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Abstract
This essay investigates the first four moderate geomagnetic activities (the 04 January storm, the 07 January storm, the 17 
February storm, and the 24 February storm) of 2015 in the 24th solar cycle. The essay attempts to understand these storms 
with the aid of zonal geomagnetic indices. It predicts the zonal geomagnetic indices (Dst, ap, AE) of the storms by an artificial 
neural network model. The phenomena that occurred in January and February are discussed by taking into account the solar 
wind parameters  (Bz, E, P, N, v, T) and the zonal geomagnetic indices obtained from NASA. In the study, after glancing at 
the general appearance of the year 2015, which is exhibited with too small errors, binary correlations of the variables are 
indicated by the covariance matrix and the hierarchical cluster of the variables is presented by at dendrogram. The artificial 
neural network model is governed by the physical principles in the paper. The model uses the solar wind parameters as inputs 
and the zonal geomagnetic indices as outputs. The causality principle forms the models by cause–effect association. The back 
propagation algorithm is specified as Levenberg–Marquardt (trainlm), and 35 neural numbers are utilized in the artificial 
neural network. The neural network model predicts the Dst, ap, and AE indices of January and February geomagnetic storms 
with an accuracy that deserves discussion. The R correlation coefficients of the Dst, ap, and AE indices reach up to 98.9%. 
In addition to reliable accuracy, the parameters affecting the R correlation coefficients agree with the literature. Estimating 
the geomagnetic activities may support interplanetary works.

Keywords Solar wind parameters (SWp) · Zonal geomagnetic indices (ZGi) · Artificial neural network (ANN)

Introduction

Natural events are interpreted by mathematicians via data. 
Data are converted to variables, which later provide mod-
eling opportunities to researchers. Depending on physical 
conditions, variables may be separated into dependent and 
independent ones. When the solar wind parameters (SWp) 
are considered to be independent variables, the zonal geo-
magnetic indices (ZGi) are considered to be dependent vari-
ables. Geomagnetic activities (Akasofu 1964; Kamide et al. 
1998; Rathore et al. 2014) are also such natural events. This 
paper tries to understand and interpret the 04 January storm 
(Dst =  − 71 nT), the 07 January storm (Dst =  − 99 nT), the 

17 February storm (Dst =  − 64 nT), and the 24 February 
storm (Dst =  − 56 nT) moderate geomagnetic activities built 
on the SWp and the ZGi based on the cause  (Bz, E, P, N, v, 
T)–effect (Dst, ap, AE) association. The storms are exam-
ined by an artificial neural network model (ANNm). In the 
ANNm, Levenberg–Marquardt (trainlm) is selected as the 
backpropagation (Rumelhart et al., 1986; Conway 1998) 
algorithm, and thirty-five neural numbers are utilized (Wil-
liams and Zipser 1989; Elman 1990; Gardner and Dorling 
1998; Fausett 1994).

The sun is a plasma-dense energy and power source that 
produces durable magnetic waves. These magnetic waves 
are conveyed out to the interplanetary medium by the SWs. 
The SW has dense particles induced by the energy spreading 
from the sun (Parker 1958). Being swallowed by coronal 
mass ejection (CME) cloud of the earth’s magnetosphere-
ionosphere and the B magnetic field’s  Bz component orient-
ing from the positive northward to the negative southward 
are invaluable for the geomagnetic storm. Shortly, the fast 
alteration in the magnetosphere of the earth governed by 
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the SW scattering out of the sun is named a geomagnetic 
storm. CME is the burst of magnetically charged plasma 
into the interplanetary medium with high speeds. The dense 
magnetic field is burst in the solar corona (Lin and Ni 2018) 
by direct CMEs in a loop through (magnetic) reconnections 
(Kamide et al. 1998; Gonzalez et al. 1989; Borovsky 2012; 
Fu et al. 2013; 2017). Polarized magnetosonic waves and 
CME straightly turn out the SWp (Gonzalez et al. 1999). 
One of the governors’ SWp is the magnetic field  Bz compo-
nent. The negative  Bz magnetic field replaces from the north-
ward to the southward. This orientation and decreasing cause 
of the terrestrial magnetic field by causing disturbances with 
magnetic reconnections. Turbulences and fluctuations in the 
magnetic field controlled by the storm disturbance storm 
time (Dst) index (Dungey. 1961; Sugiura. 1964) from ZGi 
can be called storms after the minimum peak  Bz. The course 
of the storm has three phases: the initial phase (sudden com-
mencement), the main phase, and the recovery phase. In 
the initial phase, in which the storm begins, the Dst index 
decreases from positive values to negative values support-
ing the magnetic field. In the main phase, the Dst index 
indicates negative values. After the negative values show 
the minimum values, the recovery phase begins. Lastly, the 
geomagnetic storm finishes with the recovery phase when 
the fluctuation in the magnetic field ends and the Dst index 
indicates the initial values. In moderate storms, following 
the  Bz parameter of the Dst index with a delay (Burton 1975) 
of 5–6 h is the response of the ring current to the SW. To bet-
ter understand a geomagnetic storm (Mayaud 1980; Eroglu 
2018; Eroglu 2019; Inyurt and Sekertekin 2019; Inyurt 2020; 
Koklu 2020; Eroglu 2020), the author considers the models 
between the SWp and the ZGi. This paper utilizes hourly 
versions of the SWp and the ZGi.

