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Abstract
Droughts and related water stress are the major constraints of the sustainable socioeconomic development of Bangladesh. 
Large-scale atmospheric oscillations are the major drivers of climate fluctuation and droughts in Bangladesh, like many other 
regions of Asia including the Indian subcontinent, the largest entity in the world, with over 1.7 billion people. Therefore, it is 
crucial to insight into the spatiotemporal distribution of drought and its linkage to large-scale atmospheric indices to provide 
early warning and alleviate drought impacts. However, regional droughts and their linkages to large-scale oscillation indices 
like El-Nino Southern Oscillation (ENSO) are not explored adequately in Bangladesh. This study intends to evaluate the 
spatiotemporal distribution of droughts in Bangladesh using the standardized precipitation evapotranspiration index (SPEI) 
and the standardized precipitation index (SPI) for multiple timescales, − 3, − 6, − 12, and 24-months, and to investigate the 
relationship of drought characteristics with ENSO. The monthly rainfall and temperature records from twenty locations for 
38 years from the period 1980 to 2017 were used for this purpose. The results revealed that the droughts are region-specific 
and are in agreement with the warming trends observed in the different regions of Bangladesh. The droughts, particularly 
short-term droughts, are increasing significantly in the North-western region, indicating the worsening drought conditions 
in the drought-prone region. The SPI and SPEI showed a significant (p < 0.05) positive association with the percentage of 
precipitation anomaly (Pa). However, the association of drought indices with ENSO and potential evapotranspiration (PET) 
were not significant. The polynomial regression model demonstrated that Indian Ocean Dipole (IOD) could explain SPEI-3 
(4.7%) variations better than SPI-3 (4.2%).

Keywords Drought indices · Teleconnection indices · Global warming · Precipitation anomaly · Potential 
evapotranspiration

Introduction

Drought is one of the most complex recurring natural dis-
asters caused by persistent water scarcity due to lack of 
precipitation. It has severe consequences for agriculture, 
economics and livelihoods, and living standard of rural and 
semi-urban population (Lorenzo-Lacruz et al. 2010; Potop 
et al. 2012; Qin et al. 2015; Yang et al. 2017; Kamruzza-
man et al. 2019a; Ogunrinde et al. 2021). Due to its adverse 

effect on agricultural crop production and the ecosystem, 
drought is currently considered one of Bangladesh’s most 
frequent natural disasters (Alamgir et al. 2015). The drought 
frequency and severity have been steadily rising globally, 
that has caused severe impacts in agricultural production 
(Barlow et al. 2016; Kamruzzaman et al. 2019a; Spinoni 
et al. 2020). The rising trends in droughts are more promi-
nent in South Asia than in many other regions due to increas-
ing temperature and weakening monsoon (Davis et al. 2019; 
Mishra et al. 2020). Recently, Aadhar and Mishra (2021) 
projected an increase in extreme drought frequency by one 
and half times more in the near future compared to the pre-
sent situation.

Bangladesh, located in South Asia, experiences frequent 
droughts like other parts of South Asia (Salam et al. 2020a). 
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Drought in Bangladesh is caused by rainfall unreliability 
and a lack of available surface water supplies. The absence 
of moisture in the atmosphere or large-scale downward 
atmospheric air movement suppresses rainfall and is often 
responsible for rainfall shortage. Changes in such elements 
include weather and climatic changes on a local, regional, 
and global scale (Islam et al. 2021a; Mondol et al. 2021). 
While it is sometimes feasible to pinpoint the immediate 
cause of drought in a specific place, it is frequently impos-
sible to specify the underlying reason. Rainfall variations 
are linked to rising amounts of carbon dioxide and other 
greenhouse gases and consequent changes in climate. There 
is compelling evidence that climate change will alter rain-
fall patterns, resulting in more frequent droughts. Human-
induced changes arising from vegetation loss owing to over-
exploitation of resources and deforestation are among the 
local-level causes of drought. Moreover, short-term drought 
events can be related to global atmospheric and oceanic 
circulation patterns. The El Nino/Southern Oscillation 
(ENSO) forms warm surface water off the Pacific coast of 
South America, impacts rainfall in many regions globally, 
including monsoon rainfall in Bangladesh. The relationship 
between sea surface temperature and rainfall can provide 
the probable cause of dry periods on a broader scale (Sel-
varaju and Baas 2007). Understanding the spatiotemporal 
distribution of drought and its connection to large-scale 
atmospheric indicators is critical to give early warning and 
mitigate drought consequences.

Droughts are more common in Bangladesh’s north-
western areas. These areas receive much less rainfall than 
other parts of the country (Kamruzzaman et al. 2019b). As 
a result, they are regarded as the country’s drought-prone 
zones. The majority of the rivers that pass through Bang-
ladesh are originated in India and Myanmar. Diversion of 
water in the upstream reduces water flow through Bangla-
desh during the dry seasons. This not only results in a short-
age of surface water in the country’s northwest, southwest, 
and southwest areas, but it also hinders the groundwater 
adequately replenished. As a result, there is a considerable 
loss in moisture throughout a large area, which adds consid-
erable implications to the drought.

Droughts primarily happen in the pre-monsoon 
(March–May) and the post-monsoon (October–November) 
seasons in Bangladesh (Islam et al. 2017). In some severe 
cases, pre-monsoon droughts last for the monsoon sea-
son due to delay in monsoon arrival (Das 2019). Besides, 
drought vulnerability is geographically patchy, and it is pro-
jected that there will be more extreme drought days in the 
coming years during cropping seasons (Fahad et al. 2007; 
Kamruzzaman et al. 2019c). However, the changes in mean 
rainfall have also changed different rainfall characteristics 
like variability and frequency distribution. Droughts mainly 
depend on rainfall variability and tail distribution. Therefore, 

it is crucial to insight into how the rainfall changes have 
altered droughts occurrence in Bangladesh. The assessment 
of the spatiotemporal changes in droughts characteristics 
can anticipate future negative consequences of droughts and 
minimize possible losses and damages through appropri-
ate policies pertaining to the drought-preparedness in the 
drought-prone regions of the country. Furthermore, practical 
drought assessment and mapping can help in identifying the 
regional drought characterization, monitoring, early warn-
ing, and planning efficient water supplies and agricultural 
development.

