013); Mazloomi et al. (2017); Amouei et al. (2018);Sabet Aghlidi et al. (2020)

Study area Element 
(mg/kg)

Min Max Median Mean SD K-Sp CV (%) Reference values* LOD (mg/kg) LOQ (mg/kg)

Commercial (n = 126) Al 5380 15,100 10,987 11,011 2033 0.727 19.0 82,300 0.084 0.260
As 0.150 4.20 2.10 2.10 0.990 0.453 47.0 2.00 0.061 0.200
Cd 0.030 0.800 0.155 0.198 0.157 1.371 79.0 0.230 0.073 0.240
Cr 6.00 84.9 44.8 43.1 20.5 0.733 48.0 20.8 0.068 0.190
Cu 10.4 86.1 41.8 42.9 17.0 0.485 40.0 28.3 0.087 0.280
Pb 23.1 159 72.6 73.5 28.1 0.356 38.0 34.2 0.049 0.150
Ni 63.8 95.3 81.7 81.9 6.80 0.633 83.0 45.7 0.062 0.200
Zn 85.2 312 186 183 56.3 0.858 31.0 40.2 0.077 0.260

Residential (n = 126) Al 1234 16,200 10,240 10,204 2342 0.953 23.0 82,300 0.079 0.250
As 0.150 3.60 1.60 1.70 0.927 0.562 54.0 2.00 0.070 0.210
Cd 0.050 0.370 0.165 0.183 0.077 0.746 42.0 0.230 0.068 0.200
Cr 18.4 72.8 30.4 33.6 13.6 1.104 41.0 20.8 0.059 0.180
Cu 10.6 68.7 40.3 39.9 15.9 0.888 40.0 28.3 0.056 0.180
Pb 22.0 99.2 44.2 50.3 18.4 1.062 37.0 34.2 0.051 0.150
Ni 55.0 90.3 75.7 73.8 8.24 0.771 11.0 45.7 0.073 0.240
Zn 88.3 365 183 178 66.3 0.693 37.0 40.2 0.066 0.190

Industrial (n = 126) Al 4610 19,300 11,950 11,959 2810 0.626 23.0 82,300 0.082 0.250
As 1.10 6.20 3.00 3.12 1.11 0.671 36.0 2.00 0.064 0.200
Cd 0.090 0.940 0.245 0.295 0.179 0.902 61.0 0.230 0.066 0.200
Cr 21.6 87.4 44.0 47.1 16.6 0.669 35.0 20.8 0.060 0.180
Cu 21.5 164 59.9 63.4 23.1 1.222 36.0 28.3 0.075 0.230
Pb 28.4 134 67.6 71.8 23.9 0.576 33.0 34.2 0.059 0.180
Ni 58.3 107 81.8 81.9 11.2 0.382 14.0 45.7 0.068 0.210
Zn 184 426 260 271 70 0.911 26.0 40.2 0.052 0.160

Total (n = 378) Al 1234 19,300 10,832 11,058 2503 0.978 23.0 82,300 0.076 0.230
As 0.15 6.20 2.30 2.31 1.17 0.629 51.0 2.00 0.069 0.210
Cd 0.030 0.940 0.190 0.225 0.152 1.886 68.0 0.230 0.065 0.190
Cr 6.00 87.4 39.5 41.3 17.9 0.925 43.0 20.8 0.057 0.170
Cu 10.4 164 46.0 48.8 21.5 0.996 44.0 28.3 0.073 0.220
Pb 22.0 159 64.3 65.2 25.9 0.800 40.0 34.2 0.060 0.180
Ni 55.0 107 79.3 79.2 9.65 0.784 12.0 45.7 0.059 0.180
Zn 85.2 426 202 211 77.1 1.524 37.0 40.2 0.061 0.190
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As shown in Table 3, the maximum exposure doses to 
studied elements in the street dusts of the study area with 
1.27 ⨯  10–1 and 1.37 ⨯  10–2 mg/kg/day, both belonged to Al. 
Based on the results of daily exposure dose analyses, it was 
found that in both children and adults, the daily doses of the 
analyzed elements through ingestion of street dust are higher 
than those obtained by the other routes. Moreover, children 
seem to be exposed to higher amounts of elements in street 
dust than adults are through each of the major routes. For 
carcinogen agents, the maximum dose values of LADD 
for chromium, lead and nickel were 1 ⨯  10–9 mg/kg/day, 
while for arsenic and cadmium, they were 1 ⨯  10–10 and 1 ⨯ 
 10–11 mg/kg/day.

The hazard quotient (HQ) values for the three exposure 
pathways, and HI and CR of the tested elements in the street 
dusts of the study area are shown in Table 4. As indicated, 

for non-carcinogenic effect, the ingestion of the street dust 
particles appears to have been the main pathway of expo-
sure to the elements, followed by skin contact and inhala-
tion. It should be noted that since the studied elements were 
digested with nitric acid, therefore, these element concentra-
tions may have led to an overestimation of the health risk 
estimates (Praveena et al. 2015; Zheng et al. 2020).

