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Abstract
The aim of this study was to develop new analytical models to define the regional rainfall intensity − duration − frequency 
(IDF) relationship for the Inland Anatolia Region, which is determined discretely by the L-Moments method at many values 
of rainfall durations and frequencies. First, the parameters of each one of nine commonly used empirical equations were 
calibrated to provide the best possible definition of the IDF relationship for the Inland Anatolia Region. Next, analytical 
models best fitted to the IDF relationship of the L-Moments method were generated by the artificial bee colony programming 
(ABCP) approach, such that a combination of nine different sets were simulated, taking into account three cost functions and 
three maximum depths. Mean absolute error, root mean square error, mean square error, Nash–Sutcliffe efficiency coefficient, 
Willmott’s refined index, performance index, and coefficient of determination were computed to assess the accuracies of the 
empirical equations and of the ABCP models. These criteria revealed that the ABCP models defined the IDF relationship 
better than the empirical equations over the entire range of frequencies from 2 to 10,000 years. The accuracy of the empirical 
equations is much worse than the ABCP model, especially for frequencies smaller than 2000 years. Finally, Kruskal − Wallis 
tests were applied on all of the IDF relationships given by (1) the L-Moments method, (2) the empirical equations, and (3) 
the ABCP approach. These results indicated that the numerical values of these three models were from the same population.

Keywords Regional intensity − duration − frequency relationship · Artificial bee colony programming (ABCP)

Introduction

An extreme rainfall of a definite duration has the greatest 
magnitude among many rainfalls of the same duration that 
occur in a single year. Hence, a gauged series of extreme 
rainfall of a specific duration contains as many numerical 
values of rainfall as the record length in years. Peculiar to 
a geographical location, the intensity of an extreme rainfall 
event (I) as a function of its duration (D) and its statisti-
cal frequency (F) is depicted by the intensity–duration–fre-
quency (IDF) relationship, which is given in either a tabular 
or a diagrammatic form. The IDF relationship is needed to 
design various hydraulic structures, such as storm drainages, 
combined sewage systems of residential areas, and flood 
spillways of dams. The IDF relationship in a diagrammatic 
form consists of as many curves as the frequencies taken into 
consideration. Each curve presents the intensity of rainfall 
in mm/h units pouring onto a geographical point over a cer-
tain time period in minutes, having an average frequency in 
years, which is also called the average return period. Hence, 
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the IDF relationship is a significant tool for the planning, 
design, and risk assessment stages in water resources engi-
neering. The numerical values of an IDF relationship are 
determined by statistical frequency analyses applied on a 
significantly long series of gauged extreme rainfall records. 
The magnitude of the intensity of rainfall is inversely pro-
portional to its duration and directly proportional to the fre-
quency. Highly intense rainfalls are of short duration and 
the intensity gradually increases with increasing frequency 
(F). Statistical frequency analysis using suitable probability 
distributions is the common tool to relate the magnitude of 
extreme rainfalls to their frequencies (e.g., Bernard 1932; 
Hershfield 1961; Chow 1988; Koutsoyiannis et al. 1998; 
Dupont and Allen 2006; Asikoglu and Benzeden 2014).

In hydrometric studies, streamflow and rainfall are meas-
ured as point data in places where gauging stations are avail-
able. However, it is impossible to measure hydrologic data 
at every point on earth. Hence, hydraulic structures are not 
always optimally designed because of missing point meas-
urements at their locations. Because hydrologic data are 
point-specific, they cannot directly be used in places away 
from the gauging stations, and they should be adapted to the 
points where they are needed. Similarly, determining the 
spatial distribution of rainfall over a specific drainage area 
from available point measurements is a common practice of 
utmost importance.

fOlofintoyeAs a pioneering contribution, Bernard 
(1932) developed an empirical equation in the form: 
i =

(
c1 ∙ Tc2

)
∕tc3 for the IDF relationship, where, c1, c2, 

and c3 are coefficients peculiar to a geographical region. 
Since then, various analytical expressions have been pre-
sented for different regions of the world. Froechlich (1995) 
presented rainfall intensity–duration equations for durations 
of 1 through 24 h for four geographical regions delineated by 
the United States Weather Bureau. He determined optimum 
parameter values for each one of four equations and gave the 
ratio of t‒h rainfall depth to 1-h rainfall depth for various 
frequencies. Bartual and Schneider (2001) applied frequency 
analyses on a series of many extreme rainfall events in the 
Alicante province of Spain, gauged between the years 1925 
through 1992, by using the general extreme values (GEV) 
distribution for standard durations from 2 to 240 min, and 
developed nine different empirical equations for the IDF 
relationship. As a result of their work, they noted that three-
parameter expressions were more meaningful for frequen-
cies between 5 and 500 years. Yu et al. (2004) developed a 
regional IDF relationship for ungauged locations based on 
the scaling theory combining the Gumbel distribution and 
partial simple scaling hypothesis. Nhat et al. (2006) pre-
sented curves for the IDF relationship for the Yodo River 
basin and derived a generalized IDF formula. AlHassoun 
(2011) developed an empirical formula to estimate the rain-
fall intensity in the Riyad region of Saudi Arabia and showed 

