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Abstract
The complexity of geochemical patterns in surficial media necessitates considering symbiotic combinations of elements 
when identifying geochemical anomalies in geochemical prospecting. In the present study, the geochemical sample data 
were “opened” by logarithmic ratio transformation, and factor analysis was then carried out to obtain 9 factors, which 
represented different combinations of element. Among them, the low-value area in F2 (SiO2-Al2O3-K2O-Ba-Be-Na2O-Cu) 
corresponded mainly to the copper mineralization zone in the study area. Then, the maximum entropy model for predicting 
the potential distribution of copper deposits was established with the factor score as a comprehensive index based on the 
maximum entropy principle. The spatial association of individual ore-controlling variables with the occurrences of copper 
deposits was investigated by response curves, and the relative importance of each ore-controlling variable was determined 
by jackknife analysis in the MaxEnt model. The effectiveness of the proposed method was verified by analyzing stream 
sediment geochemical samples from the Mila Mountain region, Tibet. The results indicated that the F2 score was the most 
important ore-controlling variable. The performance of the model was evaluated by AUC, Kappa, and TSS. The AUC, 
maximum Kappa, and maximum TSS values were 0.863, 0.606, and 0.657, respectively. The results show that the model 
can effectively combine multisource geospatial data with copper mineralization, according to the geological background and 
favorable mineralization conditions, initially identify several prospecting targets, and provide a scientific basis for subsequent 
copper exploration in the study area.

Keywords  Compositional data · Multivariate geochemical analysis · Maximum entropy · Data fusion · Mila Mountain 
region

Introduction

In recent years, researchers have identified potential miner-
als mainly by extraction of weak anomalies in geological, 
geophysical, and geochemical information (Cheng 2012a, b, 
2021). In processing regional geochemical data, complex geo-
logical and geographical background conditions have posed 
difficulties for screening geochemical anomalies: the areas 
with high element contents may not have minerals, and areas 
with low element contents, by contrast, may be potential min-
eral areas. Thus, the detection of weak geochemical anoma-
lies is one of the main challenges in geochemical exploration 
(Xiong et al. 2018; Zuo et al. 2019; Wang and Zuo 2020).

The processes of element migration and enrichment do 
not occur for a single element, but follow the affinity charac-
teristics of elements and the matching variations among ele-
ments, which lead to the numerical correlation of elements and 
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clustering in space (Cong et al. 2012). Previous studies have 
shown that the distribution patterns of geochemical anoma-
lies are usually synthetic multi-element anomalies, mainly 
because some elements tend to show similar geochemical 
behaviors under specific geological conditions; thus, certain 
specific symbiotic combinations of elements appear in the final 
geological products (Wang 2018; Gao 2019). Therefore, the 
results of multiple geochemical synthesis anomalies are more 
reliable than those of single-element anomalies. Common 
information fusion models include logical regression (Mejía-
Herrera et al. 2015; Yousefi et al. 2014), random forest (Zhang 
et al. 2019a, b; Sun et al. 2019; Hong et al. 2021), and deep 
learning (Moeini and Torab 2017; Zhang et al. 2021), all of 
which can identify geochemical anomalies against complex 
geological backgrounds and effectively integrate multivariate 
information. However, selecting appropriate models plays a 
crucial role in the regression analysis (Ramezanali et al. 2019). 
Due to the complexity of the algorithm, the efficiency of data 
processing is low in random forest and deep learning models 
(Chen and Wu 2017; Rahimi et al. 2021; Zuo et al. 2021; Zuo 
et al. 2019). Maximum entropy model is simple to calculate, 
can quickly and efficiently process data, and has high pre-
diction accuracy, which is suitable for solving classification 
problems (Phillips et al. 2006; Phillips and Jane 2013). This 
model has been successfully applied in various fields, such 
as natural language processing (Dong et al. 2012), economic 
prediction (Xu et al. 2014), environmental evaluation (Biazar 
et al. 2020; Biazar and Ferdosi 2020; Aghelpour et al. 2020; 
Jahangir et al. 2021; Yang et al. 2021; Yang et al. 2020; Aza-
reh et al. 2019), geographical distribution of animal and plant 
species (Wang et al. 2017), and mineral exploration (Liu et al. 
2018; Li et al. 2019, 2021). Liu et al. (2018) applied the maxi-
mum entropy model to the potential distribution of orogenic 
gold deposits based on quantitative critical metallogenic pro-
cesses in the Tangbale-Hatu belt, western Junggar, China. Li 
et al. (2019) used the maximum entropy model to predict the 
metallogenic prospect of the Mila Mountain region in Tibet, 
and the model considered both positive and negative factors 
related to mineralization.

In the present study, the copper polymetallic mineralization 
in the Mila Mountain region, southern Tibet is taken as the 
research object. The process and results of metallogenic pre-
diction are discussed by using component data factor analysis 
and the maximum entropy model, to provide a reference for 
the wide application of machine learning algorithm in mineral 
resource evaluation and prediction.