Drought as a natural phenomenon necessitates examin-
ing its duration, frequency, and intensity (Nandintsetseg and 
Shinoda 2013). Drought indexes can provide a measure of 
the magnitude and duration of drought. However, precise 
estimation of drought characteristics is difficult as differ-
ent types of drought (e.g., meteorological, agricultural, 
and hydrological) are linked to diverse factors. For exam-
ple, inadequate precipitation for a prolonged period causes 
meteorological drought, whereas high evapotranspiration 
with precipitation deficit triggers agricultural and hydro-
logical droughts (Corti et al. 2009; Easterling et al. 2007; 
Ma et al. 2018; Islam et al. 2019). Another critical drought 
feature is its time scale. For example, a 1-month drought can 
harm rain-fed crops and affect water reservoir storage. The 
drought impacts are also multiscale as the rainfall deficit 
responses are different for various systems (e.g., agricul-
tural, hydrological, or socioeconomic systems) (Potop et al. 
2012). As a result, determining the severity of a drought is 
challenging. Drought indices must have multiscale features 
correlated with particular time scales, which are required to 
investigate drought evaluation (Du et al. 2013; Zhang et al. 
2015; Uddin et al. 2020).

Mckee et al. (1993) created the standardized precipita-
tion index (SPI), a traditional multiscale drought index, for 
recognizing drought using only monthly rainfall data. The 
Palmer drought severity index (PDSI) (Palmer 1965), China 
Z index (Ju et al. 1997), and deciles index are all examples of 
droughts indices that have been widely used and compared 
with SPI (Gibbs and Maher 1967). Several studies identi-
fied SPI’s extensive advantages due to its easiness, consist-
ency, and precise drought forecasting capacity at various 
time scales (Keyantash and Dracup 2002; Montaseri and 
Amirataee 2017). Because of these benefits, the World Mete-
orological Organization has proposed SPI as the reference 
drought index for assessing drought and identifying drought 
periods.

The standardized precipitation evapotranspiration 
index (SPEI) (Vicente-Serrano et  al. 2010) is another 
extensively applied multiscale drought index. It estimates 
droughts based on monthly climatic water balance. SPEI 
blends PDSI’s sensitivity to evaporation demand changes 
with SPI’s quick calculation method and multiscale 
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characteristics. SPEI, like SPI, can be adopted to assess 
meteorological droughts for shorter periods (e.g., 1 to 
3 months) to show implications on agriculture, and also 
for more extended periods (e.g., 12 months and longer) to 
show drought impacts on hydrology (Mckee et al. 1995; 
Szalai et al. 2000). In addition, this index can classify the 
role of precipitation anomaly (Pa) and possible evapotran-
spiration (PET) variability in drought evaluation in the 
background of climate change (Potop et al. 2012; Vicente-
Serrano et al. 2010).

The connections between regional drought and climate 
mode are essential to identify drought causes. Several stud-
ies showed drought linkage to climate indices such as the 
El Nino-Southern Oscillation (ENSO), the North Atlantic 
oscillation (NAO), the Pacific decadal oscillation (PDO), 
and the Arctic oscillation (AO) in different regions of the 
globe (Mantua et al. 1997; Talaee et al. 2014; Sun et al. 
2016). Mainly drought indices such as SPI and SPEI are 
used to estimate the effect of the oscillation on droughts 
(Rajagopalan and Cook 2000; Fowler and Adams 2004; 
Balling and Goodrich 2007; Mo and Schemm 2008). How-
ever, the connections of oscillation indices with droughts 
depend on the region and season. According to Wahiduz-
zaman and Luo (2020), the ENSO closely relates to pre-
cipitation and temperature over Bangladesh. However, 
Ahmed et al. (2017) reported that IOD has a stronger con-
nection to rainfall than ENSO in Bangladesh. Chowdhury 
(2003) stated a close relationship of Bangladesh rainfall 
with the SOI extremes; high rainfall with negative SOI and 
vice-versa, but a reverse relationship in moderate El Nino 
years. Chowdhury (1994) discovered that a positive SOI is 
advantageous for floods, and a negative SOI is favorable for 
drought. Overall, the literature suggested a lack of quantita-
tive correspondence between ENSO intensity and the rainfall 
anomaly in Bangladesh.

Teleconnections (e.g., ENSO) significantly impact 
drought and flood (Tong et al. 2006). There is a strong rela-
tionship between teleconnections and drought in some parts 
of the world (Forootan et al. 2019; Lau et al. 2002). Though 
several studies have been done for drought monitoring and 
characterizing in Bangladesh (Shahid and Behrawan 2008; 
Alamgir et al. 2015; Rahman and Lateh 2016; Miah et al. 
2017; Zinat et al. 2020; Uddin et al. 2020; Mondol et al. 
2017, 2021), no comprehensive study has yet been done to 
assess the relationship and impacts of ENSO on drought 
in the country. In addition, previous studies did not com-
pare coupling drought monitoring indices (e.g., SPI, SPEI, 
PET, and Pa) for assessing the spatiotemporal distribution of 
drought in Bangladesh. In this research, we aimed to char-
acterize the spatio-temporal distribution of drought using 
SPI, SPEI, Pa, and PET, and measure the strength of and 
impacts of teleconnection (ENSO and IOD) on droughts in 
Bangladesh. The study implies that this work will provide 

a useful insight into early warning and effective adaptation 
measures for droughts in Bangladesh and elsewhere.