a good match between the Gumbel method and the other 
analytical methods. Jaleel and Farawn (2013) obtained the 
IDF relationship for the Basrah province of Iraq by using 
Gumbel distribution and noted that maximum rainfall inten-
sities exhibited high variability in short periods. Dourte et al. 
(2013) developed IDF relationships for the Indian penin-
sula and investigated the effects of variations in rainfalls 
on flows and groundwater replenishment. They noted that 
the updated IDF relationships revealed a significant change 
in rainfall characteristics as compared to the old relation-
ships and reported increased rainfall intensities for all rain-
fall durations and frequencies. They concluded that severe 
rainfalls resulted in decreased groundwater replenishment 
and increased flows. Asikoglu and Benzeden (2014) used 
the two-parameter lognormal and Gumbel distributions in 
frequency analyses and obtained two types of IDF functions 
for the Aegean region of Turkey, based on the simple gen-
eralization procedure and the robust estimation procedure. 
These researchers compared the root mean squared error 
(RMSE) values of both procedures and reported that the 
former procedure yielded better rainfall intensity values than 
the latter. Rasel and Islam (2015) conducted a frequency 
analysis by applying the Gumbel and Log − Pearson − 3 dis-
tributions to derive the IDF relationship for Bangladesh by 
using the data of extreme rainfalls measured between 1974 
and 2014. They calculated the IDF equation parameters for 
2, 5, 10, 25, 50, and 100-year frequencies by non-linear mul-
tiple regression and reported high correlation coefficients 
for the resultant IDF equations. Liuzzo and Freni (2015) 
used climate change scenarios for the Sicilia Province and 
investigated the IDF relationships of extreme rainfalls for 
durations of 1, 3, 6, 12, and 24 h. They first conducted a 
trend analysis on all extreme rainfalls by the Mann‒Kendal 
method and determined decreasing‒increasing trends. Next, 
they used the outcomes of the trend analyses to devise an 
empirical equation for a climate scenario‒dependent IDF 
relationship. They noticed that decreasing and increasing 
trends influenced the intensity of extreme rainfalls with 
frequency. Hamaamin (2017) determined an IDF relation-
ship for the Sulaimani province in Iraq, and achieved a 
determination coefficient of almost 1 for rainfall intensity 
values in the empirical equation, and hence indicated that 
the resultant empirical equation represented the actual val-
ues. There are several other research studies conducted in 
different regions of the world for generations of empirical 
rainfall intensity estimation equations and IDF curves (Bou-
gadis and Adamowski 2006, Nhat et al. 2007, Trevor and 
Guillermo 2008, Omotosho and Oluwafemi 2009, Olofintoye 
et al. 2009, El−Sayed, 2011, Vivekanandan 2012, Antigha 
and Ogarekpe 2013, Al−anazi and El−sebaie, 2013, Chang 
et al. 2013, García−Marín et al. 2013, Wang et al. 2014, 
Akinsanola and Ogunjobi 2014).
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Karahan et  al. (2007) employed a genetic algorithm 
(GA) approach for rainfall intensity estimations and indi-
cated that the GA method employing mean square error as 
the cost function could reliably be used to determine the 
IDF relationship. They also reported a good match for the 
measured and estimated values and applied this method for 
the IDF relationships in the GAP region of Turkey. These 
researchers stated that the GA method was an efficient tool 
to determine the mathematical model coefficients enabling 
it to represent the available data successfully (Karahan et al. 
2008). Başakın et al. (2021a) developed an equation with the 
help of genetic programming (GP) using the information of 
the IDF relationships computed as the outcome of statisti-
cal frequency analyses to calculate intensities of extreme 
rainfalls for the Kayseri, Nevşehir, Niğde, and Yozgat prov-
inces. They also used one of the empirical equations avail-
able in the literature for comparison with their model. They 
optimized the parameters of the empirical equation with the 
particle swarm optimization (PSO) scheme. In the end, they 
concluded that the equation derived by GP had higher accu-
racy than the equation obtained with PSO.

It is a known fact that algorithms such as GA and PSO 
can be employed to find the optimal values of the param-
eters of a predetermined mathematical expression. In order 
to obtain the best estimation accuracy, first a best model 
must be chosen and next the best values for the param-
eters of that model must be determined. Hence, with this 
objective in mind, the artificial bee colony programming 
(ABCP) was used in this study to obtain a model for the 
IDF relationship with high estimation accuracy. ABCP was 
introduced in 2012 by Karaboga et al. (2012) as a versatile 
means of machine learning. Golafshani and Ashour (2016) 
employed the ABCP method to predict the elasticity modu-
lus of self-compacting concrete. Golafshani and Behnood 
(2018) applied the ABCP approach for predicting the elas-
ticity modulus of recycled aggregate concrete. Boudardara 
and Gorkemli (2018) proposed the ABCP method in a 
robotic path planning problem. They later presented a new 
version of ABCP (Boudardara and Gorkemli 2020). Arslan 
and Ozturk (2019) provided an ABCP image descriptor for 
multi class texture classification. Prior to that, they used 
ABCP as a new tool for cancer data classification (Arslan 
and Ozturk 2018). Gorkemli and Karaboga (2019) proposed 
three new versions of ABCP to improve the convergence 
performance of the algorithm. Hara et al. (2018) proposed 
a modified ABCP method using semantic control crossover. 
Boudouaoui and Habbi (2018) made some structural modi-
fications to the ABCP method. Arslan and Ozturk (2019) 
introduced a feature selection method based on ABCP for 
high-dimensional symbolic regression problems.

ABCP is a novel, evolutionary, and GP (Koza 1992)-like 
automatic programming and machine learning technique. 
It is based on the artificial bee colony (ABC) optimization 

algorithm (Karaboga 2005, 2010; Karaboga and Basturk 
2007), which is inspired from the foraging behavior of hon-
eybee swarms while the GP is an extension of GA. ABC 
is one of the most popular and widely used swarm intel-
ligence based optimization algorithms for solving various 
types of problems from a wide spectrum of disciplines 
(Karaboga 2010, Bansal et al. 2013, Karaboga et al. 2014, 
Agarwal and Yadav 2019, Pooja and Shirmal 2020. There-
fore, in this study, the ABCP model is proposed as a new 
and efficient approach to represent the numerical values of 
rainfall intensities over a wide range of frequencies from 
2 to 10,000 years analytically. This range of frequencies 
resulted as the outcome of comprehensive regional statis-
tical frequency analyses by the L-Moments method using 
14 standard-duration-recorded series of extreme rainfalls 
carried out by Haktanir et al (2016). In the first phase of 
the study, nine different empirical equations available in 
literature for the IDF relationship were tested with the pur-
pose of how well they represented the IDF relationship of 
the Inland Anatolia Region, as obtained by the L-Moments 
method. In the second phase, equations were developed by 
the ABCP approach for the same regionalized IDF relation-
ship. In the last phase of the study, the performances of the 
nine empirical equations and the equations produced by the 
ABCP method were compared from the standpoint of their 
accuracies in representing the regionalized IDF relationship 
developed by the L-Moments method. These three stages are 
concisely explained in the following sections.