This essay tries to investigate 04 January, 07 January, 
17 February, and 24 February (2015) storms based on their 
physical requirements via an ANN model by meticulously 
governing the causality principle (Eroglu 2011, 2021; Ero-
glu et al. 2012a; 2012b). The ANN is a precious method; 
it may be utilized as an operative approach for estimation 
in scientific disciplines (Elman 1990; Gleisner et al. 1996; 
Boberg et al. 2000; Gleisner and Lundstedt 2001; Karay-
iannis and Venetsanopoulos 2013). The use of the ANNm 
application has been common in recent decades, owing to its 
distinctive features such as learning capability, adaptation to 
changes, and ease of tools.

Investigations of earth–sun interaction, geomagnetic 
activities (Gleisner et al. 1996; Boberg et al. 2000; Gleis-
ner and Lundstedt 2001), weather estimations, etc. with 
ANNs (Gardner and Dorling 1998; Lundstedt et al. 2005; 
Pallocchia et  al. 2006) are effective in terms of space 
costs-times. ANN models founded by inferring geomag-
netic storms’ CMEs (Uwamahoro et al., 2012; Singh and 
Singh 2016) give reasonable results with a high forecasting 

ratio of storms. Long-term time data ANN models involv-
ing SWp not only forecast the Dst index (Lundstedt, 1992; 
Lundstedt and Wintoft 1994; Gleisner et al. 1996; Fen-
rich and Luhman 1998; O’Brien and McPherron 2000; 
Lundstedt et al. 2002; Bala 2012; Uwamahoro 2012; Singh 
and Singh 2016) but also estimate geomagnetic activity 
phases (Gleisner et al., 1996). One may see the difficulty 
of estimating the Dst index without high-capacity comput-
ers with an 84% accuracy. In the 1990s, such an amazing 
estimation guided the new ANN models (Gleisner et al., 
1996). Another ZG indicator Kp index is estimated by the 
SWp parameters as the proton density (N), the flux veloc-
ity (v), and the  Bz magnetic field. The Kp index ANN 
model displays a remarkable estimation ratio (Boberg et al. 
2000; Lundstedt 1992). The ap index significant model 
also utilizes the SWp as proton density and magnetic field 
(Altadill et al. 2001). The auroral electrojet index AE 
model uses the proton density (N), the flux density (v), 
and the magnetic field (B). One may realize from the ANN 
model estimation more than 70% of the monitored the AE 
index (Gleisner and Lundstedt, 2001).

This paper investigates different moderate storms sep-
arately. Governing the ANN model by the SWp, the ZGi 
shapes the investigation. In the examination of the first four 
moderate storms, the correlation matrix specifies the binary 
relation of the variables, and the dendrogram illustrates the 
hierarchical cluster of the data. The events that are visualized 
with graphics are exhibited to the reader. The SW scattering 
time from bow shock to magnetosphere-ionosphere is not 
considered in the study when the ZGi from ground stations 
is utilized.

After the literature review in the “Introduction,” yearly 
ZGi values appearances are seen in “Data” besides variables 
5-day scattering. In “Modeling,” the ANN model and some 
properties of data are discussed. The paper is completed with 
a discussion in “Conclusion.”