Data and method

Study area description

Bangladesh, located in Southeast Asia, is a low-lying, river-
ine nation with a largely marshy coastline of 710 km on the 
northern fringe of the Bay of Bengal (Das 2019). The adja-
cent countries are India to its west, north, east, and Myanmar 
to its southeast. Drought is a periodic incidence in many 
parts of the country, but the northwest region of Bangla-
desh is the most drought-prone due to high rainfall vari-
ability (Islam et al. 2021b). This area, receiving much lower 
rainfall, is comparatively drier than the remaining parts of 
the country. Moreover, the predominantly sandy soils in the 
region have a less moisture preservation capacity and a high 
insinuation rate. The present study has divided the whole of 
Bangladesh into four regions as North-eastern (region 1), 
North-western (region 2), Central (region 3), and Southern 
(region 4), according to its geographical location, hydro-
logical settings, climatic variation, and soil type (Islam et al. 
2018; Salam et al. 2020b). Different districts of Bangladesh 
belong to other regions are as follows: Region 1 consists 
of Sylhet; Region 2 comprises Rangpur, Rajshahi, Bogura; 
Region 3 covers Dhaka, Faridpur, Madaripur, Mymensingh; 
and Region 4 includes Barishal, Bhola, Cox’s Bazar, Feni, 
Joshore, Patuakhali, Swandip, Teknaf, Sitakunda, Ranga-
mati, and Khulna (Fig. 1). The country’s average minimum 
temperature generally remains above 10 °C, and the average 
maximum temperature hardly exceeds 32 °C. The North-
western part experiences higher climatic extremes, where 
the summer is drier, with a scorching westerly wind (Islam 
et al. 2014, 2019). The mean minimum temperature in win-
ter often goes below 10 °C, and the maximum summer tem-
perature frequently exceeds 32 °C. The rainfall in the central 
part is abundant, being above 190 cm, and the temperature 
is more than that in Region 2. The Southern region primar-
ily includes Chattogram and a slip of the country’s north 
to Cumilla. The rest of the area experiences a temperature 
rarely below a mean of 12° and over a mean of 32 °C but 
usually receives heavy rainfall (> 254 cm).

Data source

Monthly data of precipitation and temperature for 38 years 
from 1980 to 2017 of twenty meteorological sites situated in 
different regions of country are used in this study. The data 
was acquired by the Bangladesh Metrological Department 
(BMD) (www. bmd. gov. bd). Several missing records were 
detected in almost all 20 stations. The primary screening 
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revealed missing records less than 5% from 1985 to 2015. 
Missing data at each site was filled by the past data records 
of the respective days of the nearby stations. The main rea-
son for using the data of these 20 stations is that the admin-
istrative division before the year 1980 was diverse. Some 
districts not exist or were partitioned from other districts 
after the year 1980as part of the policy of reorganization of 
districts by creating smaller districts for better governance 
and implementation of different policies. Therefore, climatic 
data of those districts were not available before. All the data-
sets are checked for quality control by using the standard 
statistical methods by the BMD before being supplied to 
the users. Two atmospheric circulation indices data, Indian 
Ocean Dipole (IOD) and Nina 3.4 (ENSO) for 1980–2017, 

were gathered from the National Oceanic and Atmospheric 
Association (NOAA) Climate Prediction Center (CPC) 
(www. cpc. ncep. noaa. gov).

Standardized precipitation index

Standardized precipitation index (SPI) uses only precipita-
tion for drought characterization based on the monthly pre-
cipitation probability. The key purpose of the SPI is to show 
the precipitation deficiency of a particular area on several 
periods of the study period (McKee et al. 1993, 1995; Gutt-
man 1998). The SPI is also extensively utilized for identify-
ing the dry and wet periods of the study area. Both short-
term (3 and 6 months) and long-term (12 and 24 months) 

Fig. 1  The location map of the 
study area showing meteoro-
logical stations
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observations can be possible by using the SPI (Vicente-
Serrano et al. 2010). This feature can attain a considerable 
amount of information to clearly indicate of droughts sce-
narios for desired intervals (Karavitis et al. 2011). In the 
present study, the SPI is calculated based on the cumulative 
likelihood of precipitation of the respective station. First, the 
gamma cumulative distribution function g(x) parameters are 
applied to fit each calendar month's rainfall frequency for a 
meteorological station. The statistical Eq. (1) of the f(x) is 
as follows:

where α is the shape and β is the scale parameters. The 
monthly rainfall is denoted by x. The Thom approach (Thom 
1958) has been utilized for estimating the above two param-
eters (α and β). Integrating the probability density functions 
with respect to x and attach α and β parameters yields the 
cumulative probability distribution function G(x):

Substituting t for − x

�
 yields the incomplete gamma 

function:

The gamma distribution is undefined for x = 0 and 
q = P(x = 0) > 0, where P(x = 0) is the probability of zero 
(null) precipitation. Thus, the cumulative probability distri-
bution function becomes:

The cumulative probability distribution function is con-
verged into the standard normal cumulative distribution 
function to have the same probability. To avoid the solution 
derived directly from the pertinent distribution graphs, the 
SPI calculating tool was applied. The comprehensive estima-
tion of the SPI and the classification of drought have been 
presented by Shahid and Behrawan (2008).