Hence, the main objective of this study was to quan-
titatively depict the regional IDF relationship peculiar to 
the Inland Anatolia Region, as determined by the outcome 
of comprehensive frequency analyses by the L-Moments 
method. This was done in a succinct analytical way to be 
obtained by the ABCP approach and to compare its accuracy 
against the accuracies of already used empirical equations, 
whose parameters were optimized based on the numerical 
values given by the L-Moments method.

Material and method

Research site

Seven geographical regions of Turkey and the positions 
of 31 meteorological stations in the Inland Anatolia 
Region, each having at least 30 years of gauged data, are 
shown in Fig. 1. Prior to this study, a regional frequency 
analysis by the L-Moments method was completed for 
the Inland Anatolia Region of Turkey by Haktanir et al. 
(2016). This study used the gauged series of succes-
sively increasing 14 standard − duration extreme rain-
falls (AMR) with durations of 5, 10, 15, and 30 min, 
and 1, 2, 3, 4, 5, 6, 8, 12, 18, and 24 h at the 31 stations. 
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Including the year 2010, all rainfall data were obtained 
from the General Directorate of Meteorology. Although 
there were more than 31 stations in this region, Hak-
tanir et al. (2016) did not include those having record 
lengths shorter than 30 years in the frequency analyses, 
whose ultimate product was the regional IDF relation-
ship consisting of many intensity values for 14 rainfall 
durations and for many frequencies ranging between 2 
and 10,000 years. In the current study, a best-fit single 
mathematical model was searched for the regional IDF 
relationship obtained by Haktanir et al. (2016) as the 
outcome of comprehensive frequency analyses, based on 
a modified version of the L-Moments method.

The northern sections of the Inland Anatolia Region are 
surrounded by mountains reaching altitudes of 3000 m, 
which generally extend parallel to the Black Sea shoreline. 
The southern sections of the Inland Anatolia Region are 
surrounded by mountains with altitudes up to 3500 m, and 
they mostly lie parallel to the Mediterranean Sea coastline. 
The Inland Anatolia Region is a large plateau bordered by 
these rows of mountains in the North and South. Erciyes 
and Suphan are two independent volcanic mountains in 

this region. The mountain rows in the north and the south 
extend into the Eastern Anatolia Region where they inter-
sect. The mountains in the western sections of the Inland 
Anatolia Region lie mostly perpendicular to the Aegean 
Sea coast. In brief, the Inland Anatolia Region consti-
tutes a landlocked portion of Turkey and experiences a 
dominant terrestrial climate. Forests and woods sparsely 
exist in this region because of the harsh climate with less 
than average precipitation and steppes are common plant 
covers. There is less vegetable cultivation in this region 
compared to the other regions because of insufficient rain-
falls and prevailing droughts. Yet, the major amount of 
precipitation occurs in spring, and severe storms produce 
considerable rainfalls of durations up to 24 h. Mostly cold-
resistant food plants are cultivated in the Inland Anatolia 
Region. Potatoes, rye, green lentils, apples, and pears are 
the most common agricultural products.

Frequency analyses by L‑Moments method

Statistical frequency analysis is developed to allow prac-
titioners to make probabilistic predictions in the future. 

Fig. 1  Seven geographical regions of Turkey and locations of the 
meteorological stations in the Inland Anatolia Region, whose gauged 
data of 14 standard‒duration extreme rainfalls series, were used in 

determining the regional intensity‒duration‒frequency relationship 
for the Inland Anatolia Region by the L-Moments method
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In addition, it is used to quantify the relationship between 
the magnitude and the probability of either exceedance or 
non-exceedance of hydrologic random variables. Com-
monly, frequency analyses in hydrology are applied for 
flood peaks and extreme rainfalls. The frequency analy-
sis is done using a suitable probability distribution, and 
usually, one of three-parameter probability distributions 
of generalized normal (GNO), which is also known as 
the three-parameter log-normal, Pearson–3 (PE3), gen-
eral extreme values (GEV), generalized logistic (GLO), 
and generalized Pareto (GPA) are used for this purpose. 
Estimation of the magnitudes of the parameters of a 
probability distribution using the observed series is an 
important stage of the frequency analysis and the conven-
tional methods of moments and of maximum-likelihood 
are commonly used for this purpose. The L-Moments 
method has become recently popular because of its vari-
ous merits.

The L-Moments method, which was originally put 
forth by Hosking (1990), and Hosking and Wallis (1997), 
is especially suitable for regional frequency analyses. The 
L-Moments of a random variable are some linear combi-
nations of its probability-weighted moments, which were 
originally defined and presented to the statistics literature 
by Greenwood et al (1979). The L-Coefficients defined, 
as ratios of the L-Moments, which take values within − 1 
and + 1, are able to depict the overall peculiarities of 
probability distributions, such as mean, variance, and 
skewness. There exist analytical relationships among the 
distribution parameters and the L-Coefficients peculiar 
to any probability distribution. Therefore, the parameters 
are computed using the estimates of the L-Coefficients 
calculated using the available recorded series. First, that 
particular three-parameter distribution most suitable 
to represent a homogeneous region from the frequency 
analysis standpoint is determined, based on the weighted 
average of the L-Coefficients computed for each station 
where gauged data exists. Ultimately, the regional growth 
curve is obtained, which is a curve relating the magnitude 
of the normalized random variable, whose mean is 1.0, to 
its probability of non-exceedance (Pnex). Growth curves 
usually are extended up to an average return period of 
10,000 years. Aside from the regional growth curve, a 
meaningful regression equation relating the mean value 
of the random variable to a few explanatory variables, 
which are relevant geographical and meteorological 
characteristics of the homogeneous region, is obtained. 
The value taken from the growth curve is multiplied by 
the mean given by the regression equation to obtain the 
magnitude of the hydrologic variable at any geographical 
location in the region. The problem with 14 successively 
increasing standard − duration extreme rainfalls is more 

involved than a single hydrologic variable, like an annual 
flood peak. First, there are 14 growth curves. Second, 
more importantly, the parameters of each probability 
distribution suitable for each standard-duration extreme 
rainfalls series must be modified, so as to satisfy the 
divergence criterion, which emanates from the principle 
of conservation of mass (Haktanir et al. 2010). Detailed 
information about the L-Moments method to be applied 
to successively increasing standard − duration extreme 
rainfalls series can be found in Haktanir et al. (2016).