Li et al. (2013) noted that except for Al, ingestion was 
the main pathway of exposure to elements of urban street 
dust particles and thus, compared with skin contact, they 
posed a higher health risk to both children and adults. 
Therefore, inhalation of street dust posed an almost negli-
gible risk compared with the other exposure routes. These 
findings, they argued, could be attributed to more frequent 
hand-to-mouth habits of children, and also to the daily out-
door activities (i.e., wiping sweat and food consumption 

Table 3  Daily exposure dose of the analyzed elements in street dust samples for children and adults through ingestion, inhalation and dermal 
contact pathways (mg/kg/day)

95% UCL: Upper limit of the 95% confidence interval for the mean

Element Al As Cd Cr Cu Pb Ni Zn

Children
Min 8.11 ×  10–3 9.86 ×  10–7 1.97 ×  10–7 3.94 ×  10–5 6.84 ×  10–5 1.45 ×  10–4 3.62 ×  10–4 5.60 ×  10–4

Ding Max 1.27 ×  10–1 4.08 ×  10–5 6.18 ×  10–6 5.75 ×  10–4 1.08 ×  10–3 1.04 ×  10–3 7.04 ×  10–4 2.80 ×  10–3

95% UCL 6.91 ×  10–2 1.44 ×  10–5 1.41 ×  10–6 2.58 ×  10–4 3.05 ×  10–4 4.07 ×  10–4 4.95 ×  10–4 1.32 ×  10–3

Min 2.27 ×  10–7 2.76 ×  10–11 5.51 ×  10–12 1.10 ×  10–9 1.91 ×  10–9 4.04 ×  10–9 1.01 ×  10–8 1.56 ×  10–8

Dinh Max 3.55 ×  10–6 1.14 ×  10–9 1.73 ×  10–10 1.61 ×  10–8 3.01 ×  10–8 2.92 ×  10–8 1.97 ×  10–8 7.83 ×  10–8

95% UCL 1.93 ×  10–6 4.03 ×  10–10 3.93 ×  10–11 7.21 ×  10–9 8.52 ×  10–9 1.14 ×  10–8 1.38 ×  10–8 3.68 ×  10–8

Min 2.27 ×  10–5 2.76 ×  10–9 5.52 ×  10–10 1.10 ×  10–7 1.91 ×  10–7 4.04 ×  10–7 1.01 ×  10–6 1.57 ×  10–6

Ddermal Max 3.55 ×  10–4 1.14 ×  10–7 1.73 ×  10–8 1.61 ×  10–6 3.01 ×  10–6 2.92 ×  10–6 1.97 ×  10–6 7.83 ×  10–6

95% UCL 1.93 ×  10–4 4.03 ×  10–8 3.93 ×  10–9 7.21 ×  10–7 8.52 ×  10–7 1.14 ×  10–6 1.38 ×  10–6 3.68 ×  10–6

Min 8.13 ×  10–3 9.89 ×  10–7 1.97 ×  10–7 3.95 ×  10–5 6.86 ×  10–5 1.45 ×  10–4 3.63 ×  10–4 5.62 ×  10–4

Total Max 1.27 ×  10–1 4.09 ×  10–5 6.20 ×  10–6 5.77 ×  10–4 1.08 ×  10–3 1.04 ×  10–3 7.06 ×  10–4 2.81 ×  10–3

95% UCL 6.93 ×  10–2 1.44 ×  10–5 1.41 ×  10–6 2.59 ×  10–4 3.06 ×  10–4 4.08 ×  10–4 4.96 ×  10–4 1.32 ×  10–3

Adults
Min 8.69 ×  10–4 1.06 ×  10–7 2.11 ×  10–8 4.23 ×  10–6 7.33 ×  10–6 1.55 ×  10–5 3.87 ×  10–5 6.00 ×  10–5

Ding Max 1.36 ×  10–2 4.37 ×  10–6 6.62 ×  10–7 6.16 ×  10–5 1.16 ×  10–4 1.12 ×  10–4 7.54 ×  10–5 3.00 ×  10–4

95% UCL 7.40 ×  10–3 1.55 ⨯  10–6 1.51 ⨯  10–7 2.76 ⨯  10–5 3.27 ⨯  10–5 4.36 ⨯  10–5 5.30 ⨯  10–5 1.41 ⨯  10–4

Min 1.28 ⨯  10–7 1.55 ⨯  10–11 3.11 ⨯  10–12 6.22 ⨯  10–10 1.08 ⨯  10–9 2.28 ⨯  10–9 5.70 ⨯  10–9 8.83 ⨯  10–9

Dinh Max 2.00 ⨯  10–6 6.42 ⨯  10–10 9.74 ⨯  10–11 9.05 ⨯  10–9 1.70 ⨯  10–8 1.65 ⨯  10–8 1.11 ⨯  10–8 4.41 ⨯  10–8