Study area and geochemical data

Study area

The study area is located in the middle and southern 
parts of the Gangdese-Nyainqentanglha (terrane) plate 
in the Tethys structural area of Tibet (29°10′N–29°55′N; 
90°45′E–93°00′E), and is one of the most famous copper 
metallogenic regions in the world (Song et al. 2018; Lin 
et al. 2017a, b, 2019). The study area is a deeply incised 
alpine region, with the terrain high in the north and low 
in the south, high in the east and low in the west. Most of 
the mining areas are higher than 4500 m above sea level, 
and some mountaintops are covered with snow year-round, 
often forming modern glaciers. The climate in the region 
is a typical plateau continental climate, with a distinct dry 
season and a rainy season, and rainy season from June to 
September. The vertical zonation of temperature and vege-
tation is obvious, with long sunny days, low temperatures, 
large temperature differences between day and night, short 
frost-free periods and many snowfall days. The weather is 
relatively fair from April to September every year, and is 
suitable for field operations. The streams in the study area 
are well developed, including mainly the Yarlung-Tsangpo 
River, the Lhasa River and secondary streams.

Magmatic rocks in the research area widespread, includ-
ing large deep intrusions and thick volcaniclastic rock layers, 
mainly distributed north of the Yajiang fault. These igneous 
rocks are important constituents of the Gangdese volcanic-
magmatic arc (Lang et al. 2012). The intrusive rocks from 
a major component of the magmatic rocks in the Gangdese 
area, and represent the products of plate subduction-collision 
events during the evolution of middle-Cenozoic Tethyan tec-
tonics. The general trend of the fault structure in the study 
area is nearly east-west, which plays an important role in 
mineralization. The Bouguer gravity anomaly is 350–550 
mgL, and has a gradient gradually decreasing from south to 
north. The anomaly value (ΔT) of the aeromagnetic pole is 
−300–550 nT. Most of the single positive magnetic anom-
aly strips are oriented nearly east-west, and the positive and 
negative magnetic anomalies alternate to form strips (Zhang 
et al. 2019a, b). The anomalies in geochemical elements 
such as Cu, Mo, Pb, Zn, Au, and Ag are generally distributed 
nearly east-west, and the characteristics of element associa-
tion are regular from south to north (Wang et al. 2010). The 
study area is very rich in minerals, including ferrous metal 
minerals, nonferrous metal minerals, precious metal miner-
als, fuel minerals, building materials, non-metallic minerals, 
and geothermal resources (Zheng et al. 2016; Yang and Hou 
2009). Among them, nonferrous metal (copper, lead-zinc, 
etc.) building materials and geothermal resources are the 
dominant assets in the area (Figure 1).
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Geochemical data

The geochemical dataset utilized in this study was col-
lected as part of the Chinese National Geochemical Map-
ping project. The actual sampling area of the stream 

sediment survey was 12,290 km2, and 4141 effective 
samples were collected (Figure 2) (Xie et al. 1997). The 
sampling locations were arranged according to specifica-
tions, and located at the bottom of modern rivers and riv-
erbeds, or at the bottom of the seasonal flow or in the main 

Fig. 1   a Tectonic sketch map showing the location of the study 
area (after Yin and Harrison 2000; Zheng et  al. 2021). JS, Jinshaji-
ang suture; LSS, Longmucuo–Shuanghu suture; BNS, Bangonghu–
Nujiang suture; IYZS, Indus–Yarlung Zangbo suture; STDS, south 
Tibetan detachment system; MCT, main central thrust; MBT, main 

boundary thrust; ALT, Altyn Tagh fault; KF, Kunlun fault; KLF, 
Karakoram fault; JF, Jiali fault. TH, Tethys Himalaya; HH, Higher 
Himalaya; LH, Lesser Himalaya. b Generalized geological and 
deposits distribution map of the study area (Li et al. 2021)

Fig. 2   Geochemical sampling locations
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channel conducive to gravel deposition and mixed accu-
mulation of various particle sizes. The sampling material 
was mainly sand, and one sample was combined after mul-
tipoint collection within 20–50 m near the sampling point. 
Samples with particle sizes less than 0.22 mm (60 mesh) 
were collected using 60-mesh stainless steel sieves and 
the sample weights were greater than 200 g. All samples 
were analyzed after drying and sifting. 39 elements such 
as Cu, Pb, Zn were quantitatively analyzed by the foam 
adsorption graphite furnace atomic absorption method, 
AC arc-emission spectroscopy, inductively coupled plasma 
atomic emission spectroscopy, inductance coupled plasma 
mass spectrometry, the alkali melting-catalytic electrode 
method, atomic fluorescence spectroscopy, etc. (Xie et al. 
1997, 2008; Wang et al. 2011; Xie 2008). The specific test 
methods, detection limits and other information for each 
element are shown in Table 1, and detailed information 
about the data quality and sampling strategy can be found 
in these studies (Xie et al. 1997).