Standardized precipitation evapotranspiration 
index

The standardized precipitation evapotranspiration index 
(SPEI) is an improved form of SPI based on climatic water bal-
ance, the difference between precipitation and reference evapo-
transpiration ( P − ET0 ), rather than only precipitation (P) as 
the input (Vicente-Serrano et al. 2010). It can be computed for 

(1)g(x) =
1

��Γ(�)
x�−1e−x∕�

(2)G(x) =

x

∫
0

g(x)dx =
1

�̂Γ
(
â
)

x

∫
0

xâe−x∕�

(3)G(x) =
1

Γ
(
â
)

x

∫
0

tâe−tdt

(4)H(x) = q + (1 − q) ∗ G(x)

various timescales to monitor droughts. Mathematically, the 
SPEI is analogous to the SPI, but it includes the role of tem-
perature variation. The SPEI combines the sensitivity of the 
PDSI to consider evaporative demand (related to temperature 
variations and trends) with the multi-temporal nature of the 
SPI. Although FAO recommended Penman–Monteith (PM) 
equation for calculating potential evapotranspiration (PET), 
it is often difficult to use as a large set of data is required (for 
instance, radiation, wind speed, sunshine hour, temperature, 
and so on) (Salam et al. 2020a, b). Moreover, radiation data is 
difficult to record and is not provided by the BMD. Besides, 
PM equation needs a high pitch of statistical aptitude and a 
considerable amount of time. For these drawbacks, the Thorn-
thwaite method is considered of PET estimation in this study. 
As, it takes only monthly mean temperature and monthly mean 
sunshine hours as the major factors to estimate PET by the 
following equation:

where N is the monthly mean sunshine hour, m is the num-
ber of days in a month, Ti is the monthly mean temperature, I 
is a cumulative index, and a can be estimated below in:

The deficit or surplus accumulation of a climatic water 
balance at various time scales is determined by the disparity 
between the monthly precipitations (P) and PET:

The calculated Di values are gathered at various time scales, 
following the similar process used in SPI for given month j and 
year i relies on the specific time scale k (months). For instance, 
the accumulated difference for one in a specific year i with a 
3-month time scale is computed using the following equations:

Subsequently, the climatic water balance data are fitted 
using a log-logistic probability distribution to get the SPEI 
index series. The probability density function of a log-logistic 
distributed variable is stated below:

where α, β, and γ are the scale, shape, and origin param-
eters, respectively, for D values in the range (γ > D < ∞). 

(5)PET = 16 × (N∕12) × (m∕30) × 10 × (Ti∕I)a

(6)
a = 6.75 × 10

−7 × I3 − 7.71 × 10
−5 × I2 + 1.79 × 10

−2 × I + 0.49

(7)Di = Pi − PETi

(8)Xk
ij
=

3∑
l=j−k+1

Di−1,l +
∑j

l=1
Di,j, if j < k

(9)X
k
ij
=
∑j

l=j−k+1
Di,l, if j ≥ k

(10)f(x) =
β

�

(
x − λ

�

)[
1 +

(
x − λ

�

)]−2
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Thus, the probability distribution function of the D series is 
provided by the following equation:

With F(x), the SPEI can be acquired as the standardized 
values of F(x) in the Eq. 12:

where W = V-2 ln (P) for P ≤ 0.5 and P is the likelihood of 
exceeding a measured D value, and P = 1 − F(x). If P > 0.5, 
then P is substituted by 1 − P and the sign of the subse-
quent SPEI is retreated. The constants are C0 = 2.515517, 
C1 = 0.802853,  C2 = 0.010328,  d1 = 1.432788, 
d2 = 0.189269, and d3 = 0.001308.

Computation of precipitation anomaly

The percentage of precipitation anomaly (Pa) is computed 
by the following Eq. 13 (Ma et al. 2021),

where P is the mean monthly or annual precipitation.

Mann Kendall test

Mann (1945) proposed the Mann Kendall (MK) test, and 
Kendall (1975) modified this test, which now has widely 
been used for exploring the trend of time-series data (Salam 
et al. 2020b; Islam et al. 2021a; Pham et al. 2021). The 
MK test does not assume any data distribution. Besides, 
the potential nosiness of outliers can be avoided. However, 
the MK test requires data free from serial correlation. The 
present study used the MK test for identifying the trend in 
drought events. The statistical expression of the MK test is 
as follows:

where xj are the sequential data values, n is the length of 
the data set, and

When n ≥ 8, the statistic S is about normally distributed, 
with the mean and the variance as expressed by the formulas:

(11)F(x) =

[
1 +

(
�

x − �

)β
]−1

(12)SPEI = W −
C0 + C1W + C2W

2

1 + d1W + d2W
2 + d3W

3

(13)Pa = P − P0∕P × 100%

(14)S =
∑n

k=0

(
n

k

)
xkan−k

(15)sgn
�
xj − xi

�
=

⎧
⎪⎨⎪⎩

1 if xj > xi
0 if xj = xi
−1 if xj < xi

where tm is the number of extent m. The standardized 
test statistic Z is computed by the equation:

For significance levels, 0.01, 0.05, and 0.1, |Zα| are 
2.58, 1.96, and 1.65, respectively.

Multiple linear and polynomial regression models

Multiple linear and polynomial regression methods are 
often used to determine governing factors from many vari-
ables. These are also used for getting the significant level 
of the variables (Thompson 1995). The statistical form of 
the linear regression can be expressed by the equation:

where b0 denotes constant, Vi indicates the vector of ith, 
and bi implies the coefficient of ith pattern, and P is the 
number of determinants.

The function to fit a k order/degree of the polynomial is 
expressed as follows:

where Y is predicted outcome value, b1 to bk denotes 
the coefficients of the variables, and b0 is the intercept of 
the Y.