95% UCL 1.09 ⨯  10–6 2.27 ⨯  10–10 2.21 ⨯  10–11 4.06 ⨯  10–9 4.80 ⨯  10–9 6.42 ⨯  10–9 7.80 ⨯  10–9 2.08 ⨯  10–8

Min 3.47 ⨯  10–6 4.22 ⨯  10–10 8.43 ⨯  10–11 1.69 ⨯  10–8 2.92 ⨯  10–8 6.18 ⨯  10–8 1.55 ⨯  10–7 2.39 ⨯  10–7

Ddermal Max 5.42 ⨯  10–5 1.74 ⨯  10–8 2.64 ⨯  10–9 2.46 ⨯  10–7 4.61 ⨯  10–7 4.47 ⨯  10–7 3.01 ⨯  10–7 1.20 ⨯  10–6

95% UCL 2.95 ⨯  10–5 6.17 ⨯  10–9 6.00 ⨯  10–10 1.10 ⨯  10–7 1.30 ⨯  10–7 1.74 ⨯  10–7 2.11 ⨯  10–7 5.63 ⨯  10–7

Min 8.73 ⨯  10–4 1.06E ⨯  10–7 2.12 ⨯  10–8 4.23 ⨯  10–6 7.36 ⨯  10–6 1.56 ⨯  10–5 3.89 ⨯  10–5 6.02 ⨯  10–5

Total Max 1.37 ⨯  10–2 4.39 ⨯  10–6 6.65 ⨯  10–7 6.19 ⨯  10–5 1.16 ⨯  10–4 1.12 ⨯  10–4 7.57 ⨯  10–5 3.01 ⨯  10–4

95% UCL 7.43 ⨯  10–3 1.56 ⨯  10–6 1.52 ⨯  10–7 2.77 ⨯  10–5 3.28 ⨯  10–5 4.38 ⨯  10–5 5.32 ⨯  10–5 1.42 ⨯  10–4

LADD
Min 7.48 ⨯  10–12 1.49 ⨯  10–12 2.99 ⨯  10–10 1.10 ⨯  10–9 2.74 ⨯  10–9

Max 3.09 ⨯  10–10 4.68 ⨯  10–11 4.36 ⨯  10–9 7.92 ⨯  10–9 5.33 ⨯  10–9

95% UCL 1.09 ⨯  10–10 1.06 ⨯  10–11 1.96 ⨯  10–9 3.09 ⨯  10–9 3.75 ⨯  10–9
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outside) of adults, and would lend support to the possibil-
ity of the ingestion of trace elements of street dust (Li et al. 
2013; Sobhanardakani 2018a,b). Xu et al. (2015) found 
that in the case of children and adults, exposure to resus-
pended particles of street dust through ingestion route was 
2–5 times higher than it was through the other routes (Xu 
et al. 2015). Such findings agreed with the results of other 
studies (Ferreira-Baptista and de Miguel 2005; Zheng 
et al. 2010a,b; Zhang et al. 2013; Lu et al. 2014). Mean-
while, in the target population differences were observed 
between the 95% UCL values of the HI for all the studied 
trace elements in the street dust samples.

In the present study, values of hazard index (HI) 
decreased in the order of Pb > Cr > Al > As > Ni > Cu > Z
n > Cd for children and Pb > Al > As > Ni > Cr > Cu > Zn > 
Cd, for adults and all values were far below the safe limit 
(= 1) suggested by USEPA. These findings suggest that non-
carcinogenic health risk to local residents could be consid-
ered as negligibly small. In this regard, Healy et al. (2008) 
and Sabzevari and Sobhanardakani (2018) found that lead 
in the urban environments is the main source of blood Pb for 
children as they ingest the household or street contaminated 
dust more (Healy et al. 2008; Sabzevari and Sobhanardakani 
2018), and consequently, this exposure of children to the 

Table 4  The hazard quotients (HQ) and carcinogenic risks (CR) of the analyzed elements trough the three exposure routes in the street dust of 
the city of Hamedan

Element Al As Cd Cr Cu Pb Ni Zn

Children
Min 8.11 ⨯  10–3 3.29 ⨯  10–3 1.97 ⨯  10–4 1.31 ⨯  10–2 1.71 ⨯  10–3 4.14 ⨯  10–2 1.81 ⨯  10–2 1.87 ⨯  10–3

HQing Max 1.27 ⨯  10–1 1.36 ⨯  10–1 6.18 ⨯  10–3 1.92 ⨯  10–1 2.70 ⨯  10–2 2.97 ⨯  10–1 3.52 ⨯  10–2 9.33 ⨯  10–3

95% UCL 6.91 ⨯  10–2 4.80 ⨯  10–2 1.41 ⨯  10–3 8.60 ⨯  10–2 7.62 ⨯  10–3 1.16 ⨯  10–1 2.48 ⨯  10–2 4.40 ⨯  10–3

Min 1.59 ⨯  10–4 6.42 ⨯  10–12 5.51 ⨯  10–9 3.85 ⨯  10–5 4.77 ⨯  10–8 1.15 ⨯  10–6 4.90 ⨯  10–7 5.20 ⨯  10–8