Methods

Log‑ratio approach

The commonly used methods of log-ratio transforma-
tion include additive log-ratio (alr), central log-ratio 
(clr), and isometric log-ratio (ilr) (Aitchison 1986; Car-
ranza 2011; Egozcue et al. 2003). The output result of 
the alr transformation depends mainly on the choice of 
denominator, so it has strong subjectivity. The clr trans-
formation takes the geometric mean of all variables as 
the denominator, which can effectively improve upon the 
alr transformation, and the vectors before and after the 
transformation correspond one to one; thus, the clr trans-
formation can be used to explain the statistical results 
based on the clr transformation data using the original 
variable. However, the clr transformation has the problem 
of data collinearity, which makes it impossible to use 
the ordinary least squares regression method (Carranza 
2011; Filzmoser et al. 2009b; Zuo et al. 2013). The ilr 
transformtion solves the problem of data collinearity in 
clr transformation, and retains all the advantages. The 
ilr approach transforms the component data in simplex 
space into real numbers in Euclidean space (Egozcue 
et al. 2003). The clr transformation is applied to process 
the regional geochemical data. It involves a transforma-
tion from the simplex sample space to D-dimensional real 
space. A compositional random vector X = (x1, x2,⋯ , xD) 
can be defined as follows (Buccianti and Grunsky 2014; 
Egozcue et al. 2003):

(1)clr(X) = (y1, y2,⋯ , yD) =

⎛
⎜⎜⎜⎝
log

x1

D

�∏D

i=1
xi

,⋯ , log
xD

D

�∏D

i=1
xi

⎞
⎟⎟⎟⎠

Table 1   Specific test methods and detection limits for each element 
(Wang et al. 2011)

XRF, X-ray fluorescence; AAS, Atomic absorption spectroscopy; 
AES, Atomic emission spectroscopy; AFS, Atomic fluorescence spec-
trometry; ISE, Ion specific electrode; POL, Polarography; LIF, laser 
induced fluorescence

Element Unit Detection limit Analytical 
method

Ag μg/g 0.02 AAS
As μg/g 1 AFS
Au μg/g 0.0003 AAS
B μg/g 5 AES
Ba μg/g 50 XRF
Be μg/g 0.5 AES
Bi μg/g 0.1 AFS
Cd μg/g 0.05 AAS
Co μg/g 1 XRF
Cr μg/g 15 XRF
Cu μg/g 1 XRF
F μg/g 100 ISE
Hg μg/g 0.0005 AFS
La μg/g 30 XRF
Li μg/g 5 AAS
Mn μg/g 30 XRF
Mo μg/g 0.4 POL
Nb μg/g 5 XRF
Ni μg/g 2 XRF
P μg/g 100 XRF
Pb μg/g 2 XRF
Sb μg/g 0.1 AFS
Sn μg/g 1 AES
Sr μg/g 5 XRF
Th μg/g 4 XRF
Ti μg/g 100 XRF
U μg/g 0.5 LIF
V μg/g 20 XRF
W μg/g 0.5 POL
Y μg/g 5 XRF
Zn μg/g 10 XRF
Zr μg/g 10 XRF
Al2O3 % 0.05 XRF
CaO % 0.05 XRF
Fe2O3 % 0.05 XRF
K2O % 0.05 XRF
MgO % 0.05 XRF
Na2O % 0.05 XRF
SiO2 % 0.1 XRF
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Where, D
�∏D

i=1
xi is the geometric mean.

Factor analysis

Factor analysis is one of the most commonly used multivari-
ate statistical methods for dimensionality reduction of data-
sets. It is an effective method to realize high-dimensional 
data visualization in low-dimensional space based on vari-
ance and covariance matrices, and has been widely used in 
geochemical data processing (Meigoony et al. 2014; Hosein-
poor and Aryafar 2016; Wu et al. 2020; Yousefi et al. 2014; 
Zuo et al. 2013; Filzmoser et al. 2009a, b, c). Factor analysis 
can combine multiple related variables into a single variable, 
thereby reducing the dimension of a dataset to irrelevant 
principal components based on the covariance or correlation 
of the variables (Jolliffe 2002; Reimann et al. 2005; Zuo 
2011). In the process of geochemical data processing, each 
element dataset is divided into several nonobservable factors 
through factor analysis. These factors extract the main infor-
mation of the original variables and represent some inherent 
features of the original dataset, such as complex geologic 
origin and mineralization process (Johnson and DW 2002; 
Muller et al. 2008; Zuo 2011).

