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Abstract
The Lower Cretaceous Nubian sandstones cover large areas in both NE Africa and Arabia. In this study, we utilized major 
and trace element data in combination with petrographic and heavy mineral analyses to infer the provenance model of the 
Nubian sandstones exposed at Gebel Duwi in the Eastern Desert of Egypt. It is established that these sandstones are mainly 
quartzose (quartz-arenite) and litho-quartzose deposited in fluvial and estuarine near-shore environments. The quartzose 
sandstones are dominantly fine to medium-grained in texture. The framework consists mainly of quartz grains (average 
92.26% of rock volume), in addition to minor lithic fragments (average 4.6%), very rare feldspars (average 1.17%), and 
heavy mineral fractions (average 1.8%). The lithic fragments are represented mainly by siltstone and sandy siltstone, with 
minor lithics of gneisses. The heavy mineral assemblage comprises zircon, tourmaline, rutile (ZTR), garnet, and kyanite, 
with minor epidote, ilmenite, and leucoxene. Chemically, these sandstones are rich in SiO2 and poor in CaO, MgO, K2O, 
Na2O, and P2O5. From trace elements, the most abundant are Ba, Th, Zr, and Sr. The provenance-related interpretations of 
the established rock composition imply that the Nubian sandstones were sourced mainly from a relatively proximal Paleozoic 
sandstones through multiple stages of fluvial recycling and were deposited in low-lying basin areas in the passive continental 
margin. The modal composition analysis reflects that these sandstones are mainly of cratonic interior. The ZTR-dominated 
heavy mineral assemblage indicates an increasing proportion of detritus recycled from older siliciclastic units of Paleozoic 
age. The high chemical weathering indices indicate intense subaerial weathering in a humid environment and multiple epi-
sodes of reworking, with a considerable contribution of basement denudation. A stable tectonic regime is interpreted, and 
intracratonic activation is not recognized.
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Introduction

Textural and compositional maturity of siliciclastic sedi-
ments depends on many factors, the most important of which 
are provenance, chemical weathering and alteration, duration 
and distance of sediment transport, sediment recycling, and 
diagenesis (e.g., Nesbitt and Markovics 1980; Nesbitt and 
Young 1982; Middelburg et al. 1988; Haughton et al. 1991; 
Nesbitt et al. 1996; Wanas and Abdel-Maguid 2006; Akarish 
and El-Gohary 2008; Zaid 2012; Zaid et al. 2015; Sallam 
and Wanas 2019; Wanas and Assal 2021). Mineralogical 
and geochemical compositions of siliciclastic sediments 
have been widely used to recognize sediment provenance, 
tectonic setting, and palaeoweathering conditions, thus 
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providing significant information useful in assessing pal-
aeogeographical reconstructions and crustal evolution (e.g., 
Basu et al. 1975; Dickinson and Suczek 1979; Ingersoll and 
Suczek 1979; Bhatia 1983; Dickinson et al. 1983; Bhatia 
and Crook 1986; Roser and Korsch 1986, 1988; Haughton 
et al. 1991; Morton and Hallsworth 1994; Armstrong-Altrin 
et al. 2013; Löwen et al. 2018; Garzanti 2019; Garzanti and 
Andò 2019; Mohammedyasin and Wudie 2019; Dinis et al. 
2020; He et al. 2020). Whole-rock geochemical analyses 
have long been applied to characterize sediment provenance 
linking geochemical signatures to source rocks and tectonic 
settings (e.g., Nesbitt and Young 1982; Dickinson et  al. 
1983; Haughton et al. 1991; McLennan et al. 1993; Verma 
and Armstrong-Altrin 2013, 2016). Numerous sophisticated 
methods (petrological and geochemical) and discriminant 
functions with their relevant diagrams were introduced by 
many authors interested in provenance analysis (e.g., Bhatia 
1983; Dickinson et al. 1983; Bhatia and Crook 1986; Roser 
and Korsch 1986, 1988). A new portion of multi-dimensional 
diagrams for tectonic setting discrimination of siliciclastic 
sediments and their applications were proposed by Verma 
and Armstrong-Altrin (2013, 2016)).