Artificial bee colony programming (ABCP) method

Since ABCP is based on the ABC algorithm, its basic steps 
are similar to those of ABC. However, while ABC can be 
employed to find optimal values for the parameters of a 
model, ABCP can be used to optimize the model and its 
parameters altogether (Karaboga et al. 2012; Gorkemli and 
Karaboga 2019). The basic steps of the ABCP are given 
below.

Initialization phase.
Repeat.
Employed Bee Phase.
Onlooker Bee Phase.
Memorize the best solution found so far.
Scout Bee Phase.
Until (Termination criteria are satisfied).
In ABCP, there are three foraging bee groups, namely, 

employed bees, onlooker bees, and scout bees, as in ABC. 
An employed bee has a food source in her mind and she 
leaves the hive to exploit it. When she returns to the hive, she 
performs some dances to give information about her food 
source to the onlookers. The onlooker bees wait in the hive 
and watch the employed bees’ dances. Considering these 
dances, an onlooker bee selects a food source and leaves the 
hive to exploit it. Every time an employed bee or onlooker 
bee goes to a source to exploit it, first, she searches for a bet-
ter food source around the current one. If she finds a better 
food source, she starts to exploit it; otherwise, she contin-
ues to exploit the current source. In the colony of ABCP, 
the number of the employed bees is taken to be equal to 
the number of the onlooker bees. Since every employed bee 
has one food source, the number of the employed bees also 
equals the number of the food sources in the population. 
If the food source of an employed bee is exhausted, then 
this bee becomes a scout and randomly finds a new food 
source. In a cycle or iteration of the optimization process, 
the employed bee, onlooker bee, and scout bee phases are 
run orderly.

In ABCP, a food source refers to a tree structure based 
solution. A solution is given in tree form in Fig. 2 as an 
example. The mathematical formulation obtained from this 
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solution is presented in Eq. 1, where a and f(a) refer to the 
independent and dependent variables, respectively. In a solu-
tion tree, there can be function nodes or terminal nodes. 
Function nodes can include some operators, like arithme-
tic functions, trigonometric functions, and logic operators. 
These nodes must have one or more operands. Terminal 
nodes cannot have any operands or any child nodes since 
they can only include some constants and input variables.

(1)f (a) = (a − (1 + 1)) × (a × a)

Algorithm 1 Steps of the information 
sharing mechanism of the ABCP scheme.

In order to determine the quality of the solutions from their 
costs, Eq. 2 was used in this study, as was done by Karaboga 
and Ozturk (2012) and Gorkemli and Karaboga (2019),

where, f it
(
xi
)
 is the quality of the solution xi and f (xi) is 

the cost function value of this solution. After the employed 
bee phase, a probability of being selected by an onlooker is 
assigned to each food source according to its quality using 
Eq. 3 below.

where � is a parameter assuming values between 0 and 1. 
In this study, 0.9 is taken, as the value of α. xbest is the best 
solution in the population.

Steps of the ABCP approach are given in Algorithm 2 
below. The flowchart of the ABCP method is given in Fig. 3.

(2)fit
(
xi
)
=

1

1 + f
(
x1
)

(3)P1 =
a × fit

(
xi
)

fit
(
xbest

) + (1 − a)

- ×

a + a a

1 1

×

Fig. 2  An exemplary solution by the ABCP approach in tree form

Although its basic optimization structure is similar to the 
ABC algorithm, some mechanisms cannot be directly used 
in ABCP, since the solutions are in tree form. For producing 
a candidate,vi , from the current solution, xi, (the i th solution 
in the population), and the procedure summarized in Algo-
rithm 1 below are used in the employed bee and onlooker 
bee phases.

Algorithm 2 Basic steps of the ABCP scheme.

For more details about the ABCP method, interested 
researchers can read the publications by Karaboga et al. 
(2012) and Gorkemli and Karaboga (2019).
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Fig. 3  Flowchart of the ABCP method
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Empirical rainfall intensity − duration − frequency 
equations

IDF equations are the empirical formulas defining the rela-
tionship between the average intensity of an extreme rainfall 
as the dependent variable and rainfall duration and frequency 
as the independent variables. The ranges of rainfall duration 
and frequency are 5–1440 min and 2–10,000 years, respec-
tively, in most countries. When the relevant publications to 
date were examined, it was seen that such empirical formulas 
for IDF could be analytically generalized by Eq. 4 below.

The most common equations for the nominator of Eq. 4 
are as follows:

(Sherman, 1931; Bernard, 1932; Koutsoyionnis, 1994).
A(T) = a + b ∙ ln(T ) (6).
(Koutsoyionnis, 1998)

(Nhat et al. 2007).

(4)i(t, T) =
A(T)

B(t)

(5)A(T) = a ∙ Tb

(7)A(T) = a + b ∙ [ln(lnT)]

While, the most common equations for the denominator 
of Eq. 4 are as follows:

(Sherman, 1931; Bernard, 1932)

(Nhat et al. 2007)

(Koutsoyionnis, 1998).
Combining A(T) and B(t), Lopcu (2007) presented the 

nine expressions given below, which were used in this study.

In these equations, i is the standard rainfall intensity (1/
min); T is the frequency (years); t is the rainfall duration 
(min); and a, b, c, and d are the coefficients.