Data

SPEDAS is used in this essay. Before launching the first four 
moderate storms of the year 2015 (day by day), one needs a 
glance at the annual ZGi values. One can find the observed 
and estimated values of the year 2015 in Fig. 1 besides their 
absolute errors. The estimated ZGi with the average error 
variance is as follows:

Error Variance

Dst (nT) 0.399 (2.77%) 0.953
ap (nT) 0.271 (2.20%) 0.272
AE (nT) 0.303 (0.14%) 0.243
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Geomagnetic storms are classified according to the 
strength of the Dst index (Loewe and Prölss 1997). A Dst 
index between − 50 nT and − 30 nT indicates a weak storm, 
between − 100 nT and − 50 nT indicates a moderate storm, 
and between − 200 nT and − 100 nT indicates a strong 
(intense, severe) storm. Figure 2 is a 120-h view of some 
data related to the activities. The storm day is placed in the 
middle of the 5 days.

It would be appropriate to briefly discuss Fig. 2.
04 January 2015 storm: On 04 January at 14:00 UT, 

when the  Bz magnetic field is at its minimum value of − 8.8 
nT, the Dst orients to − 56 nT and the electric field E shows 
its maximum value of 3.53 mV/m. Simultaneously, the pro-
ton density N indicates to 6.9/cm3, the plasma flow speed v 
shows 401 km/s, and the pressure P reaches 2.63 nPa. As a 
response after 2 h, at 16:00 UT, the Dst index and the auro-
ral electrojet AE index hit the minimum–maximum peak 
values − 71 nT and 866 nT, respectively.

On 03 January at 00:00 UT, when the first CME bursts 
out to the interplanetary medium, instant instability of the 
dynamic pressure P reaches its peak value of 8.36 nPa with 
the proton density N, indicating the maximum value of 33.0 
1/cm3 and the flow speed v minimum value of 379 km/s.

07 January 2015 storm: After the diminishing in the flow 
speed v, the first CME hits with the sudden commencement 
(acceleration) in the dynamic pressure P and the proton den-
sity N at 16:00 UT on 06 January. On 07 January at 07:00 
UT, the Dst index indicates its peak value of − 99 nT, the 
last CME bursts out. Meantime, the dynamic pressure P 
jumps from 6.05 nPa to its highest value of 12.36 nPa, and 
the proton density N hits its maximum value of 29.4 1/cm3. 
After 2 h, on 07 January at 9:00 UT, the  Bz magnetic field 
decreases to its minimum value (− 17.04 nT), the electric 
field E reaches its highest value of 8.16 mV/m, the AE index 
shows its maximum value of 1327 nT, and the ap ZG index 
hits its maximum value of 94 nT.

Fig. 1  Annual observed-esti-
mated Dst (nT) index, ap (nT) 
index, and AE (nT) index for 
the year 2015 and their errors
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17 February 2015 storm: In the 5 days discussion 
period, when the first CME bursts out on 15 Febru-
ary at 04:00 UT with the sudden commencement in the 
dynamic pressure P, the proton density N peaks immedi-
ately its maximum value of 21.9 1/cm3. On 17 February 
at 21:00 UT, 3 h before the Dst ZG index takes its mini-
mum value of − 62 nT, the magnetic field  Bz component 
indicates its peak value of − 12.0 nT and the electric field 
(E) hits its maximum value of 4.54 mV/m. After 3 h, at 
00:00 UT, the ap index, the AE index, and the Dst index 
indicate their peak values of 48 nT, 579 nT, and − 64 nT, 
respectively.

24 February 2015 storm: In the 5 days storm period, 
when the first CME bursts out on 23 February at 03:00 UT 
with the sudden commencement in the dynamic pressure P, 
the proton density N immediately hits the value of 20.3 1/
cm3. After 8 h at 08:00 UT, when the second CME bursts 
out, the dynamic pressure (P) hits 5.46 nPa and the proton 
density (N) indicates 20.0 1/cm3. Within 4 h, the magnetic 
field  Bz component hits its peak value of − 7.7 nT (11:00 
UT), the dynamic pressure (P) increases its maximum 
value of 8.81 nPa (12:00 UT), and the proton density (N) 
shows its peak value of 31.7 1/cm3 (at 12:00 UT).