HQinh Max 2.48 ⨯  10–3 2.65 ⨯  10–10 1.73 ⨯  10–7 5.63 ⨯  10–4 7.52 ⨯  10–7 8.29 ⨯  10–6 9.56 ⨯  10–7 2.61 ⨯  10–7

95% UCL 1.35 ⨯  10–3 9.37 ⨯  10–11 3.93 ⨯  10–8 2.52 ⨯  10–4 2.13 ⨯  10–7 3.24 ⨯  10–6 6.70 ⨯  10–7 1.23 ⨯  10–7

Min 2.27 ⨯  10–4 2.24 ⨯  10–5 5.52 ⨯  10–5 1.83 ⨯  10–3 1.59 ⨯  10–5 7.70 ⨯  10–4 1.87 ⨯  10–4 2.62 ⨯  10–5

HQdermal Max 3.55 ⨯  10–3 9.27 ⨯  10–4 1.73 ⨯  10–3 2.68 ⨯  10–2 2.51 ⨯  10–4 5.56 ⨯  10–3 3.65 ⨯  10–4 1.31 ⨯  10–5

95% UCL 1.93 ⨯  10–3 3.28 ⨯  10–4 3.93 ⨯  10–4 1.20 ⨯  10–2 7.10 ⨯  10–5 2.17 ⨯  10–3 2.55 ⨯  10–4 6.13 ⨯  10–5

Min 8.50 ⨯  10–3 3.31 ⨯  10–3 2.52 ⨯  10–4 1.50 ⨯  10–2 1.73 ⨯  10–3 4.14 ⨯  10–2 1.83 ⨯  10–2 1.90 ⨯  10–3

HI Max 1.33 ⨯  10–1 1.37 ⨯  10–1 7.91 ⨯  10–3 2.19 ⨯  10–1 2.73 ⨯  10–2 3.03 ⨯  10–1 3.56 ⨯  10–2 9.34 ⨯  10–3

95% UCL 7.24 ⨯  10–2 4.83 ⨯  10–2 1.80 ⨯  10–3 9.82 ⨯  10–2 7.69 ⨯  10–3 1.18 ⨯  10–1 2.51 ⨯  10–2 4.46 ⨯  10–3

Carcinogenic risk
Min 4.17 ⨯  10–10 3.47 ⨯  10–11 5.50 ⨯  10–12 3.43 ⨯  10–11 8.48 ⨯  10–9

Max 1.72 ⨯  10–8 1.09 ⨯  10–9 8.05 ⨯  10–11 2.48 ⨯  10–10 1.65 ⨯  10–8

95% UCL 6.08 ⨯  10–9 2.48 ⨯  10–10 3.61 ⨯  10–11 9.69 ⨯  10–11 1.16 ⨯  10–8

Adults
Min 8.69 ⨯  10–4 3.53 ⨯  10–4 2.11 ⨯  10–5 2.07 ⨯  10–7 1.83 ⨯  10–4 4.43 ⨯  10–3 1.93 ⨯  10–3 2.00 ⨯  10–4

HQing Max 1.36 ⨯  10–2 1.46 ⨯  10–2 6.62 ⨯  10–4 3.02 ⨯  10–6 2.90 ⨯  10–3 3.20 ⨯  10–2 3.77 ⨯  10–3 1.00 ⨯  10–3

95% UCL 7.40 ⨯  10–3 5.17 ⨯  10–3 1.51 ⨯  10–4 1.35 ⨯  10–6 8.17 ⨯  10–4 1.25 ⨯  10–2 2.65 ⨯  10–3 4.70 ⨯  10–4

Min 8.95 ⨯  10–5 3.60 ⨯  10–12 3.11 ⨯  10–9 2.17 ⨯  10–5 2.70 ⨯  10–8 6.48 ⨯  10–7 2.77 ⨯  10–7 2.94 ⨯  10–8

HQinh Max 1.40 ⨯  10–3 1.49 ⨯  10–10 9.74 ⨯  10–8 3.16⨯  10–4 4.25 ⨯  10–7 4.69 ⨯  10–6 5.39 ⨯  10–7 1.47 ⨯  10–7

95% UCL 7.62 ⨯  10–4 5.28 ⨯  10–11 2.21 ⨯  10–8 1.42 ⨯  10–4 1.20 ⨯  10–7 1.82 ⨯  10–6 3.79 ⨯  10–7 6.93 ⨯  10–8

Min 3.47 ⨯  10–5 3.43 ⨯  10–6 8.43 ⨯  10–6 2.82 ⨯  10–4 2.43 ⨯  10–6 1.18 ⨯  10–4 2.87 ⨯  10–5 3.98 ⨯  10–6

HQdermal Max 5.42 ⨯  10–4 1.41 ⨯  10–4 2.64 ⨯  10–4 4.10 ⨯  10–3 3.84 ⨯  10–5 8.51 ⨯  10–4 5.57 ⨯  10–5 2.00 ⨯  10–5