(8)B(t) = tc

(9)B(t) = (tc + d)

(10)B(t) = (t + d)c

(11)i =
(
a ∙ Tb

)
∕(t + c)d

(12)i =
(
a ∙ Tb

)
∕tc

(13)i =
(
a ∙ Tb

)
∕(tc + d)

(14)i = (a + b ∙ lnT)∕tc

(15)i = (a + b ∙ lnT)∕(tc + d)

(16)i = (a + b ∙ lnT)∕(t + c)d

(17)i = (a + b ∙ [ln(lnT)])∕(t + c)d

(18)i = (a + b ∙ [ln(lnT)])∕tc

(19)i = (a + b ∙ [ln(lnT)])∕(tc + d)

Table 1  The numerical values of the coefficients of the nine empiri-
cal equations for the IDF relationship of the Inland Anatolia Region

Equations a b c d

Equation 11 53.2515294 0.1467572  − 0.1035154 0.8248525
Equation 12 92.2926127 0.05807680 0.84735567 –-
Equation 13 54.1774186 0.14665879 0.82946426 -0.0272955
Equation 14 29.270894 18.689827 0.83403453 –-
Equation 15 28.4540421 18.1675984 0.82675173 -0.0647524
Equation 16 28.4634851 18.1736242  − 0.0990213 0.8264291
Equation 17 33.5020426 62.3925318  − 0.1056031 0.8332015
Equation 18 34.5309787 64.3097618 0.84145318 –-
Equation 19 33.4623956 62.3177325 0.83331679 -0.0722126

Table 2  The error statistics of 
the nine empirical equations 
for representing the IDF 
relationship obtained by the 
modified L-Moments method

Equations MSE RMSE MAE MARE NSE PI WI R2

Equation 11 1.049 1.024 0.603 50.082 0.989 0.088 0.956 0.990
Equation 12 7.657 2.767 1.504 74.752 0.923 0.242 0.891 0.927
Equation 13 1.049 1.024 0.602 49.009 0.989 0.088 0.956 0.990
Equation 14 0.435 0.659 0.452 40.494 0.996 0.057 0.967 0.996
Equation 15 0.434 0.659 0.455 41.962 0.996 0.057 0.967 0.996
Equation 16 0.435 0.659 0.452 40.494 0.996 0.057 0.967 0.996
Equation 17 2.385 1.544 0.924 48.197 0.976 0.133 0.933 0.976
Equation 18 2.385 1.544 0.924 48.194 0.976 0.133 0.933 0.976
Equation 19 2.384 1.544 0.927 49.544 0.976 0.133 0.933 0.976
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Implementations and results

Rainfall intensity–duration–frequency relationship

The IDF relationship used in this study has been developed 

by a modified version of the L-Moments method taking into 
consideration the ‘divergence criterion’ using the extreme 
rainfalls data observed at 31 meteorological gauging stations 
in Inland Anatolia Region. The final IDF relationship is a 
long table comprising values of intensity against so many 
durations and frequencies, which is also presented in the 
form of plots of so many points in a log–log scale graph. 
The summary of this study by Haktanir et al. (2016) can be 
phrased as follows:

• Frequency analyses by the L-Moments method was 
separately conducted for 14 extreme rainfalls series with 
sequential durations from 5 min to 24 h.

• At the very beginning, for each station, all of the 14 
extreme rainfalls series were normalized by dividing 
each recorded rainfall value by the sample mean of that 
particular duration.

• The incompatibility test was applied to all extreme rain-
falls series of 31 stations from 5-min to 24-h durations 
of each station and it was checked if the incompatibility 
criterion (D statistic) was satisfied.

• The homogeneity analyses were applied to all of the 14 
extreme rainfalls series of 31 stations, and it was con-
cluded that the Inland Anatolia Region was a single 
homogeneous region for all of 31 × 14 extreme rainfalls 
series.

• The parameters of the GLO, GEV, GNO, PE3, and GPA 
distributions were computed using the average L-Coef-

Fig. 4  Scatter plot of Eq.  16, which was the best among the nine 
empirical equations for fitting the IDF relationship obtained by the 
L-Moments method for the Inland Anatolia Region

Fig. 5  Graphical presentation of the numerical values obtained by the L-Moments method and the curves yielded by Eq. 16 with its optimized 
coefficients for the IDF relationship for Inland Anatolia Region for frequencies from 2 to 10,000 years
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ficients. Following 500 synthetic simulations, the ZDIST 
statistics were computed for the GLO, GEV, GNO, PE3, 
and GPA distributions.

• Because they had the smallest ZDIST statistics among the 
others, the most suitable distributions were: PE3 distribu-
tion for the 5 min, the GNO distribution for the 10 min 
and 15 min, the GEV distribution for the 30-min and 
60-min series, and the GLO distribution for all of the 
other extreme rainfalls series between 120 and 1440 min.

• The magnitudes of the coefficients of the significant 
explanatory variables of the multiple regression equation 
for the means of extreme rainfalls, which turned out to be 
rainfall duration, longitude, annual average precipitation, 
and annual average relative humidity, were computed. 
The average values yielded by the regression equation 
were multiplied by the magnitudes given by the growth 
curves of all of the extreme rainfalls series. Thus, the 
numerical values of the regional IDF relationship were 
obtained.

Empirical IDF equations and search for the best one 
for the regionalized IDF relationship

The numerical values of the regional IDF relationship 
obtained by Haktanir et al. (2016), as summarized above, 

were used in checking the accuracy of the common nine 
empirical equations to represent the regionalized relation-
ship. The coefficients of Eqs. 11 through 19 were determined 
to define the regionalized relationship in the best way pos-
sible by its analytical form. The best numerical values of the 
a, b, c, and d coefficients in Eqs. 11 − 19 were determined 
so that each one of these equations come as close to the 
regional IDF relationship for the Inland Anatolia Region 
as possible with the Excel Solver tool aid. Next, to test the 
estimation accuracy of the equations with the best values 
for the coefficients, the mean square error (MSE) and deter-
mination coefficient (R2) were used as error statistics. For 
the Inland Anatolia Region, the best values of the coeffi-
cients of the nine equations and the error statistics are given 
in Tables 1 and 2. Although some of the equations were 
more successful, the resultant IDF relationships defined by 
these nine expressions yielded fairly accurate outcomes. Yet, 
Eq. 16, having the smallest MSE (0.4343) and the greatest 
R2 (0.995), was the best among them. The scatter plot of the 
rainfall intensities computed by Eq. 16 against the general-
ized rainfall intensities obtained by the frequency analyses 
by the L-Moments method for the Inland Anatolia Region 
is presented in Fig. 4.