Fig. 2  Data from top to bottom the Dst (nT) index, the Bz magnetic 
field (nT), the E electric field (mV/m), the dynamic pressure P (nPa), 
the proton density N (1/cm3), the flow speed v (km/s), and the ap 

(nT) index for 2015 January 02–06 (upper left side), January 05–09 
(upper right side), February 15–19 (bottom left side), and February 
22–26 (bottom right side)
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Modeling

Table 1a and 1b demonstrates the binary relationships with 
the correlation matrix for the data of four moderate storms. 
The Pearson correlation matrix shows the relationship 
of variables. When the constants in the matrix are close 
to ± 1, mutual correlation strengthens. The correlation of 
the dynamic pressure P and the proton density N param-
eters in Table 1a and 1b seem high. The reliability of these 
values can be evaluated with the Cronbach’s alpha con-
stant that should be above 60% for reliability. It is 0.645, 
0.816, 0.629, and 0.640 in these tables, respectively. Den-
drogram of the variables of the storms and scattering of 
data are specified in Fig. 3a, b and Fig. 4, respectively. 

The dendrogram displays the relationship of the variables 
by each line.

Figure 3a and b shows the dendrogram of the variables of 
the four moderate storms.

After the introductory mathematical discussion, it can be 
appropriate to remember the frame of the model of an ANN. 
The ANNs have been inspired by the working principles of 
the human brain. This complicated and trainable neural sys-
tem, which is shaped by linking many neurons with several 
interface levels, imitates the brain. Studies firstly involved 
the mathematical modeling of the neurons in the human 
brain. With increasing awareness, the ANN has become a 
scientific discipline today with usage areas in many different 
fields. ANNs can observe information and data in different 

Fig. 2  (continued)
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a

b

Fig. 3  a The cluster of the variables (left side: 04 January; right side: 07 January storm); b The cluster of the variables (left side: 17 February; 
right side: 24 February storm)

Fig. 4  Scattering of the variables (from left to right: 04 January, 07 January, 17 February, and 24 February storms)
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structures and procedures by recognizing them very quickly; 
they can also reveal unknown and difficult-to-notice correla-
tions among data. They allow modeling without the neces-
sity for any preparation or info among inputs and outputs 
(Elman 1990). Basically, inputs and corresponding outputs 
are specified to the network (Fig. 5).

Training or educating of the ANNs requires learning the 
relationship between input and output. This approach, called 
instructional learning, is common (Peng et al., 1992). As an 
architectural configuration involving some layers, the ANN 
uses data with a pre-determined number of artificial neural 
cells. The initial layer is generally the input layer. This layer 
is usually not numbered owing to the lack of weight factors 
and initiation functions of the inputs in the input layer. The 
second mid-layer, called the hidden layer, can be founded 
so many as needed. Researchers usually employ one hidden 
layer (Elman 1990; El-Din & Smith 2002). The layer called 
the output layer is the last layer. In this paper, the estima-
tions are completed by the back propagation (Rumelhart 
et al., 1986) ANN algorithm. The typical back propagation 
algorithm applying a feedback learning structure is the gra-
dient descent algorithm that moves the network weights in 
the direction of the negative gradient of the performance 
function. Many backpropagation algorithms appropriate for 
nearly all problems in ANNs are driven by standard opti-
mization methods such as gradient descent and the Newton 
approach (Lipmann 1987). Feedback learning using continu-
ous input diminishes the error caused by backward agglom-
eration. The author utilizes the widely performed Leven-
berg–Marquardt (trainlm) learning algorithm.

After the creation of the learning algorithm, the num-
ber of neurons of the hidden layer has to be specified. The 

number of neurons should be determined as needed. Too 
few neurons cause the network to be unable to learn the 
network pattern, while a large number of neurons cause the 
network to memorize. A small enough number of neurons 
forces the ANN to improve the generalization facility (Stern 
1996). In the paper, the number of neurons in the hidden 
layer is determined to be thirty-five. In this neuron number, 
the mean square error (MSE) value begins to indicate no 
substantial change.

The work consists of three layers: the input layer, hidden 
layer, and output layer (Fig. 5). In harmony with the causal-
ity principle, the SWp  (Bz, E, P, N, v, T) are the variables of 
the input layer and the ZGi (Dst, ap, AE) are the variables 
of the output layer. For the ANN model to be able to learn 
well without memorizing, the sigmoid transfer function is 
selected as the neural transition function (Fausett, 1994). A 
Linear transfer function is used in the output layer. Where a 
total of 120 (5 days) data is investigated, 84 data are utilized 
for training the ANN (70%), 12 data for validation (10%) 
and 24 data for testing (20%) (Haykin 1994).