95% UCL 2.95 ⨯  10–4 5.02 ⨯  10–5 6.00 ⨯  10–5 1.83 ⨯  10–3 1.08 ⨯  10–5 3.31 ⨯  10–4 3.91 ⨯  10–5 9.38 ⨯  10–6

Min 9.93 ⨯  10–4 3.56 ⨯  10–4 2.95 ⨯  10–5 3.04 ⨯  10–4 1.85 ⨯  10–4 4.55 ⨯  10–3 1.96 ⨯  10–3 2.04 ⨯  10–4

HI Max 1.55 ⨯  10–2 1.47 ⨯  10–2 9.26 ⨯  10–4 4.42 ⨯  10–3 2.94 ⨯  10–3 3.28 ⨯  10–2 3.83 ⨯  10–3 1.02 ⨯  10–3

95% UCL 8.46 ⨯  10–3 5.22 ⨯  10–3 2.11 ⨯  10–4 1.97 ⨯  10–3 8.28 ⨯  10–4 1.28 ⨯  10–2 2.69 ⨯  10–3 4.79 ⨯  10–4

Carcinogenic risk
Min 2.34 ⨯  10–10 1.96 ⨯  1011 3.11 ⨯  10–12 1.94 ⨯  10–11 4.79 ⨯  10–9

Max 9.70 ⨯  10–9 6.14 ⨯  10–10 4.53 ⨯  10–11 1.40 ⨯  10–10 9.32 ⨯  10–9

95% UCL 3.43 ⨯  10–9 1.39 ⨯  10–10 2.03 ⨯  10–11 5.46 ⨯  10–11 6.55 ⨯  10–9
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contaminated dust poses more potential health risks to them 
than it does to adults. In general, it can be noted that the 
HQs of all the exposure routes and also HIs of all the tested 
elements are higher for children than they are for adults. 
Hence, children may face more potential non-cancer health 
risks via exposure to street dust. Overall, concerning the HI 
values (Table 4), it can be argued that Pb with 1.18 ⨯  10–1 
for children and 1.28 ⨯  10–2 for adults and Cd with 1.80 ⨯ 
 10–3 for children and 2.11 ⨯  10–4 for adults poses the highest 
and lowest risk on the target population, respectively. Simi-
larly, Li et al. (2013) reported that in comparison with other 
trace elements, Pb had the highest risk value (1.25 ⨯  10–1 for 
children and 1.36 ⨯  10–2 for adults) in urban street dust from 
Nanjing, China (Li et al. 2013). Sadeghdoust et al. (2020) 
also confirmed that for all the analyzed elements (As, Cd, 
Cr, Cu, Pb, Ni and Zn) in street dusts of the city of Dezful, 
south of Iran, the HI values were higher for children than 
they were for adults, and therefore, the risk of exposure to 
these elements could be higher for children. Moreover, the 
highest HQ in children and adults could be attributed to Pb 
ingestion.

As listed in Table 4, the CR of the analyzed elements 
for the local inhabitants due to street dust exposure in the 
study areas decreased in the order of Ni > As > Cd > Pb > Cr. 
Based on the results obtained, the CR levels of As, Cd, Cr, 
Pb and Ni were found to be lower than the allowable range 
 (10–6–10–4), indicating that these elements in the urban street 
dust cannot pose carcinogenesis to the local residents. In 
another study, Sadeghdoust et al. (2020) reported that the 
CR levels of As, Cd, Cr, Pb and Ni in street dust of city of 
Dezful, Southwest of Iran were within the allowable range. 
Besides, Li et al. (2013) reported that the CR levels of Cd, 
Cr and Ni in urban street dust of city of Nanjing, China, were 
within the allowable range. Also, the obtained results are 
similar to the findings of Ferreira-Baptista and de Miguel 
(2005) who concluded that the CR levels of As, Cd, Cr 
and Ni in urban street dust collected from city of Luanda, 
Angola, were within the allowable range.

As illustrated in Table 5, the mean values of EF varied 
from 7.28 to 39.1; therefore, the quality of the street dust 
specimens in the city of Hamedan could be classified as 
ranging from moderately severe to very severe enrichment. 
Based on the EF values, it could be admitted that, except for 
Al, the other analyzed elements could be considered to origi-
nate mainly from anthropogenic sources (Dai et al. 2013; 
Nowrouzi and Pourkhabbaz 2014), although, according to 
Liu et al. (2003) and Li et al. (2013) the EF mean values of 
lower than 10.0 for As and Cd might imply that these ele-
ments could have originated from background soil materials 
(Liu et al. 2003; Li et al. 2013).

On the other hand, the mean values of CPI varied from 
0.134 to 5.25, and therefore, based on the results obtained, 
the street dust specimens quality in the city of Hamedan 

could be classified as falling between slightly contami-
nated to severely polluted. However, the DC value of 14.9 
indicated that the quality of the analyzed street dust speci-
mens could be described as considerably contaminated. 
Besides, in agreement with the CPI results, the mean val-
ues of the I-geo showed that the street dust specimens in 
the city of Hamedan could be classified as unpolluted to 
moderately polluted. Also, the results presented in Table 5 
showed a high accumulation of Zn in the specimens, as 
observed by its respective maximum value of I-geo (1.81). 
In contrast, the I-geo value of Al (-3.48), As (-0.377) and 
Cd (-0.617), suggested that the street dusts of the city are 
not polluted by these elements.