At first glance, the rainfall intensities obtained by the 
regional frequency analyses and those computed by Eq. 16 
seem to be close to each other. Considering the R2 values 
given in Table 2, Eqs. 11 and 12 yielded close outcomes, 
while Eqs. 13, 14, and 15 provided less accurate estimates. 
Yet, as seen in Table 2 and Fig. 4, Eq. 16 yielded intensi-
ties closest to those given by the regional IDF relationship. 
However, when the IDF relationship was plotted on a graph, 
in Fig. 5, it was visually observed that this empirical equa-
tion, Eq. 16, was not so successful in representing the overall 
IDF relationship. It can be observed in Fig. 5 that the IDF 
values obtained by the frequency analyses and those given 
by Eq. 16 do not reveal close conformity for all of the ranges 
of the frequencies. Equation 16 yielded successful outcomes 
for the frequencies of 2000, 5000, and 10,000 years, but was 
remarkably unsuccessful for shorter frequencies. The overall 

Table 3  Values of the parameters of the ABCP approach as applied to 
the IDF relationship of the Inland Anatolia Region

Parameters Values

Colony size 500
Number of assessments 500,000
Limit 500
Function set  + , − , × , / (protected version), 

pow, exp, log (protected 
version)

Terminal set t, T, R
Initial tree depth 2, 3, 6
Maximum tree depth 2, 3, 6

Table 4  Summaries of the MSE 
values obtained in 30 runs by 
the ABCP method, with three 
different maximum depths and 
three different cost functions

Maximum 
depth

Cost function Mean Standard deviation The best The worst

2 Equation 20 49.1913557 24.1202094 3.673946 117.179494
Equation 21 175.1015573 336.1776537 16.983126 1601.242286
Equation 22 281.7737057 329.8247712 17.287928 1230.662705

3 Equation 20 19.4484865 18.4608345 0.919986 65.99849
Equation 21 675.6272232 2319.0614622 3.894141 12,980.019825
Equation 22 255.0361107 325.8483690 4.748996 1149.669268

6 Equation 20 1.1877460 1.5837633 0.212856 8.734532
Equation 21 3.8883458 4.4935622 0.272695 16.74901
Equation 22 2.2836237 3.0458527 0.300312 15.402084
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result is that even the best of these nine empirical equa-
tions available in the relevant literature for the IDF relation-
ship is not able to define the regionalized IDF relationship 
accurately.

Determination of the best‑fit expression 
by the ABCP method for the regional IDF 
relationship

Other analytical expressions were developed by the ABCP 
approach, which would comply with the IDF relationship 
determined by the L-Moments method for the Inland Anato-
lia Region. For this purpose, experimental studies were con-
ducted with different tree depths and different cost functions 
of the ABCP method. Since models with different structures 
could be achieved by using different error functions, three 
different cost functions, which are Eqs. 20, 21, and 22 below, 
were taken into consideration, and the ABCP scheme was 
run with the parameter values given in Table 3.

In these equations, gj represents the rainfall intensity 
obtained by the ABCP method, tj represents the rainfall 
intensity obtained by the L-Moments method (the target 

(20)fi =
∑N

j−1

�
�
�
gj − tj

�
�
�
(1stcostfunction)

(21)
fi =

∑N

j−1

��
�
log10

�
gj + 1

�
− log10

�
tj + 1

���
�
(2ndcostfunction)

(22)
fi =

�
1

N
∙
∑N

j=1

�
log10

�
gj + 1

�
− log10

�
tj + 1

��2
(3rdcostfunction)

Table 5  The analytical models obtained by the ABCP approach, 
with three different cost functions (CF) and three different maximum 
depths (MD)

Model CF MD

Model 1
log(T)

a∙t
1 2

Model 2
T
a

b∙t
2 2

Model 3
log(T)

a∙t
3 2

Model 4 1

a

(
log(T)

t
+

log(t)

T

)
1 3

Model 5
log(T)

a∙log(bt )
2 3

Model 6
T
a∙tc

c∙b∙t
3 3

Model 7 a

T2a∙t2
−
(

log(T)+bc

d
b ∙ t

)
+

log(b∙t)

Te
∕t ∙ Ta 1 6

Model 8 log(log(T)−T)exp(exp(a))

log(ttt )+log(bc)+t
−

log
(
((d∕T)∕T)log(b

c)
)

t+a

2 6

Model 9 log

(
(
2∙

T

a

)log( T

a )
)

t
+

log

((
(T .t)+

t

a

)log(T)
)

(t∙log(T)b)+
(

t+b

T

)b

3 6

Table 6  The numerical values of the coefficients of nine ABCP-based models presented in Table 5

Models a b c d e

Model 1  − 0.0292625152642199

Model 2 0.296428124092719  − 0.024820394359911

Model 3 0.0214301119658304

Model 4  − 0.0419094995790671

Model 5  − 0.33381610239568  − 0.968115260809714

Model 6 0.24165744206014  − 0.548901953524399 0.0359635842200199

Model 7  − 0.284778959716102 0.105890298777209  − 0.0972491507871306 0.334895958814256  − 0.210784611855999

Model 8  − 0.0678627933691548  − 0.232998991959262 0.373578949539726 0.0814660671546432

Model 9 0.00238452339655937  − 0.380376258576464

Table 7  The error statistics 
of nine ABCP-based models 
for representing the IDF 
relationship obtained by the 
modified L-Moments method 
for the Inland Anatolia Region