Pearson correlation coefficient

Pearson’s linear correlation coefficient (r) estimates the 
degree of linear correlation between two quantitative param-
eters (Eq. 21). It is a unitless index with values between 
– 1 ≤ r ≤ 1, representing the degree of association between 
two datasets (Salam et al. 2019).

The Pearson correlation was used in the present study to 
reveal the relation of SPEI and SPI with PET, Pa, ENSO, 
and IOD; Pa with ENSO and IOD.

(16)E(S) = 0

(17)V(S) =
n(n − 1)(2n + 5) −

∑n

m=1
tmm(m − 1)(2m + 5)

18

(18)Z =

⎧
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S > 0

0 S = 0
S+1√
V(S)
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(19)SP = b0 +
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i=1
bi × Vi

(20)Y = b0 + b1x1 + b2x22 + bkxkk

(21)r = 1 −
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�
xi − x
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�∑n

i=1

�
xi − x

�2 ∑n

i=1

�
yi − y

�2
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Results

The regional distribution of SPEI and SPI

The long-term historical distribution of SPEI and SPI for 
the period 1980–2017 at the regional scale and the whole 

of Bangladesh are shown in Figs. 2 and 3, respectively. 
The short-term (3 and 6-month timescales) and long-term 
(12 and 24-month timescales) droughts are presented in 
those figures. The results showed that Region 1 (north-
east) experiences the least drought in terms of both SPEI 
(Fig. 2) and SPI (Fig. 3). The region experiences only 
mild (SPEI and SPI value 0 to − 0.99) drought. Region 

Fig. 2  The regional varia-
tions of SPEI for a 3-month, 
b 6-month, c 12-month, d 
24-month timescales during 
1980–2017

Fig. 3  The regional varia-
tions of SPEI for a 3-month, 
b 6-month, c 12-month, d 
24-month timescales during 
1980–2017
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2 (northwest) experiences moderate (SPEI and SPI 
value − 1.00 to − 1.49) drought only at a 3-month time-
scale, based on both the SPEI and SPI. The R2 also experi-
ences mild to severe (SPEI and SPI value − 1.50 to − 1.99) 
droughts based on 24-month SPEI (Fig. 2d), 6-month SPI 
(Fig. 3b), and 12-month SPI (Fig. 3c). The rest of the indi-
ces (6 and 12 months of SPEI; 24 months of SPI) showed 
mild to extreme (SPEI and SPI value ≤  − 2) droughts in 
R2. For different timescales, the SPEI and SPI showed 
mild to moderate droughts in region 3 (Central), except 
for SPEI for 6-, 12-, and 24-month, which led to mild to 
extreme droughts.

Region 4 (Southern) experiences mild to moderate 
drought for both SPEI and SPI and all timescales except for 
SPEI 3 (mild drought) and SPEI 6 (mild to severe drought) 
(Figs. 2 and 3). On average, the whole country suffers from 
mild to moderate droughts for all the timescales, as shown 
in Figs. 2 and 3. Overall, most of the droughts occur in R2, 
followed by R3, R4, and R1.

Spatiotemporal distribution of drought indices

Figures 4 and 5 show temporal variation of both short- 
and long-term SPEI and SPI, respectively, for the period 
1980–2017 in 4 climatic regions and the whole of Bangla-
desh. Like the regional variation, more frequent and intense 
drought events occur in R2 for all timescales and both indi-
ces, except SPEI 24, which is found more in R3. All the 

regions suffered moderate to extreme drought in 2010, as 
presented in Figs. 4 and 5.

Figure 4 shows the temporal evolution of SPEI at the 3- 
(SPEI-3; Fig. 4a), 6- (SPEI-6, Fig. 4b), and 12- (SPEI-12, 
Fig. 4c) and 24- (SPEI-24, Fig. 4d) month time scales, aver-
aged over Bangladesh for the period 1980–2017. The figures 
show short-term droughts in the years 1990 and 2010 (SPEI 
median: − 0.526 and − 0.582) in the North-western region 
(R2), whereas wet conditions during 1987–1988 (SPEI 
median: 0.865 and 0.923) in the North-eastern region (R1). 
Similarly, long-term droughts in the years 2010 and 2012 
(SPEI median: − 0.562 and − 0.543) in the North-western 
region (R2), whereas wet condition in the year s1988 (SPEI 
median: 0.895 and 0.952) in the North-eastern region (R1). 
The more widespread droughts were in 1990, 2010, and 
2012 (Fig. 4), which affected more than 20% of the country 
in some consecutive months.

Figure 5 exhibits the temporal variation of SPI at the 3- 
(SPI-3; Fig. 5a), 6- (SPI-6, Fig. 5b), and 12- (SPI-12, Fig. 5c) 
and 24- (SPI-24, Fig. 5d) month time scales over Bangla-
desh for 1980–2017. The monthly time series of SPI-3 and 
SPI-6 showed the dominance of drought conditions during 
1994–1995 (SPI median: − 0.623 and − 0.674). Besides, 
the monthly time series of SPI-12 and SPI-24 exhibited a 
predominance of drought conditions during 1994–1995 and 
2009–2010 (SPI median: − 0.514 and − 0.453). It is worth 
mentioning that drought conditions were comparatively reg-
ular in the North-western region, mainly since 1994, though 
their intensities differ for different timescales. These results 

Fig. 4  The temporal varia-
tions of SPEI for a 3-month, 
b 6-month, c 12-month, d 
24-month timescales during 
1980–2017
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indicate the influence of large-scale circulation in severe 
drought occurrence, such as the impact of the Indian Ocean 
variability on rainfall patterns in Bangladesh.