Maximum entropy model

Maximum entropy theory reflects a basic principle of 
nature: systems contain both constraints and freedom and 
always tend toward the maximum degree of freedom under 
the constraints, that is, maximum entropy (Phillips et al. 
2006). Therefore, under known conditions, the system 
with the largest entropy is most likely to be close to its 
real state. Specifically, for an event, we often know only 
part of its situation and know nothing about other aspects 
of its situation. When building a model for the event, we 
should attempt to fit the known part to make the model 
conform to the known situation; for the unknown parts, 
the uniform distribution is maintained, and the entropy is 
the largest of the event at this time (Li 2012).

Let X =
{
x1, x2,⋯ , xn

}
 be a set of discrete random 

variables, pi = P
(
X = xi

)
 be the probability distribution of 

xi(i = 1, 2,⋯ , n) , and the entropy can be explicity written as:

And the entropy satisfies the following condition

Where n is the total number of values available in X, and 
the right equality holds when X is uniformly distributed.

(2)H(X) = −

n∑
i=1

pilogpi

(3)0 ≤ H(X) ≤ logn

The maximum entropy principle originates from statistical 
mechanics (Jaynes 1957), which obtains the maximum entropy 
model (MaxEnt) when applied to classification problems. We 
assume that the classification model is a conditional probabil-
ity distribution P(Y|X ) , X ∈ � ∈ Rn is the input data, Y ∈ y 
∈ Rn is the output data, x and y represent sets of input data 
and sets of output data, respectively. The model represents 
the output of Y with a conditional probability P for a given 
input data X. The maximum entropy model can be defined as 
follows (Li 2012).

Let C ≡

{
P ∈ P

|||EP

(
fi
)
= EP̃

(
fi
)
, (i = 1, 2,⋯ , n)

}
 be the 

set  of  models  tha t  sa t i s fy  a l l  const ra in ts , 
H(P) = −

∑
x,y P̃(x)P(y�x )lnP(y�x ) be the conditional entropy 

defined on the conditional probability distribution P(Y|X ) . 
Then, the model with the largest conditional entropy H(P) in 
the model set C is called the maximum entropy model.

Where EP̃

�
fi
�
=
∑

x,yP̃(x, y)fi(x, y) is the expected value 
of n eigenfunctions fi(x, y) about the empirical distribution 
P̃(x, y) , and EP

�
fi
�
=
∑

x,yP̃(x)P(y�x )fi(x, y) is the expected 
value of n eigenfunctions fi(x, y) about P(Y|X ) and the empiri-
cal distribution P̃(X).

The process of solving the maximum entropy model is a 
learning process for the model, which can be formalized into 
a constrained optimization problem (Li 2012).

Let T =
{
(x1, y1), (x2, y2),⋯ , (xn, yn)

}
 be the training 

dataset and fi(x, y), i = 1, 2,⋯ , n be the eigenfunction. The 
learning of the maximum entropy model is equivalent to the 
constrained optimization problem:

According to the optimization problem, the maximum 
problem is rewritten to the equivalent minimum problem:

The solution derived from the above constrained opti-
mization problem is the solution of maximum entropy 
model learning. However, the expectation of the empiri-
cal distribution is usually not equal to the real situation, 

(4)max
P∈C

H(P) = −
∑
x,y

P̃(x)P(y|x )lnP(y|x )

(5)s.t. EP

(
fi
)
= EP̃

(
fi
)
i = 1, 2,⋯ , n

(6)
∑
y

P(y|x ) = 1

(7)min
P∈C

− H(P) =
∑
x,y

P̃(x)P(y|x )lnP(y|x )

(8)s.t. EP

(
fi
)
− EP̃

(
fi
)
= 0i = 1, 2,⋯ , n

(9)
∑
y

P(y|x ) = 1
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but only approximates the real situation. If the solution is 
strictly based on the above constraint conditions, overfit-
ting of the training data can easily be caused in the learn-
ing process. Therefore, the constraint conditions can be 
appropriately relaxed in the actual solution, and equa-
tion EP

(
fi
)
− EP̃

(
fi
)
= 0i = 1, 2,⋯ , n can be replaced by 

EP

(
fi
)
− EP̃

(
fi
)
≤ 𝛽i , �i is a constant, called regularization 

multiplier (Dudík et al. 2004). The problem of overfitting 
can be effectively avoided by solving the above constrained 
optimization problems (Phillips et al. 2004, 2006).

Model evaluation

Model evaluation is an important component of machine 
learning. In this paper, the MaxEnt model is evaluated by 
the area under the receiver operating characteristic curve 
(AUC), Cohen’s maximum kappa coefficient and true skill 
statistics (TSS). These three metrics are calculated based 
on the specificity and sensitivity of the prediction model 
(Li et al. 2019).

Sensitivity (SEN) refers to the percentage of positive 
samples correctly identified by the classifier, and is used 
to measure the ability of the classifier to identify positive 
samples.