Models MSE RMSE MAE MARE NSE PI WI R2

Model 1 3.674 1.917 0.903 26.934 0.963 0.166 0.934 0.977

Model 2 73.026 8.546 2.313 18.386 0.265 0.756 0.832 0.889

Model 3 31.069 5.574 1.957 18.356 0.687 0.482 0.858 0.977

Model 4 1.019 1.009 0.623 43.144 0.99 0.087 0.955 0.991

Model 5 3.894 1.973 0.779 14.989 0.961 0.170 0.943 0.989

Model 6 33.797 5.814 1.536 11.285 0.66 0.507 0.888 0.940

Model 7 0.213 0.461 0.209 6.182 0.998 0.040 0.985 0.998

Model 8 2.635 1.623 0.407 4.245 0.973 0.140 0.970 0.987

Model 9 0.316 0.562 0.276 7.83 0.997 0.048 0.980 0.997
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value), and N equals 168 (14 × 12) in this study. The first 
expression (Eq. 20) defines the model quality based on the 
sum of absolute values of differences between the target 
value (tj) of all cases and the model outcome (gj) (SAE: sum 
of absolute errors). Equation 20 is one of the most used cost 

functions in evolutionary computation based automatic pro-
gramming applications (Koza 1992; Karaboga et al. 2012; 
Gorkemli and Karaboga 2019). In the other expressions 
(Eqs. 21 and 22), the target and model outcomes are assessed 
through logarithmic errors. Because the IDF relationship 

Fig. 6  Graphical presentation of 
the numerical values obtained 
by the L-Moments method and 
the curves yielded by the ABCP 
model with maximum depth 
of 2 for the IDF relationship 
for the Inland Anatolia Region 
for frequencies from 2 to 
10,000 years

Model1

Model2

Model3
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is always represented on graphs of logarithmic scales, the 
logarithmic error-based cost functions were considered in 
this study. While Eq. 21 was obtained by using a logarith-
mic function in Eq. 20, Eq. 22 provides a cost function that 

was formed by using root mean squared logarithmic error 
(RMSLE). In the cost function expressed by Eq. 22, large 
errors assume greater weights than the small errors.

Fig. 7  Graphical presentation of 
the numerical values obtained 
by the L-Moments method and 
the curves yielded by the ABCP 
model with maximum depth 
of 3 for the IDF relationship 
for the Inland Anatolia Region 
for frequencies from 2 to 
10,000 years

Model4

Model5

Model6
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Fig. 8  Graphical presentation of 
the numerical values obtained 
by the L-Moments method and 
the curves yielded by the ABCP 
model, with maximum depth 
of 6 for the IDF relationship 
for the Inland Anatolia Region 
for frequencies from 2 to 
10,000 years

a) 6 MD − 1 CF

b) 6 MD − 2 CF

c) 6 MD − 3 CF

Model7

Model8

Model9
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Parameter settings: As given in Table 3, the colony 
size was taken as 500 and a total of 500,000 cost function 
assessments were considered as the termination criterion 
of an ABCP run. The t of the terminal set denotes the rain-
fall duration in minutes and T designates the frequency in 
years. R is a generated random number uniformly distributed 
within the interval: (− 1, 1). The “log” of the function set is 
a protected natural logarithm function. The function returns 
zero if the value to be processed is equal to zero; otherwise, 
the natural logarithm of the absolute value of the number to 
be processed is returned. Similarly, the protected version of 
the “/” function was used. In this function, if the denomina-
tor is equal to zero, the function returns 1; otherwise, the 
division operation is performed. Our studies were conducted 
by ABCP for simpler relationships with smaller tree depths. 
Therefore, initial and maximum tree depths were taken as 
equal to each other and their values were set as 2, 3, and 6.

The MSE and R2 error statistics were used to evaluate 
the accuracy of estimations by the ABCP approach, as done 
for the previously tried empirical equations. The mean, the 
standard deviation, the best, and the worst MSE error val-
ues obtained after 30 independent runs for each maximum 
depth of ABCP are given in Table 4. As seen in Table 4, 
the lowest MSE values for all depths were obtained by the 
first cost function. For structures with a maximum depth of 
6, the MSE values of all three cost functions were close to 
each other. In experiments with the maximum depths of 2 
and 3, the differences between the results of the 2nd and the 
3rd cost functions and the 1st cost function increased. Gen-
erally, greater error values are observed in less deep trees 
than in deeper trees. However, the models with low depths 
may have simpler structures. The best models (solutions) 
obtained by ABCP for different maximum depths and dif-
ferent cost functions are presented in Table 5. The models 
given in Table 5 were obtained by ABCP. The models used 

in this study, given in Table, were simplified in order for the 
reader to understand them more easily. As seen in Table 6, 
Model 1 and Model 3 are similar in structure and have dif-
ferent coefficients. The reason for the coefficients in these 
two models being different stems from the fact that the cost 
functions are different. For the Inland Anatolia Region, the 
coefficients of the equations of the nine ABCP models and 
the error statistics are given in Tables 6 and 7. As seen in 
Table 6, these nine ABCP models for the Inland Anatolia 
Region have a different number of coefficients.