As it may be realized from Fig. 6, the MSE values do 
not change after 6 updates (step, epoch) for the Dst index, 
after 8 updates for the ap index, and after 8 updates for the 
AE index in the 04 January storm (left column). In addition 
to this, the MSE values do not change after 7 updates for 
the Dst index, after 8 updates for the ap index, and after 8 
updates for the AE index in the 07 January storm (right col-
umn). Therefore, learning (training) is finished. Up to these 
iteration totals, where the best verification performance hap-
pens, there is no monitoring of memorization owing to error 
constancy. Because the validation and test set errors show 
similar behaviors and no substantial memorization happens, 
the network performance is acceptable.

One can see from Fig. 6 that MSE values do not change 
after 7 updates (step, epoch) for the Dst index, after 7 
updates for the ap index, and after 6 updates for the AE 
index in the 17 February storm (left column). In addition 
to this, the MSE values do not change after 8 updates for 
the Dst index, after 8 updates for the ap index, and after 8 
updates for the AE index in the 24 February storm (right 
column).

Figure 7a, b and Fig. 8 visualize the results of the dis-
cussion. In Fig. 7a and b, the Dst, ap, and AE indices line 
up from top to bottom, respectively. While Fig. 7a and b 
displays the correlation, Fig. 8 exhibits the character of 
observed, forecasted values with their errors. Graphically, 
forecasting consequences are in Fig. 7a, b between the out-
put and the target (the Dst, ap, AE indices).

Significant studies in the literature have reached 
remarkable results in the estimation of the Dst, the ap (or 
the Kp), and the AE index. In the Dst ZG index estima-
tions, Gleisner et al. (1996) achieved an 84% accuracy, 
Fenrich and Luhman (1998) 79%, O’Brien and McPherron Fig. 5  The ANN framework for the estimation of ZGi
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Fig. 6  The chronological performance of the Dst, ap, and AE (from left to right) ANN model
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(2000) 88%, Lundstedt et al. (2002) 88%, Pallocchia et al. 
(2006) 90%, Bala and Reiff (2012) 86%, Uwamahoro et al. 
(2012) 86% (for severe storms 100%), Singh and Singh 
(2016) 79%, and Balan et al. (2017) 100%.

In the Kp ZG index estimations, Boberg et al. (2000) 
achieved a 77% accuracy, Wing et al. (2005) 94%, Bala 
and Reiff (2012) 96%, Young et al. (2013) 93%, Solares 
et al. (2016) 91%, and Wintoft et al. (2017) 92%.

In the AE index estimations, Gleisner et  al. (1996) 
achieved an accuracy of more than 70%, Takalo and 
Timonen (1997) 98%, Gleisner and Lundstedt (2001) 84%, 
and Bala and Reiff (2012) 83%.

For the 04 January storm: The Dst, ap, and AE indices 
estimation models are 98.5%, 98.1%, and 98.3% (Fig. 7a, 
left column) reliable, respectively.
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Fig. 7  a The plot of regression between the estimated and observed Dst, ap, and AE (from top to bottom) indices; b The plot of regression 
between the estimated and observed Dst, ap, and AE (from top to bottom) indices
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For the 07 January storm: The Dst, ap, and AE indices 
estimation models are 98.8%, 98.5%, and 98.4% (Fig. 7a, 
right column) reliable, respectively.

For the 17 February storm: The Dst, ap, and AE indices 
estimation models are 97.6%, 98.9%, and 98.6% (Fig. 7b, 
left column) reliable, respectively.

For the 24 February storm: The Dst, ap, and AE indices 
estimation models are 98.9%, 98.5%, and 98.6% (Fig. 7b, 
right column) reliable, respectively.

Forecasting model outcomes of the four moderate 
storms look similar. It is obvious that the ANN model 

17 February 2015 24 February2015 

-70 -60 -50 -40 -30 -20 -10 0 10
-70

-60

-50

-40

-30

-20

-10

0

10

28.0-+tegraT*69.0=~tuptuO

: R=0.98492

Data
Fit
Y = T

-80 -60 -40 -20 0

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

3.0+tegraT*1=~tuptuO

: R=0.9878

Data
Fit
Y = T

0 10 20 30 40 50
0

10

20

30

40

50

190.0+tegraT*1=~tuptuO

: R=0.98141

Data
Fit
Y = T

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

8.1+tegraT*69.0=~tuptuO

: R=0.98524

Data
Fit
Y = T

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

13-+tegraT*1=~tuptuO

: R=0.98321

Data
Fit
Y = T

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

3.7+tegraT*59.0=~tuptuO

: R=0.98353

Data
Fit
Y = T

Fig. 7  (continued)

Page 11 of 17    2538Arab J Geosci (2021) 14: 2538



1 3

displays the reliable method and the fit output for these 
moderate geomagnetic activities.