Specificity (SPE) is the percentage of negative samples 
correctly identified by the classifier, and is used to measure 
the ability of the classifier to identify negative samples.

The receiver operating characteristic curve (ROC) is plot-
ted with the false positive rate (FPR) as the horizontal axis 
and the true positive rate (TPR) as the vertical axis.

The AUC is a quantitative evaluation index independ-
ent of the threshold, and the greater value indicates a bet-
ter model classification effect. If the ROC is connected by 
points with coordinate 

{(
x1, y1

)
,
(
x2, y2

)
,⋯ ,

(
xm, ym

)}
 , 

AUC can be expressed as:

(10)SEN =
truepositives

true positives + flase negatives

(11)SPE =
truenegatives

true negatives + false positives

(12)TPR =
truepositives

true positives + flase negatives

(13)FPR =
falsepositives

true negatives + false positives

(14)AUC =
1

2

m−1∑
i=1

(
xi+1 − xi

)(
yi + yi+1

)

The kappa coefficient refers to the accuracy of predic-
tion relative to random occurrence, and is influenced by the 
incidence of distribution points and the threshold (Cohen 
1960), it can be expressed as:

W h e r e , 
(expectedcorrect)ran =

1

N
[(TP + FN)(TP + FP) + (TN + FN)(TN + FP)] , TP, TN, 

FP and FN are true positive, true negative, false positive, and 
false negative values, respectively.

TSS represents the ability of predictive results to distin-
guish between “yes” and “no”, independent of the incidence 
of distribution points, but influenced by thresholds, while 
TSS = SEN + SPE -1 (Allouche et al. 2006). AUC, TSS, 
and kappa statistics have different responses to the incidence 
and threshold of distribution points (Table 2), and can be 
combined to better evaluate the performance of the model 
(Swets 1988; Araújo et al. 2005; Coetzee et al. 2009).

Results and discussion

Factor analysis for compositional data

In nature, almost all environmental data have the charac-
teristics of component data. Due to the closure effect of 
component data, traditional multivariate analysis has cer-
tain limitations in processing this kind of data (Carranza 
2011; Filzmoser et al. 2009a; Zuo et al. 2013; Zuo 2014). 
Geochemical data are typically compositional data, where 
the sum of all elements is a fixed value (e.g. 100%) (Aitch-
ison 1986). Aitchison (1986) proposed that the study of 
component data should focus on the proportional relation-
ships between components rather than the component itself 
(Aitchison 1986; Filzmoser et al. 2009b; Zuo et al. 2013), 
thus proposing two classic log ratio transformation methods 
for “open” component data, namely, the additive log ratio 
(alr) transformation and central log ratio (clr) transforma-
tion, making traditional statistical methods also applicable to 
the analysis of transformed data (Aitchison 1986; Aitchison 
et al. 2000; Carranza 2011; Filzmoser and Hron 2009; Chen 
et al. 2016; Chen et al. 2018).

(15)Kappa =
(TP + TN) − (expectedcorrect)ran

Total −
(
expected correct

)
ran

Table 2   Measurement standards for AUC, kappa and TSS

Evaluation index Fail Poor Medium Good Very good

AUC​ 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0
Kappa 0–0.4 - - 0.4–0.75 0.75–1.0
TSS 0–0.5 - - 0.5–0.8 0.8–1.0
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The clr transformation was carried out on the data for 
39 geochemical elements, and the skewness value of the 
data distribution was then calculated after clr transforma-
tion, and compared with the skewness value of the raw 
data distribution (Figure 3). The skewness value of the 
data distribution of each element after clr transformation 
was significantly reduced, indicating that the transformed 
data distribution was closer to the normal distribution.

Factor analysis was carried out on clr transformed data, 
and the appropriate factor was determined by eigenvalues 
greater than 1 and a cumulative variance contribution rate 
greater than 70%. The element combination reflected by 
the orthogonal rotation factor load matrix was more rea-
sonable and interpretable than other combinations. There-
fore, the maximum variance method was used to classify 

the element combinations by an orthogonal rotation factor 
loading matrix. According to Table 3, the 39 variables 
were attributed to 9 factors, these 9 factors accounted for 
73.035% of the total variance of the raw 39 variables. The 
variance contribution reflects the ability of each factor 
to explain the total variance of the original variable. A 
higher value indicates a more important corresponding 
factor. Then, the factor load after rotation is sorted, and 
the results obtained are shown in Table 4.