The long-term (1980–2017) trends in historical SPEI and 
SPI, estimated using the MK test, are represented in Figs. 6 
and 7. The positive values of Z indicate an increasing trend 
of drought and vice-versa. The short-term drought based 
on SPEI-3 revealed significant rising trends in droughts 
(p < 0.05) at two locations, Jashore and Rangpur. The SPEI-
12 and SPEI-24 showed an increasing trend at Jashore and 
Rangpur at p < 0.01 and Rajshahi and Bogura at p < 0.05 
(Fig. 6). The SPEI for all timescales showed an increas-
ing trend in Mymensingh, Dhaka, and Faridpur stations. 
The spatial distributions of SPI for different timescales 
are shown in Fig. 7. The SPIs for all timescales showed an 
increase in Jashore at p < 0.01 (Z > 3.17) and in Rajshahi and 
Bogura at p < 0.05. The SPI-3 and SPI-6 showed increasing 
trends in Rangpur at p < 0.05, and SPI-12 and SPI-24 trends 
at p < 0.01 (Fig. 7). Like the SPEI, the SPI also showed 
increasing tendency at Mymensingh, Dhaka, and Faridpur.

Teleconnection of drought indices with large‑scale 
atmospheric circulation.

The ordinary linear regression was used to explore the 
association between SPEI and SPI. The association 
between SPEI and SPI for 3-, 6-, 12-, and 24-month time-
scales for the period 1980–2017 is shown in Fig. 8. The 
SPI values estimated at all the stations were averaged to 

assess the association for the whole of Bangladesh. The 
12-month SPEI and SPI showed the highest correlation 
coefficient ( R2=0.91, very strong correlation), followed 
by the correlation for 24-month ( R2=0.62, strong correla-
tion), 3-month ( R2=0.43, strong correlation), and 6-month 
( R2=0.26, moderate correlation). We found a strong cor-
relation between SPEI and SPI for a longer timescale 
(12 months) and a lower correlation for shorter timescales 
(3- and 6-month time scales). Our results are in line with 
Tirivarombo et al. (2018). According to Tirivarombo et al. 
(2018), SPI and SPEI have a lower correlation for a shorter 
period. Meteorological droughts are generally followed 
by agricultural droughts, which SPEI can capture better. 
Therefore, SPEI has a stronger correlation for longer time-
scales than SPI.

Table 1 represents the correlation of SPEI with PET, 
Pa, and ENSO for different timescales. Only region 2 
(North-western) at 3-month timescale showed a significant 
(p < 0.05) negative correlation (r =  − 0.524) with PET. The 
rest of the regions and whole of Bangladesh showed no 
significant correlation with PET. The SPEI-3 and SPEI-6 
showed a significant (p < 0.05) positive correlation (r ≥ 0.5) 
with Pa in all the regions (except R4) and the whole of Bang-
ladesh. The correlations of SPEI for longer periods (12- and 
24-months) with Pa were significant only for R3 and R4 and 
the whole of Bangladesh. There was no significant correla-
tion between SPEI of any timescale with ENSO, indicating 
no influence of ENSO on SPEI for both short- and long-term 
droughts in Bangladesh.

Fig. 5  The temporal varia-
tions of SPI for a 3-month, 
b 6-month, c 12-month, d 
24-month timescales during 
1980–2017
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Table 2 represents the correlation of SPI with PET, Pa, 
and ENSO for different timescales. Like the SPEI, the SPI 
showed an insignificant negative correlation with ENSO 
and PET (except in region 2 for the 3-month timescale). 
SPI showed a significant (p < 0.05) negative correlation 
(r =  − 0.533) with PET in R2 for the 3-month timescale. 
Significant (< 0.05) positive correlation (r ≥ 0.5) with Pa was 
for SPI 3- (R1, R2, and R3), 6- (R3), and 12- (R3) month 
timescales. The ENSO showed a weak association with SPEI 
and SPI in Bangladesh; however, the association of ENSO 
with SPEI was relatively stronger than SPI in the regional 
scales.

The graphical presentation of the correlation of SPEI, 
averaged for whole Bangladesh with IOD is shown in Fig. 9. 
There was no significant positive association between SPEI 
and IOD (Fig. 9). The R2 value indicated an insignificant 
negative correlation between SPEI and IOD for all the time-
scales. The ENSO showed a weak association with SPEI and 
SPI in Bangladesh; however, the association of ENSO with 
SPEI was relatively stronger than SPI at the regional scales.

Like Fig. 9, Fig. 10 demonstrates the graphical presen-
tation of the correlation between SPI and IOD. The result 
showed an insignificant negative correlation between SPI 
and IOD in Bangladesh for all timescales.

Fig. 6  The spatial distribution 
of MK-Z statistics of SPEI 
trends for different timescales
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Table 3 depicts the correlation of Pa with ENSO and 
IOD in different regions of the country. The Pa showed 
insignificant negative correlation with IOD (r =  − 0.04) 
and ENSO (r =  − 003) in R1. The rest of the regions and 
the whole of Bangladesh (Table 3) showed an insignificant 
positive correlation of Pa with ENSO and IOD. The high-
est insignificant negative correlation was in the North-
western region (R2). Figure 11 represents the polynomial 
regression results between SPEI-3 and IOD. The results 
showed that IOD can explain 4.7% of SPEI variations 
compared to 4.2% for SPI-3. The correlation coefficients 
indicate the possibility of estimating SPEI and SPI from 
IOD.