Estimated Dst, ap, and AE indices and their errors for 
the 04 January moderate storm together with actual ones 
from NASA are exhibited in Fig. 8, respectively. In Fig. 1 
and Fig. 8, one can see the error ratio in the comparison 
of the estimated and monitored Dst, ap, and AE ZGi. The 
absolute error between the real-estimated ZGi values can 
be observed with the Error = |

|
|

Dstest−Dst

Dst

|
|
|
 , Error = |apest−ap|

ap
 , 

and Error = |AEest−AE|
AE

 , where the  Dstest,  apest, and  AEest are 
the estimated Dst, ap, and AE index values, respectively. 
The low error rate exhibits the accuracy of the 
estimation.

According to Fig. 8, the estimated Dst index average 
errors are 0.034, 0.009, 0.389, and 0.064 with 0.011, 0.002, 
0.841, and 0.012 relative variance values, respectively.

Estimated ap index values and their errors for all storms 
together with actual ones from NASA are exhibited in 
Fig. 8, respectively.

According to Fig. 8, the estimated ap index average errors 
are 0.198, 0.265, 0.035, and 0.019 with 0.047, 0.143, 0.003, 
and 0.001 their relative variance values, respectively.

Estimated AE index values and their errors for all storms 
together with actual ones from NASA are displayed in 
Fig. 8, respectively.

According to Fig.  8, the estimated AE index aver-
age errors are 0.444, 0.022, 0.219, and 0.215 with values 
0.340, 0.018, 0.111, and 0.056 relative variance values, 
respectively.

The effect of variables (for solar wind parameters) on the 
ANN model (Gontarski et al., 2000) can be calculated with 
the formula % Effect = 100.(1 − Rn/Rdif) by omitting these 
variables from the investigation process. The correlation 
coefficients govern this formula. In the formula, Rn is the 
correlation coefficient attained by excluding the input and 
Rdif is the basic correlation coefficient between estimated 
and observed values. Table 2a and 2b exhibits the effect of 
variables on the ANN model.

04 January storm: In the modeling of the Dst (nT) 
index estimation, the plasma flow speed v (km/s) indicates 
the main effect. The correlation coefficient diminishes by 
13.70% when neglecting the plasma flow speed (Table 2a). 
The second-high effect belongs to the proton density N (1/
cm3) and dynamic pressure P (nPa). The correlation coef-
ficient weakens by 10.37% and 9.43% when omitting the 
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Fig. 8  The observed and estimated Dst (nT), ap (nT), and AE (nT) indices (chronologically from top to bottom) and their errors
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proton density and dynamic pressure P value, respectively 
(Table 2a). Finally, when omitting the magnetic field  Bz 
(nT) component, the Dst index is affected by 3.54%. The 
plasma flow speed v (km/s), the proton density N (1/cm3), 
the dynamic pressure P (nPa), and the magnetic field  Bz (nT) 
are indispensable estimators for the Dst (nT) index (Burton 
et al. 1975; Gleisner et al. 1996). Physically, coronal holes 
created by the instability of hot particles are the origin of 
the flow speed v (km/s). The SW streams have high speed. 
The polarization of the magnetic field is indicated by the 
parameters of the SW speed (Tsurutani et al., 2006). Besides 
orienting the magnetic field  Bz (nT) component from south-
ward to northward and indicating its negative values, the 
flow speed v (km/s) shapes the geomagnetic storm. The flow 
speed v (km/s) and the  Bz (nT) component, with these anom-
alous replies, show that the Dst (nT) index should decline 
to a negative minimum. By enhancing the proton density N 
(1/cm3), the high-density plasma dynamic pressure P (nPa) 
and SW suppress the magnetosphere (Tsurutani et al., 2006). 
The reflection of the disturbance caused by this compress 
governed by the flow speed v (km/s) is the Dst (nT) index. 
Accordingly, one of the principal motivations why the Dst 
(nT) index decreases to minimum value is the flow speed 
(Gonzalez et al. 1989; Borovsky 2012; Borovsky and Yaky-
menko 2017). The ANN model shapes the estimation of the 
Dst values with the literature (Table 2a and 2b).