The combination of elements represented by each 
factor indicates different geochemical significance. The 
score distribution map of each factor shows the geologi-
cal significance represented by each factor (Figure 4). 
F1 (Zr-La-Th-Nb-Y-Zn-Ti-Cd-Ag) is the element com-
bination of the felsic granite distribution area. The low 

Fig. 3   Skewness comparison diagram of data distribution

Table 3   Characteristic values 
and cumulative variance 
contribution rates

Extraction method: principal component analysis

Component Initial eigenvalues Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 6.991 17.927 17.927 5.197 13.324 13.324
2 6.263 16.058 33.985 5.184 13.293 26.618
3 5.076 13.016 47.001 3.621 9.284 35.901
4 3.027 7.760 54.762 3.504 8.984 44.885
5 1.904 4.882 59.644 3.298 8.457 53.342
6 1.636 4.196 63.840 2.442 6.260 59.603
7 1.439 3.689 67.529 2.069 5.305 64.908
8 1.124 2.881 70.410 1.857 4.761 69.668
9 1.024 2.625 73.035 1.313 3.366 73.035
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value area in F2 (SiO2-Al2O3-K2O-Ba-Be-Na2O-Cu) is 
the main copper mineralization zone in the study area, 
and there are many ore deposits in the low value area. 
F3 (CaO-Sr-B-Sn-Li) is the element combination asso-
ciated with the alkaline magmatic rocks. F4 (Ni-Cr-
MgO-Co) mainly reflects the composition characteris-
tics of ultrabasic rocks and ophiolite, which is the Cr-Ni 
mineralization associated with ultramafic rocks. The 

low value regions in F5 (Fe2O3-Mn-V-Sb-As) mainly 
reflect the mineralized zone associated with mineral-
ized fracture structures. F6 (W-Mo-U-Bi) reflects the 
high-temperature mineralization enrichment zone of 
ore-forming elements, granite interior and exterior con-
tact zones and zones where intermediate to felsic veins 
developed. The elements in F7 (P-F) are not indicative 
of the mineralization process. F8 (Pb-Hg) is closely 

Table 4   Orthometric rotating 
factor loading matrix

Extraction method: principal component analysis.

Element F1 F2 F3 F4 F5 F6 F7 F8 F9

Zr 0.864 −0.045 0.094 0.124 0.032 0.044 0.088 0.110 −0.009
La 0.771 0.202 −0.078 0.117 −0.115 −0.079 0.158 0.023 0.064
Th 0.747 −0.046 0.003 0.033 −0.124 −0.135 −0.022 −0.249 −0.033
Nb 0.682 0.159 0.334 0.070 0.044 0.015 −0.074 0.111 0.171
Y 0.673 0.174 0.238 0.248 0.066 0.153 −0.140 0.282 0.216
Zn −0.557 −0.104 0.134 0.225 0.259 0.174 −0.145 −0.443 0.285
Ti 0.551 −0.218 0.130 0.098 0.051 0.470 0.144 0.353 0.227
Cd −0.515 −0.202 −0.026 0.367 0.093 0.001 −0.325 −0.369 0.176
Ag −0.425 −0.206 0.117 0.337 −0.193 0.079 −0.277 −0.336 −0.146
SiO2 0.100 0.874 −0.206 −0.029 0.002 0.071 −0.142 0.093 0.049
Al2O3 −0.117 0.861 −0.125 0.119 0.227 0.118 0.168 0.079 0.021
K2O 0.130 0.845 0.101 0.298 −0.193 −0.061 −0.025 −0.006 0.025
Ba 0.029 0.802 0.034 0.207 −0.051 0.153 0.160 −0.025 −0.009
Be 0.236 0.678 0.059 −0.115 −0.150 −0.168 0.057 −0.061 0.077
Na2O 0.061 0.650 −0.631 0.157 0.050 −0.015 0.109 0.109 0.051
Cu −0.354 −0.444 −0.076 −0.015 0.043 0.246 −0.013 −0.113 0.356
CaO −0.030 −0.080 −0.817 −0.182 0.007 0.017 0.188 0.158 0.107
Sr −0.076 0.392 −0.787 0.019 0.003 0.071 0.348 0.026 0.029
B 0.268 0.015 0.667 −0.117 −0.347 0.228 −0.042 0.150 0.011
Sn 0.402 −0.028 0.568 −0.069 −0.132 −0.007 0.047 0.060 0.137
Li −0.192 0.484 0.540 −0.096 −0.172 0.083 0.259 0.141 0.081
Ni −0.161 −0.155 0.140 −0.869 0.097 0.230 −0.110 0.041 0.040
Cr 0.033 −0.259 0.046 −0.854 0.131 0.208 −0.113 0.097 0.032
MgO −0.276 −0.047 −0.381 −0.672 0.401 0.109 0.087 0.085 0.010
Co −0.331 −0.077 0.010 −0.605 0.574 0.211 −0.003 0.068 0.043
Fe2O3 0.078 −0.225 −0.092 −0.346 0.747 0.192 0.240 0.063 -0.086
Mn −0.365 −0.025 −0.063 0.009 0.724 −0.018 −0.110 −0.045 0.089
V 0.192 −0.167 −0.143 −0.239 0.703 0.267 0.267 0.108 −0.050
Sb −0.003 −0.363 0.244 0.117 −0.519 0.276 −0.245 −0.027 −0.267
As −0.301 −0.302 0.341 0.236 −0.356 −0.004 −0.102 0.010 −0.249
W 0.077 −0.213 0.039 0.146 −0.158 −0.751 −0.029 0.007 0.091
Mo −0.440 −0.032 −0.001 0.351 0.113 −0.643 0.055 0.088 0.026
U 0.241 0.176 −0.197 0.210 −0.043 −0.583 0.091 −0.023 −0.078
Bi 0.029 −0.231 0.250 0.249 −0.282 −0.468 −0.142 −0.280 0.267
P 0.016 −0.013 −0.179 0.103 0.368 −0.029 0.752 0.066 −0.061
F 0.169 0.185 −0.119 0.078 −0.012 0.025 0.694 0.094 0.195
Pb −0.152 −0.108 0.069 0.160 −0.168 0.015 −0.168 −0.818 0.036
Hg −0.003 −0.114 0.188 0.084 −0.297 0.229 −0.327 0.439 0.020
Au −0.163 −0.122 0.010 0.064 −0.036 0.080 −0.106 0.020 −0.765
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related to the widespread granite in the area, and F9 
(Au) is the stable mineral display of placer gold under 
the condition of a supergene deposit.