The mean CPI values of Zn with 5.25 implied that from 
the 378 street dust samples, 249 (66%) and 26 (7%) sam-
ples are severely and very severely polluted by Zn, respec-
tively, while the mean CPI value of Al (0.134) indicated 
that from the 378 street dust samples, 19 (5%) and 359 
(95%) samples are very slightly and slightly contaminated 
by Al, respectively. The mean CPI value of As with 1.16 
showed that from the 378 street dust samples, 26 (7%), 68 
(18%), 41 (11%), 193 (51%) and 23 (6%) samples could be 
classified as moderately contaminated, severely contami-
nated, very severely contaminated, slightly polluted and 
moderately polluted, respectively, whereas the mean CPI 
value of Cd (0.978) meant that from the 378 street dust 
samples, 57 (15%), 98 (26%), 68 (18%), 76 (20%) and 23 
(6%) samples could be classified as moderately contami-
nated to moderately polluted, respectively. Besides, the 
mean CPI value of Cr with 1.99 showed that from the 378 
street dust samples, 23 (6%), 140 (37%) and 151 (40%) 
samples could be classified as being very severely contam-
inated to moderately polluted, respectively. Also, the mean 
CPI value of Cu with 1.72 implied that from the 378 street 
dust samples, 53 (14%), 181 (48%) and 106 (28%) samples 
could be classified as very severely contaminated to mod-
erately polluted, respectively. Furthermore, the mean CPI 
value of Pb of 1.91 showed that from the 378 street dust 
samples, 34 (9%), 170 (45%) and 151 (40%) samples could 
be classified as very severely contaminated to moderately 
polluted by this element, respectively. At the end, based on 
the mean CPI value of Ni with 1.73, it could be argued that 
from the 378 street dust samples, 340 (90%) and 34 (9%) 
samples are slightly and moderate polluted, respectively.

Based on the results presented in Table 6, the mean IPI 
value of all the street dust samples (1.86) implied that the 
sampling stations 6, 234 and 138 could be regarded as low, 
middle and high IPI, respectively. This meant that, 62% of 
the specimens could be classified as moderately contami-
nated dust. Moreover, the mean PLI value of all the stud-
ied street dust specimens (1.00) implied that 77% of the 
samples could be considered as moderately polluted dust.
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As presented in Table 7, the results of Pearson's coef-
ficient matrix for the eight analyzed elements of the street 
dust specimens showed positive correlations between As 
and Cd (rAs-Cd = 0.303), between As and Cu (rAs-Cu = 0.507), 
between As and Pb (rAs-Pb = 0.386), between As and 
Zn (rAs-Zn = 0.469), between Cd and Cr (rCd-Cr = 0.265), 
between Cd and Cu (rCd-Cu = 0.514), between Cd and 
Pb (rCd-Pb = 0.349), between Cd and Zn (rCd-Zn = 0.343), 
between Cr and Cu (rCr-Cu = 0.305), between Cr and Pb 
(rCd-Pb = 0.592), between Cu and Pb (rCu-Pb = 0.349), 

between Cu and Ni (rCu-Ni = 0.258) and between Cu and Zn 
(rCu-Zn = 0.482) at a significance level of p < 0.010 and also 
between As and Ni (rAs-Ni = 0.209) and between Pb and Zn 
(rPb-Zn = 0.219) at a significance level of p < 0.050. These 
findings may point to a common source of these elements.

Based on the results of the independent samples t test, a 
significant difference (p < 0.010) was found between resi-
dential and industrial areas in mean levels of Al, Cr, Pb and 
Ni, while a significant difference (p < 0.010) was observed 
between commercial and industrial areas and also between 

Table 5  EF, CPI, DC and I-geo values for the elements in the street dust samples of the study area

Station Element EF value Dust quality CPI value Dust quality DC value Dust quality I-geo value Dust quality

BD Al 1.00 - 0.134 SLC 14.13 CDC -3.49 UP
As 7.85 MSE 1.05 VSC -0.515 UP
Cd 6.43 MSE 0.861 VSC -0.801 UP
Cr 15.5 SE 2.07 MP 0.466 UPMP
Cu 11.3 SE 1.52 SLP 0.016 UPMP
Pb 16.1 SE 2.15 MP 0.519 UPMP
Ni 13.4 SE 1.79 SLP 0.257 UPMP
Zn 34.0 VSE 4.55 SP 1.60 MP

RA Al 1.00 - 0.124 SLC 12.31 CDC -3.59 UP
As 6.86 MSE 0.850 VSC -0.818 UP
Cd 6.42 MSE 0.796 VSC -0.916 UP
Cr 13.0 SE 1.62 SLP 0.107 UPMP
Cu 11.4 SE 1.41 SLP -0.089 UP
Pb 11.9 SE 1.47 SLP -0.029 UP
Ni 13.0 SE 1.61 SLP 0.107 UPMP
Zn 35.7 VSE 4.43 SP 1.56 MP