The maximum impact on the ap (nT) index estimation 
takes into account the magnetic field  Bz (nT) component, 
the dynamic pressure P (nPa), the flow speed v (km/s), and 
proton density N (1/cm3). When the magnetic field and the 
dynamic pressure are omitted, the correlation ratio declines 
by 14.66% and 12.64%, respectively (Table 2a). The flow 
speed v (km/s) and the proton density N (1/cm3) are also 
other high parameters for the ap index. If these variables are 
omitted from the ap estimation, the model correlation con-
stant diminishes by 8.91% and 8.40%, respectively. Physi-
cally, magnetic field polarizations indicate parallel effects 
with the dynamic pressure P (nPa), the flow speed v (km/s), 
and the proton density N (1/cm3), while the ap index non-
linearly responses to the instabilities (Altadill et al. 2001; 
Eroglu 2018; 2019, 2020, 2021; Inyurt 2020; Koklu 2020). 
The noticeable relation between the  Bz (nT) magnetic field, 
the dynamic pressure P (nPa), the flow speed v (km/s), the 
proton density N (1/cm3), and the ap (nT) index may be seen 
in Table 2a.

In the ANN estimation model for the AE (nT) index, the 
highest impact relates to the magnetic field  Bz (nT) compo-
nent. One may see that when neglecting the  Bz (nT) mag-
netic field, the correlation constant decreases by 12.16% 
(Table 2a). The magnetic field is accompanied by the flow 
speed v (km/s) and proton density N (1/cm3) during the cal-
culation of the AE (nT) index correlation ratio. It is realized 
that the value of R declines by 6.94% and 4.60% when the 

flow speed v (km/s) and proton density N (1/cm3) are sub-
tracted from the ANN model of the AE index, respectively 
(Table 2a) (Gleisner and Lundstedt, 2001).

07 January storm: Parallel conclusions can also be drawn 
for the 07 January moderate storm. In the Dst index estima-
tion, the highest effect belongs to the dynamic pressure P 
(nPa), the flow speed v (km/s), and the  Bz (nT) magnetic 
field. The correlation coefficient diminishes by 12.35%, 
10.53%, and 10.02% when neglecting the mentioned SWp 
value, respectively (Table 2a). According to Table 2a, the 
proton density N (1/cm3) affects the Dst (nT) index with a 
value of 8.81%.

The maximum impact on the ap (nT) index estimation 
takes into account the proton density N (1/cm3) and the 
flow speed v (km/s). When the proton density and the flow 
speed are omitted, the correlation constant value decreases 
by 17.32% and 16.04%, respectively (Table 2a). Secondly, 
the other main factors are the  Bz magnetic field (nT) and 
the dynamic pressure P (nPa) for the ap (nT) index. If they 
are omitted from the ap (nT) prediction, the model corre-
lation ratio decreases by 10.25% and 10.05%, respectively 
(Table 2a).

In the estimation of the AE (nT) index, the highest effect 
belongs to the proton density N (1/cm3). One can see that 
when neglecting the proton density, the correlation constant 
value decreases by 13.11% (Table 2a). Besides the proton 
density, it is observed that the value of R decreases by 9.76% 
and 9.55% when the magnetic field  Bz (nT) component and 
the flow speed v (km/s) are excluded from the AE index 
model, respectively (Table 2a).

17 February storm: This moderate storm also reflects 
similar effects. The Dst (nT) index estimation responds to 
ignoring the flow speed v (km/s), the proton density N (1/
cm3), the dynamic pressure P (nPa), and the  Bz (nT) mag-
netic field. The correlation constant decreases by 8.20%, 
7.48%, 7.07%, and 6.86% when neglecting mentioned SWp 
value, respectively (Table 2b).

The maximum effect on the ap (nT) index estimation 
takes into account the proton density N (1/cm3), the  Bz 
magnetic field (nT), the dynamic pressure P (nPa), and the 
flow speed v (km/s). When the mentioned SWp is omitted, 
the correlation constant value decreases by 10.72%, 10.11%, 
9.81%, and 9.00%, respectively (Table 2b).