MaxEnt model parameter analysis

The maximum entropy (MaxEnt) model is a probability 
distribution prediction model (Ratnaparkhi 2016). The 
prediction results depend on the sample point data and 
the environmental variable data affecting the sample point 
data. The probability of distribution of the sample data 
in other parts of the study area is determined according 
to the weight of the environmental variable data, and the 
point data with quantitative values are converted into data 
with probability values. In metallogenic prediction, Max-
Ent obtains the prediction model by calculating the non-
linear relationship between the geographical coordinates 
of known deposits and ore-controlling variables in the 
study area, and then uses this model to simulate the pos-
sible distribution of target minerals in the target area. In 
this study, MaxEnt v3.3.3 software was used to establish 
metallogenic prediction model.

When using MaxEnt software for modeling, the com-
plexity of the model has a significant impact on the 
prediction effect of the model. An excessive number of 
variables will increase the complexity of the model. In 
addition, when the ore-controlling factors in the model 
have high collinearity, the model may be overfit. There-
fore, the MaxEnt model was constructed with the fac-
tor scores in the factor analysis results. Furthermore, 
when the model parameters are improperly set, overfit-
ting or redundancy of the model may also appear (Kong 
et al. 2019). Relevant studies show that the over-fitting 
of the model is mainly controlled by the setting of the 

regularization multiplier, also known as � (Elith et al. 
2011), and the comprehensive performance of the model 
with a � value between 2 and 4 is the best (Radosavljevic 
and Anderson 2014; Kong et al. 2019). Therefore, dif-
ferent � values (from 1 to 5 with a step size of 0.5) are 
tested to find the optimal � value for a particular model 
(Li et al. 2019; Wang et al. 2017). In the present study, 
we use the AUC value to evaluate the model, calculate the 
AUC values corresponding to different � values, and draw 
ROC curves (Figure 5). Therefore, the model is optimal 
when � = 2.

MaxEnt model for geochemical anomaly 
optimization

The MaxEnt model is constructed with the 9 groups of 
factor scores as the input parameters. Through a literature 
review combined with mineralization prediction theory, 
MaxEnt software randomly selects 75% of the known 
deposits to establish the training model, and verifies the 
model accuracy with the remaining 25% of the known 
deposits. The number of replicates is set to 20 to reduce 
uncertainties caused by outliers (Li et al. 2019). At the 
same time, the contribution of each ore-controlling vari-
able to the mine distribution is determined by the Jack-
knife test brought by MaxEnt version 3. 3.3 software. The 
MaxEnt parameters are set as follows: the output format 
is “Logistic”, the output file type is “ASC”, the features 
are set to “Auto features” after removing “Threshold 
features”, the regularization multiplier is set to “2”, the 
replicated run type is “Bootstrap” (Wang et al. 2017; Li 
et al. 2021), the maximum number of iterations is set to 
“5000” (Phillips 2005), and the threshold rule is applied 
to select “10 percent training presence” (Kramer-Schadt 

Fig. 4   The score distribution map of each factor
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et al. 2013). Finally, response curves are created, and the 
jackknife is drawn to measure variable importance. The 
resulting data output by MaxEnt software is in ASCII 
format, and the ArcToolbox toolkit of ArcGIS is used to 
convert it to a grid, so that the results can be displayed 
in ArcGIS, and its value is between 0 and 1 (Figure 6).