Discussion

Unlike most other common disasters, direct and instant 
death is rarely a feature of droughts. However, droughts 
can have devastating consequences to environmental and 
socioeconomic conditions. Agricultural crop production is 
the most harshly affected sector of drought. Crop loss in a 
drought year may repeatedly decline 1/3 to 1/2 of the aver-
age yield, leading to local and regional food shortages and 
malnutrition (Kogan et al. 2019). Subsequent rises in the 
under-five death rate through malnourishment have been 
attributed to the drought (Delbiso et al. 2017). Drought 

Fig. 7  The spatial distribution 
of MK-Z statistics of SPI trends 
for different timescales
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Fig. 8  The correlations between 
SPI and SPEI for 3-, 6-, 12-, and 
24-month timescales in Bangla-
desh for the period 1980–2017

Table 1  Correlation coefficient of SPEI with PET, Pa, and ENSO for 3-, 6-, 12-, and 24-month timescales in different regions of Bangladesh

*  Correlation is significant at p < 0.05

Region SPEI vs. PET SPEI vs. Pa SPEI vs. ENSO

3 M 6 M 12 M 24 M 3 M 6 M 12 M 24 M 3 M 6 M 12 M 24 M

1  − .299  − .386  − .369  − .386 .725* .619* .494 .407  − .055  − .004  − .128  − .142
2  − .524*  − .298  − .291  − .127 .697* .502* .351 .107  − .116  − .078  − .219  − .116
3  − .125  − .363  − .184  − .047 .744* .654* .500* .286  − .163  − .143  − .138  − .263
4  − .186  − .192  − .192  − .173 .494 .585* .580* .139  − .099  − .096  − .203  − .286
Whole BD  − .320  − .188  − .189  − .194 .543* .528* .585* .131  − .184  − .083  − .118  − .306

Table 2  Correlation coefficient of SPI with PET, Pa, and ENSO for 3-, 6-, 12-, and 24-month timescales in different regions of Bangladesh

*  Correlation is significant at p < 0.05

Region SPI vs. PET SPI vs. Pa SPI vs. ENSO

3 M 6 M 12 M 24 M 3 M 6 M 12 M 24 M 3 M 6 M 12 M 24 M

1  − .442  − .278  − .428  − .368 .716* .382 .473 .452  − .027  − .162  − .086  − .168
2  − .533*  − .134  − .279  − .312 .790* .392 .324 .199  − .045  − .154  − .154  − .174
3  − .408  − .136  − .109 .010 .810* .628* .523* .249  − .124  − .126  − .193  − .265
4  − .329  − .114  − .143  − .064 .729 .472 .441 .056  − .041  − .032  − .106  − .269
Whole BD  − .375  − .148  − .188  − .064 .774 .509 .511 .056  − .040  − .062  − .171  − .269

2681   Page 12 of 19 Arab J Geosci (2021) 14: 2681



1 3

could bring detrimental effects to water resources, crop 
production, and the ecosystem (Wang and Rogers 2011; 
Sheffield et al. 2012). Because of these severe effects, 
severe droughts have gained a wide range of attention 
among scientists in the most recent period. In the context 
of climate change, drought risks are probable to rise in 
many historical drought-prone regions (Dai 2012; Kelley 
et al. 2015; Ault et al. 2016; Salam et al. 2021). For exam-
ple, the mean annual temperature of Bangladesh increased 
significantly between 1988 and 2017 (Khan et al. 2019). 
The rainfall pattern also changed over time. The changes 
in temperature and rainfall have altered the drought risk 
in the country.

This study investigated the spatiotemporal distribution 
of droughts and their relationship with atmospheric oscilla-
tion indices. Both the SPEI and SPI showed a higher occur-
rence of droughts in the North-western region. For most 
timescales, it experiences mild to severe drought, except 
for 6- and 12-months of SPEI, and 24-month SPI droughts 
are mild to the extreme for the region. On average, moder-
ate droughts are dominant in the area. Rahman and Lateh 
(2016) found similar results utilizing SPI and showed that 
the most drought-prone districts were Rangpur, Rajshahi, 
Bogura, and Kushtia (near the Jashore). The central region 

is the second-most drought-affected region, followed by the 
Southern and North-eastern regions. The Rangpur district in 
North-western Bangladesh is the most drought-prone. Kam-
ruzzaman et al. (2018) also showed that the Northern part of 
Bangladesh is more drought-prone than the Southern part, 
consistent with the present study results.

Spatial mapping of drought events exhibited extreme 
and severe droughts in Bangladesh during 1980–2017. The 
results showed region-wise increasing drought trends at the 
3-, 6-, 21-, and 24-month timescales, but no trend in the 
extreme drought events regarding their spatial coverage, 
intensity, or duration during the study period 1980–2017. 
The outcome is consistent with the findings of previous stud-
ies (Salam et al. 2020a). The region-specific trend analysis 
revealed a significant (p < 0.05 and p < 0.01) increasing trend 
in droughts (both SPEI and SPI) in the North-western region 
and some parts in the Central and Southern regions. The 
increasing droughts in the most drought-prone region would 
make it more vulnerable. In recent years, the adverse impact 
of droughts on Bangladesh’s water resources and ecosystems 
became visible. The riverbeds situated downstream of dams 
are filled with sediments due to the declining summer flows, 
and hydraulic congestion emerges during the rainy seasons 
(Abdullah 2014; Arnell and Gosling 2016). Bangladesh 

Fig. 9  The correlations between 
SPEI and IOD in Bangladesh 
during 1980–2017
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has ranked sixth by the global climate risk index among 
the countries vulnerable to climate change (Harmeling and 
Eckstein 2012; Kreft et al. 2014). The increasing droughts 
indicate that Bangladesh’s vulnerability to droughts is sup-
posed to increase due to the combination of climate variabil-
ity and their adverse environmental impacts. Many studies 
(Strzepek et al. 2010; Vicente-Serrano et al. 2010; Wilhite 
2010; Dai 2011) have noticed notable effects of temperature 
and evapotranspiration on drought scenarios.