In the estimation of the AE (nT) index, the highest effect 
belongs to the flow speed v (km/s), the magnetic field  Bz 
(nT) component, and proton density N (1/cm3). One can 
realize that when neglecting these parameters, the correla-
tion constant value decreases by 7.73%, 7.40%, and 6.80%, 
respectively (Table 2b).

24 February storm: Lastly, according to the 24 Febru-
ary moderate storm, the Dst (nT) index estimation is deeply 
related to the  Bz (nT) magnetic field, the dynamic pressure 
P (nPa), the proton density N (1/cm3), and the flow speed v 
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(km/s). The correlation coefficient diminishes by 23.36%, 
13.04%, 8.19%, and 8.03% when neglecting these SWp, 
respectively (Table 2b).

The maximum impact on the ap (nT) index estimation 
takes into account the proton density N (1/cm3), the flow 
speed v (km/s), the  Bz magnetic field (nT), and the dynamic 
pressure P (nPa). When the mentioned SWp is omitted, the 
correlation constant value decreases by 18.10%, 12.59%, 
8.02%, and 7.41%, respectively (Table 2b). Secondly, the 
electric field E (mV/m) affects the ap (nT) index by 2.23% 
(Table 2b).

In the estimation of the AE (nT) index, the highest effect 
is observed by means of the proton density N (1/cm3), the 
 Bz (nT) magnetic field, and the flow speed v (km/s). One can 
see that when ignoring these SWp, the correlation constant 
value decreases by 11.66%, 7.20%, and 7.10%, respectively 
(Table 2b).

Conclusion

The purpose of the study is to assess the four moderate geo-
magnetic storms that occurred in the year 2015. After glanc-
ing at the year 2015 as a whole, zonal geomagnetic indices 
(ZGi) of these first four moderate activities are estimated 
efficiently. When comparing the estimation of geomagnetic 
storms by the artificial neural network (ANN) with the lit-
erature, the conclusions are satisfactory.

For these events, it is notable that the ANN model esti-
mates the ZGi considering the solar wind (SWp). A geo-
magnetic storm strength and its phases may be evaluated 
by discussing the ZGi. The paper is based on the method 
of inputting the SWp to the ANN model and yielding the 
ZGi as the output. The estimation performance of the ANN 
model with ZGi as the output is acceptable and consistent 
for the literature. The results demonstrate that the model is 
over 90% consistent in the estimation of the ZGi of these 
four moderate storms. The essay, in addition to the estima-
tion, discusses the effect of the SW variables on the ANN 
model for these storms.

Regarding the proton density (N), the flow speed (v), the 
magnetic field z component  (Bz), the dynamic pressure (P), 
and the electric field (E), according to the 04 January storm 
ANN model, for the Dst index, the v, N, and P have a high 
effect, while the  Bz component has the moderate effect. Fur-
thermore,  Bz field, P, and v with N affect the ap index highly. 
For the auroral electrojet index AE,  Bz has a high effect, v 
and N have a moderate effect.

According to the ANN model of the 07 January moderate 
storm, for the Dst index, P, v,  Bz, and N have a high effect. 
Moreover, N, v, and  Bz with P affect the ap index highly. For 
the AE index, N,  Bz field, and v have a high effect.

According to the ANN model of the 17 February storm, 
for the Dst index, v, N, P, and  Bz have a high effect. Addi-
tionally, N,  Bz, and P with v affect the ap index highly. The 
electric field (E) also has a moderate effect on the ap ZG 
index. In calculating auroral electrojet index AE, v,  Bz, and 
N have a high effect.

According to the ANN estimation model of the 24 Febru-
ary moderate storm, for the Dst ZG index,  Bz has a very high 
effect and P, N, and v has a high effect. Furthermore, for the 
ap ZG index, N has a very high effect and v,  Bz field, and P 
have a high effect besides the moderate effect of E. For the 
AE index, N,  Bz, and v have a high effect.

The agreement between the result of this study and those 
of previous studies indicates the reliability of the results 
of this study. The author expects to contribute to geomag-
netic storm estimations by making it easier to understand 
their dynamics. The Dst, ap, and AE indices estimated for 
these storms can also be estimated for other storms. With a 
similar approach, it will not be difficult for the ANN model 
to estimate the ZGi of weak, moderate, or severe storms. 
The indices considered together with the SWp prepare the 
ground for predictable storms. The author hopes to attain 
the same results for weak, moderate, and severe storms in 
further discussions.
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