IE Al 1.00 - 0.150 SLC 18.12 CDC -3.37 UP
As 10.7 SE 1.56 SLP 0.057 UPMP
Cd 8.83 MSE 1.28 SLP -0.226 UP
Cr 15.6 SE 2.26 MP 0.594 UPMP
Cu 15.4 SE 2.24 MP 0.575 UPMP
Pb 14.5 SE 2.10 MP 0.485 UPMP
Ni 12.3 SE 1.79 SLP 0.257 UPMP
Zn 46.4 VSE 6.74 SP 2.17 MSP

Total Al 1.00 - 0.134 SLC 14.87 CDC -3.48 UP
As 8.60 MSE 1.16 SLP -0.377 UP
Cd 7.28 MSE 0.978 VSC -0.617 UP
Cr 14.8 SE 1.99 SLP 0.405 UPMP
Cu 12.8 SE 1.72 SLP 0.200 UPMP
Pb 14.2 SE 1.91 SLP 0.346 UPMP
Ni 12.9 SE 1.73 SLP 0.208 UPMP
Zn 39.1 VSE 5.25 SP 1.81 MP

Table 6  IPI and PLI values of 
the analyzed elements in the 
street dusts of the study area

IPI Number of samples PLI Number of samples

Min Max Mean Low Middle High Min Max Mean Low Moderate High Extremely high

0.610 4.38 1.86 6 234 138 0.24 2.00 1.00 84 291 3 0
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residential and industrial areas in mean levels of As, Cd, Cu 
and Zn. Moreover, a significant difference (p < 0.010) was 
found in mean levels of Cr, Pb and Ni between commercial 
and residential areas.

In this work, PCA was used for the element source iden-
tification of street dust (Table 8). Based on the results of 
loading plots of the components (Fig. 2), the tested ele-
ment concentrations were grouped into PC1, PC2 and PC3 
with 30.7%, 21.4% and 13.5% of all the data variation, 
respectively, which accounted for 66% of the cumulative 
variance. The PC1 showed significant positive loadings 
for Cu (0.806), As (0.707), Cd (0.677), Pb (0.670) and Zn 
(0.651), whereas it represented moderate and low posi-
tive loadings for Cr (0.554) and Ni (0.203), respectively. 
Therefore, as compared with the reference values, the 

higher average levels of these elements could suggest that 
they might have originated from an anthropogenic source. 
The PC2 showing strong loadings with Ni while, the PC3, 
suggests that Al has unequivocally isolated from other ana-
lyzed elements and due to its lower mean concentrations 
than the background value could be originated from the 
crustal soil sources (lithogenic origin).

As shown in Fig. 3, HCA analyses yielded two different 
clusters (CI and CII), where CI contained As, Cd, Cr, Cu, 
Pb, Ni and Zn and CII contained only Al, which probably 
originated from a different source. Therefore, PCA and HCA 
analyses suggested that the tested elements could be classi-
fied as group 1 (G1) which included As, Cd, Cr, Cu, Pb, Ni 
and Zn and group 2 (G2) which included Al. Hence, it could 
be argued that except for Al that originated from crustal soil 

Table 7  The correlation matrix 
between the elements in the 
street dust samples

*  p < 0.05 (2-tailed)
**  p < 0.01 (2-tailed)

Element Al As Cd Cr Cu Pb Ni Zn

Al 1
As 0.013 1
Cd 0.044 0.303** 1
Cr 0.155 0.146 0.265** 1
Cu 0.087 0.507** 0.514** 0.305** 1
Pb -0.015 0.386** 0.349** 0.592** 0.349** 1
Ni 0.056 0.209* 0.046 -0.024 0.258** -0.128 1
Zn 0.038 0.469** 0.343** 0.126 0.482** 0.219* 0.122 1

Table 8  Total variance and the component models of the studied elements based on the PCA and Varimax methods

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings
Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.84 35.5 35.5 2.84 35.5 35.5 2.46 30.7 30.7
2 1.35 16.9 52.4 1.35 16.9 52.4 1.71 21.3 52.0
3 1.05 13.2 65.6 1.05 13.2 65.5 1.08 13.5 65.6
4 0.822 10.3 75.8
5 0.711 8.88 84.7
6 0.531 6.63 91.3
7 0.395 4.93 96.3
8 0.297 3.72 100
Elements Component matrix Rotated component matrix

PC1 PC2 PC3 PC1 PC2 PC3
Al 0.120 -0.034 0.917 -0.040 0.089 0.920
As 0.707 0.278 -0.162 0.768 0.104 -0.056
Cd 0.677 -0.031 -0.066 0.578 0.359 0.014
Cr 0.554 -0.593 0.251 0.155 0.789 0.275
Cu 0.806 0.224 0.035 0.800 0.201 0.147
Pb 0.670 -0.552 -0.123 0.327 0.809 -0.079
Ni 0.203 0.677 0.286 0.464 -0.491 0.354
Zn 0.651 0.322 -0.144 0.738 0.038 -0.042
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(geogenic) sources, other elements might be associated with 
anthropogenic sources in the study area.