The present study showed a significant relation between 
SPEI and SPI. These two drought monitoring indices are 
also significantly correlated with Pa. Several previous stud-
ies showed the modulation of Pa has teleconnection to 

large-scale ocean–atmosphere oscillation (Wahiduzzaman 
2012; Ahmed et al. 2017; Rahman and Islam 2019). On the 
other hand, SPEI and SPI showed no correlation with ENSO 
and IOD. Pa showed an insignificant poor relationship with 
ENSO and IOD. Like the present study, Gershunov et al. 
(2001) showed that the relation of the level of stochastic 
modulation of the ENSO and average Indian rainfall (AIR) is 
significantly lower. Ashok et al. (2001) and Wahiduzzaman 
(2012) also showed that the quantitative correspondence 
between the strength of ENSO and the rainfall in Bangladesh 
is very weak. Kumar et al. (1999) and Torrence and Webster 
(1999) also documented a weakening relationship between 
the Asian monsoon and ENSO.

The physics of the teleconnection of ENSO with the 
Asian monsoon rainfall has been well reported. However, 
earlier studies did not well deciphered ENSO linkage with 
drought and its spatiotemporal variability (Uddin et al. 
2020; Zinat et al. 2020). The results of this study are in 
disagreement with Sun et al. (2016), where they found a 
strong association between climatic indices and drought 
in India. However, it is consistent with the findings of 
Ahmed et al. (2017) and Wahiduzzaman et al. (2020). 
Possible explanations for the negative relationships 
between drought indices and ENSO teleconnection may 

Fig. 10  The correlations 
between SPI and IOD in Bang-
ladesh during 1980–2017

Table 3  Correlation coefficient of Pa with ENSO and IOD for differ-
ent regions of Bangladesh during 1980–2017

Region Pa vs. ENSO Pa vs. IOD

1  − 0.003  − 0.038
2 0.133 0.155
3 0.029 0.078
4 0.045 0.011
Whole Bangladesh 0.045 0.011
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be due to higher air temperature leading to a decline in 
air–water potential. The increased evapotranspiration due 
to increased temperature (Galbraith et al. 2010) reduces 
air–water potential and causes a reduction of the effect of 
the large-scale circulation. Another reason for the nega-
tive correlation between ENSO and drought patterns is 
the integrated effects of distance from the Bay of Bengal, 
climatic anomalies, and hydro-geographic setting. Similar 
findings have been reported for many subtropical regions 
(Ahmed et  al. 2017; Wahiduzzaman and Luo, 2020). 
Chowdhury (2003) indicated the minor role of ENSO in 
modulating local climatic variables in Bangladesh. Rah-
man and Islam (2019) showed that precipitation concen-
tration in Bangladesh is insignificantly associated with 

ENSO and IOD. The present study also showed a statisti-
cally non-significant negative correlation between drought 
indices and IOD in Bangladesh. The linkage of IOD with 
droughts has not been investigated before in Bangladesh.

The results presented in this study indicate the need for 
further exploration to understand the relationships between 
droughts and large-scale climate indices in Bangladesh. 
There are considerable uncertainties in the effects of ENSO 
on drought phenomena and how this relationship develops 
through time. For example, there were no clear spatiotem-
poral patterns in drought evolution during ENSO periods. 
This urge for further research related to ENSO. Future stud-
ies should also explore the physical characteristics (e.g., sea 
surface temperature, air pressure, wind speed, and moisture 

Fig. 11  The polynomial regress-
ing model showing a nonlinear 
relationship between IOD and 
short-term drought events in 
Bangladesh during 1980–2017

Page 15 of 19    2681Arab J Geosci (2021) 14: 2681



1 3

flux patterns) during each ENSO event to evaluate how they 
evolve into drought pattern variation.

Conclusion

This study intends to evaluate the spatiotemporal variability 
of droughts in Bangladesh and its possible links with ENSO 
and IOD. The study identified droughts in Bangladesh in 
1990, 1994, 1995, 2010, and 2012 and wet conditions 
from 1985 to 1988. North-western, central, and southern 
regions showed a significant increasing monotonic trend in 
SPEI and SPI droughts. Investigation of teleconnection of 
SPI and SPEI with IOD, ENSO, and PET indicates no sig-
nificant correlations for any timescales, suggesting a very 
week linkage between droughts in Bangladesh and large-
scale oscillation mode. The precipitation anomaly showed 
a significant association with SPEI and SPI, and no associa-
tion with ENSO and IOD. Overall, the present study dem-
onstrated that drought conditions have been worsening over 
the country, especially the North-western region, in terms 
of spatial variation, particularly for shorter timescales. A 
medium recurrence of short-term and long-term droughts 
in the North-western and Central parts of the country can 
have vital implications in socio-economic sectors, such as 
rainfed agricultural crop production. The spatial and tempo-
ral variations of droughts for different timescales provided 
a helpful guide to understanding drought features and for-
mulating comprehensive management approaches to over-
come the drought problem in Bangladesh effectively. These 
outcomes may also aid in sustainable agricultural planning 
in Bangladesh, taking immediate action to manage regional 
drought conditions and lessen their detrimental impacts. 
Though drought events cannot be directly identified as flood 
events, their consequences are much higher than the losses 
triggered by floods. Therefore, an efficient drought monitor-
ing system requires to be adopted to mitigate drought effects. 
There is yet no agreement on the global drought pattern, 
so more study is highly recommended, particularly at local 
and regional levels. Besides, drought specialists should play 
a vital role in giving information using various indices at 
multi-time scales that are most appropriate for their par-
ticular application. However, the reason for higher drought 
occurrence in the North-western than other regions is still 
unclear. This deserves future work to improve our under-
standing of how climatic mode affects the distribution of 
severe droughts in Bangladesh.
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