The AUC value, kappa coefficient and TSS values of 
the final prediction results are calculated, the AUC = 
0.863, the maximum Kappa = 0.606, and the maximum 
TSS = 0.657. All the evaluation indexes of the model 
show that the model has a good ability to identify the 
favorable/unfavorable areas of copper mineralization. 
Therefore, we infer that the model is reliable and accept-
able, and more accurate than a random model. Figure 6 
shows that most of the copper deposits are spatially con-
sistent with the high anomalous probability zone marked 
in red. The figure illustrates that the model successfully 
connects the probabilities of multivariate geochemical 
anomalies with the known copper mineralization.

Table 5 shows the contribution rate of each factor score 
to the model, and Figure 7 shows the response curve of 
each factor score in the modeling. Among them, the F2 
factor score is the most important ore-controlling variable 
to explain the occurrence of the copper deposits, reflect-
ing the contribution to the deposit from the perspective 
of element composition and accounting for 29.3% of the 
total contribution rate. From the F2 response curve, as 
the factor score increases, the success rate of predicting 

copper gradually decreases, which is consistent with 
the conclusion that copper has a negative load in F2. F5 
(25.8%) and F4 (13.5%) are the second and third most 
important ore controlling factors, respectively.

To further eliminate the interaction between ore-con-
trolling variables, the Jackknife analysis built in the Max-
Ent model is used to test the importance of the impact 
of ore-controlling variables on the metallogenic process 
(Figure 8). The longer the blue bar, the more important 
the variable is to the distribution of the deposits. F2, F5, 
and F9 are important variables affecting the distribution 
of the deposit. The shorter the green bar, the more infor-
mation the variable has than other variables have, and the 
variable has a great influence on the distribution of the 
deposit. F1, F2, and F5 have more unique information for 
the prediction of favorable metallogenic areas, and they 
are indispensable. The predictions of the MaxEnt model 
are consistent with the factor analysis results.

Regional Cu resource potential

The magmatic activity in the research area was frequent and 
large-scale, and the collision between the Asian and Indian 
plates formed a series of complex folds, thrust faults, and 
transpressional faults. The copper deposits in the study area 
are generally controlled by deep and large fault structures, 
nappe-slip structures and strike-slip structures, which are 
easily mineralized (Hou et al. 2006; Liu et al. 2020). Deep 

Fig. 5   The ROC curve cor-
responding to the different � 
values
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and large faults are usually rock and ore guiding structures, 
and copper deposits are distributed along main faults or 
branch faults (Li and Rui 2004; Liu et al. 2020). The min-
eralization corresponds with the anomaly probability, and 
their locations are clearly seen on the geochemical maps in 
Figure 6. In fact, the areas with high anomaly probability are 
always located at the edges of intermediate-felsic intrusions 
and the sides of a fault, or in the vicinity of fault intersec-
tions, which are favorable metallogenic regions in the study 
area. These results are consistent with the previous findings 
in the study area (Zuo et al. 2009; Zuo 2011). In addition, 
based on the geological background and suitable ore-form-
ing conditions, such as intermediate-felsic intrusions, inter-
section of faults, and favorable sedimentary rocks, several 

preliminary prospecting targets are proposed in Figure 9. 
However, these predicted prospects still need to be further 
investigated with more information.
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Fig. 6   Copper prospectivity map produced by optimized factor scores using MaxEnt model and the ROC curve

Table 5   The contributions of ore-controlling variables

Variable Percent contribution Variable Percent contribution

F1 7.80% F6 2.30%
F2 29.30% F7 2.70%
F3 7.60% F8 5.60%
F4 13.50% F9 5.50%
F5 25.80%
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Conclusions

(1)	 Combinations of elements as grouped by factor analy-
sis can reflect the symbiotic and origin relationships of 
elements. Compared with the original complex element 
aggregation, the factor analysis results are clearer and sim-
pler. By combining the distribution area and geological 
characteristics of the corresponding factor combinations, 
directions for future geological work can be identified.

(2)	 The MaxEnt model used in this study is simple, accu-
rate, and easy to operate, and can fuse multivariate data 
quickly and effectively. The AUC, kappa, and TSS val-
ues illustrate the ability of the model to correctly clas-
sify copper deposits.

(3)	 The spatial association of individual ore-controlling 
variables with occurrences of copper deposits was 
investigated by response curves, and the relative 
importance of ore-controlling variables was examined 
by jackknife analysis in the MaxEnt model, indicating 

Fig. 7   Response of Cu to factor scores

Fig. 8   Evaluation of the relative 
importance of factor scores 
variables by Jackknife test
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that the second factor score was the most important 
variable, followed by the fifth factor score.

(4)	 The MaxEnt model can automatically extract and ana-
lyze multivariate geochemical anomaly information 
without relying on expert experience. It is universal 
and efficient, and can adapt to processing in the big data 
environment. However, this method also has the prob-
lem that the particle size of anomaly extraction is not 
fine enough. Further narrowing the scope of anomaly 
extraction to delineate the prospecting target area more 
accurately is necessary.
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