The median values of As and Cd, compared with the ref-
erence values as described by other researchers (Turekian 
and Wedepohl 1961; Azimzadeh and Khademi 2013), indi-
cated that the elements in the street dust samples of the 
study area may have been affected by extrinsic factors less; 
however, since the Cd and As with 68% and 51% of the 
coefficient of variation (CV%), respectively, had the greatest 

variation among the street dust specimens, it could be admit-
ted that these elements would have the greatest probability 
of being affected by human activities as external factors 
(Chen et al. 2008; Cai et al. 2015; Yehia Mady and Shein 
2017; Sabet Aghlidi et al. 2020). Also, the results showed 
that Ni with a CV value of 12% has a weak variation and 
its concentration might be constant in all sampling sites. In 
other words, the lower CV% of Ni and Al in comparison 
with the other elements may suggest that their distribution 
in street dust samples of the study area is relatively homog-
enous. Similarly, Ferreira-Baptista and de Miguel (2005) 
maintained that the greatest variation of Pb (68%), Zn (56%) 
and Cd (43%) among the street dust specimens of Luanda, 
Angola, may have been related to the effects of the external 
factors (Ferreira-Baptista and de Miguel 2005). Similarly, 
the findings of Lu et al. (2010) showed that the greatest 
variation of Pb (72%), Ni (61%) and Zn (45%) among the 
street dust specimens of Baoji, China, would be related to 
the external factors also (Lu et al. 2010).

The obtained values of CPI, IPI and PLI implied that 
based on the site category, the quality of the street dusts of 
the study area could be described as moderately polluted 
through activities with anthropogenic origin including 
exhaust fumes, industrial discharges, oil lubricants, 
corrosion of automobile parts, tire abrasion and brake 
dust (Sobhanardakani 2018a,c). On the other hand, street 
dusts of the study area could be affected by trace elements 
contamination arising from human activities.

Fig. 2  Loading plot of the analyzed elements in the space described 
by three principal component (PC1, PC2 and PC3)

Fig. 3  Dendrogram from near-
est neighbor of the CA of the 
trace elements in the street dusts 
of the city of Hamedan
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As the results of Pearson's correlation coefficient showed 
that Al has weak or inverse correlations with the other ele-
ments; this, coupled with a mean level much lower than the 
corresponding background value (82,300 mg/kg), could 
suggest that possibly Al possibly originates from lithogenic 
sources. Furthermore, the significant correlations between 
other elements coupled with a higher average concentration 
than the background values indicated that these elements 
could have originated from a different pollution source.

The results of element source identification indicated that 
PCA results were consistent with EF, CPI, IPI, PLI, I-geo 
and correlations matrices. This means that Al concentration 
in the street dust specimens of city of Hamedan may have 
been originated from lithogenic sources, while the contami-
nation of the street dust by other elements may have been 
the result of human interventions. The results of HCA also 
agreed well with those of the PCA and confirmed them.

Conclusions

In this study, the street dust contamination of the city of 
Hamedan, Iran, with trace elements was assessed for the 
first time. The findings showed that the median values of 
Cu, Pb, Ni and Zn are higher than the background concentra-
tions reported for Iran. Also, both anthropogenic and natural 
factors have their own respective loadings on the element 
concentrations in the street dust specimens. The mean EF 
values follow a descending order of Zn > Cr > Pb > Ni > Cu 
> As > Cd. The values of I-geo indicated that compared with 
the other elements, Zn with the highest average index value 
of 1.81 is significantly accumulated in the dust samples, and 
that 66% (249) of the street dust are severely polluted by 
this element. The mean CPI value of Al implied that 95% 
(359) of street dust samples are slightly contaminated by 
this element. The IPI values showed that 37% (140) of the 
studied dust specimens have high contamination. Besides, 
the PLI values indicated moderate levels (77%) of street dust 
contamination. The results of PCA and HCA of the analyzed 
elements suggested that anthropogenic resources including 
traffic emissions, increases in the number of old vehicles in 
the transportation fleet of Hamedan, industrial discharges, 
tire abrasion, corrosion of vehicular parts, oil lubricants and 
also urban green space management are the most important 
sources of As, Cd, Cr, Cu, Pb, Ni and Zn pollution, whereas 
natural geochemical processes (crustal soil) are the most 
important sources of Al in the dust samples. In summary, the 
results of the daily exposure dose of elements imply that, for 
both children and adults, the daily doses of all the elements 
through the ingestion of street dust are higher than those 
obtained via other routes. Moreover, compared to children, 
the non-carcinogenic health risks for adults due to exposure 
to trace elements in street dusts are lower. Finally, special 

attention for the determination of concentrations of other 
trace elements and particularly persistent organic pollutants 
(POPs) such as PCBs and PAHs in the urban street dust for 
assessing their ecological and health risk is recommended.
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