The best models of each cost function and the MSE and 
R2 values of these models are given in Table 6. Since rain-
falls cannot be negative, in this study, the absolute values 
of the ABCP models were used when calculating the model 
outcomes. As seen from Tables 6 and 7, Model 7 of the 1st 
cost function, with a maximum depth of 6 yielded the low-
est MSE (0.2129) and the greatest R2 (0.9979) values. The 
graphical presentations of the IDF relationships obtained 
by the ABCP method by three different cost functions and 
three different maximum depths of all models are given in 
Figs. 6, 7, and 8. The outcomes of the ABCP model for 
three different cost functions with a maximum depth of 
2 and 3 are presented in Figs. 6 and 7. As seen in Figs. 6 
and 7, the IDF values obtained by the L-Moments method 
had a poor fit to those yielded by any of the ABCP models 
with a maximum depth of 2 and 3. The ABCP model out-
comes for three different cost functions with a maximum 
depth of 6 are presented in Fig. 8. As seen in this figure, the 
IDF values of the L-Moments method overlapped with the 
IDF values computed by this version of the ABCP models. 
As observed in Figs. 6, 7, and 8, the ABCP models with a 
maximum depth of 6 were more successful than the ABCP 
models with 2 and 3 maximum depths. According to Fig. 8, 
the estimations by Model 7 of the 1st cost function were 
greater than the L-Moments values for small frequencies 
like 2 and 5 years. Model 7 also yielded small deviations for 
the 10,000-year frequency. In Model 8, high estimation out-
comes resulted for 3 h and longer rainfall durations for 5000- 
and 10,000-year frequencies. The results of Model 9 of the 
third cost function deviated from the L-Moments values for 
mid-term frequencies. Besides the graphical presentations 
of the results of Models 7, 8, and 9, the MSE and R2 values 
presented in Table 7 were investigated. As seen in Table 7, 
Model 7 of the third cost function, with a maximum depth 
of 6 had the highest R2 and the lowest MSE values. Hence, 
it can be stated that Model 7 yielded outcomes closest to the 
target values among nine ABCP models. Yet, Models 8 and 
9 did not have remarkably high MSE values; thus, they can 
be used as an alternative to Model 7.

In the last phase of the study, the best model obtained 
by the ABCP method was compared with the nine empiri-
cal equations considered herein. Among the nine empirical 
equations, Eq. 16 was determined to be the most appropriate 

Table 8  The p-values of the null hypothesis  (H0) of the Kruskal–Wal-
lis test at 95% significance level and the decisions reached based on 
the magnitudes of the p-values

H0: There is a significant difference between predicted and measured 
values.

Equations
by ABCP

p value *H0 Empirical models p value *H0

Equation 11 0.0801 Reject Model 1 0.1001 Reject
Equation 12 0.0918 Reject Model 2 0.5577 Reject
Equation 13 0.0871 Reject Model 3 0.8812 Reject
Equation 14 0.1349 Reject Model 4 0.4504 Reject
Equation 15 0.1193 Reject Model 5 0.9812 Reject
Equation 16 0.1349 Reject Model 6 0.8883 Reject
Equation 17 0.2557 Reject Model 7 0.8857 Reject
Equation 18 0.2557 Reject Model 8 0.4213 Reject
Equation 19 0.2294 Reject Model 9 0.8040 Reject
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one. Among the nine different models developed as differ-
ent versions of the ABCP method, Model 7 was identified 
as the best model. Despite high R2 values by Eq. 16, it was 
visually observed in graphical form that that equation did not 
yield outcomes close to the actual values. When the results 
of Eq. 16 and Model 7 were compared with each other, it 
was observed that according to the IDF curves presented 
in Figs. 5 and 8, Model 7 produced by the ABCP method 
was more successful than empirical Eq. 16. Although the 
empirical equations available in literature were analytically 
simple expressions, they did not match the results of the 
L-Moments method, which is clearly noticeable to the naked 
eye when presented in graphical forms.

At the end of the study, in addition to the classical per-
formance metrics, the nonparametric Kruskal − Wallis tests 
were also applied to all of the quantitative values given 
first by the regional frequency analyses by the L-Moments 
method and next by either those by the empirical equa-
tions or by those equations derived by the ABCP approach. 
The purpose of these tests was to check whether the pre-
dicted and actual values come from the same space (same 
population) (Başakın et al. 2020, 2021b; Özger et al 2020; 
Citakoglu 2021). The results of the Kruskal − Wallis tests 
are given in Table 8. As seen in Table 8, all models, the 
empirical equations, and the ABCP-produced ones passed 
the Kruskal − Wallis test at 95% significance level. Thus, 
the results of the empirical equations and the ABCP models 
come from the same population as those issued by the more 
accurate L-Moments approach. However, the ABCP method 
yields better accuracy than any of the empirical equations as 
summarized heretofore.

Conclusions

In this study, an automatic programming method based on 
artificial bee colony programming (ABCP) was used to find 
the optimal model to define the (standardized rainfall inten-
sity) − (rainfall duration) − (frequency) (IDF) relationship 
obtained for the Inland Anatolia Region of Turkey by the 
L-Moments method. Furthermore, an analytical expres-
sion was developed, which is more accurate than any of the 
empirical equations available in literature for the same pur-
pose. Initially, the IDF relationship was investigated using 
each one of nine different empirical formulas. The compari-
son studies on these nine empirical equations with optimized 
values for their coefficients revealed that the one expressed 
by Eq. 16 showed the relatively best performance for the 
Inland Anatolia Region, for representing the IDF relation-
ship (Table 1). However, as shown in Fig. 4, Eq. 16 exhibited 
an unsatisfactory performance for frequencies smaller than 
2000 years and a seemingly high coefficient of determina-
tion was misleading. Then, ABCP, with three different cost 

functions and three different maximum depths, was used and 
new analytical expressions were generated for the present 
problem. The resultant best model obtained by ABCP was 
compared with the nine empirical formulas and the former 
was found to define the IDF relationship more accurately, as 
determined by the L-Moments method for the Inland Ana-
tolia Region.

In analyses done by the ABCP method, by using three 
cost functions and three maximum depths, nine different 
models were produced for the relationship of rainfall inten-
sity as the dependent variable and rainfall duration and fre-
quency as the explanatory variables. The same comparison 
studies as the ones applied to those nine empirical equations 
revealed that Model 7, having the 1st cost function with a 
maximum depth of 6, yielded the lowest MSE and the high-
est R2 values. Hence, the ABCP method, recommended as 
an alternative technique for determining a single analytical 
expression for the IDF relationship, yielded highly accu-
rate outcomes for the Inland Anatolia Region and Model 7, 
with the smallest MSE was appreciably better than the best 
empirical model.

In conclusion, the ABCP-based models can be used 
elsewhere in the world and will most probably quantify the 
regional IDF relationship more accurately than any of the 
conventionally used empirical formulas for places without 
rainfall measurements or with gauging records that are too 
short.
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