The Red Sea Hills in eastern Egypt boast rich geological 
record that is crucial for deciphering the Mesozoic–Ceno-
zoic evolution of northeastern Africa before, during, and 
after the separation of Arabia together with the opening 
of the Red Sea. Moreover, this domain is similarly crucial 
for understanding the sedimentary processes at the transi-
tion between interiors and periphery of a large continent. 
Particularly, the Cretaceous rocks in the Quseir area consist 
predominantly of siliciclastics, with the lowermost pack-
age comprising mainly of paralic and fluvial cross-bedded 
sandstones of the Nubia Formation (Ward and McDonald 
1979; Ward et al. 1979; Van Houten et al. 1984; Ruban et al. 
2021). This formation unconformably overlies the Precam-
brian basement rocks and is conformably overlain by the 
Quseir Formation. The thickness of the Nubia Formation 
is highly variable, and its age was generally assigned as 
Late Cretaceous (Said 1962; Guiraud et al. 2001), although 
some other studies indicate Early Cretaceous age (Bosworth 
et al. in Hamimi et al. 2020). In the present work, the Early 
Cretaceous Age of the Nubia Formation is followed.

The previous studies of the Nubia Formation in Egypt 
dealt mainly with stratigraphy and sedimentology (e.g., 

Fig. 1   A Landsat image showing the location of the investigated sec-
tion at Gebel Duwi on the western side of the Red Sea, B geological 
map of the study area (after Youssef 1957; Khalil and McClay 2009), 

and C composite lithostratigraphic columnar section of the Mesozoic-
Paleogene platform sediments in the Quseir area (after Youssef 1957)
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Ward and McDonald 1979; Van Houten et  al. 1984), 
whereas a minority of studies focused on provenance 
analysis of similar sandstones in neighboring countries 
(e.g., Weissbrod and Nachmias 1986; Amireh 1991; 
Kolodner et  al. 2009; Ahfaf et  al. 2021). Therefore, 
the results of petrographic and whole-rock geochemis-
try (major and trace elements) analyses of the Nubian 
sandstones at Gebel Duwi (Fig. 1) have been interpreted 
to clarify their provenance, tectonic setting, and source 
area weathering contribution, in addition to better under-
standing the paleogeography of northeastern Africa and 
Arabia in the Early Cretaceous. However, the spatial 
distribution of the Nubia Formation is much wider, and, 
thus, similar attention should be paid to composition 

and provenance of the relevant sandstones in many 
other areas of northeastern Africa and Arabia. Of spe-
cial interest is how their deposition was controlled by 
major shoreline shifts and palaeoclimate changes on the 
regional scale.

Geological setting

Geographically, the study area belongs to the Central 
Eastern Desert of Egypt where the chain of Red Sea hills 
separates the internal part of northeastern Africa from the 
periphery of the Red Sea. More specifically, the study area 

Fig. 2   Detailed lithostratigra-
phy of the Nubia Formation at 
Gebel Duwi, Quseir area
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corresponds to Gebel Duwi. Tectonically, the study area is 
related to two main extensional fault systems and a num-
ber of half-graben basins (Khalil and McClay 2009). The 
junction of fault segments forms a zigzag fault pattern and 
rhomboidal blocks (Khalil and McClay 2009). The tec-
tonic re-organizations linked to the Red Sea rifting led to 
rotation of some blocks; as a result, both pre- and syn-rift 
sedimentary sequences are exposed (Khalil and McClay 
2009) (Fig. 1).

The pre-rift sequences (Precambrian–early Eocene) 
start with highly deformed volcaniclastics that were meta-
morphosed into the greenschist facies (Akaad and Noweir 
1980; Stern 1981, 1994; Stoeser and Camp 1985; Kröner 
1984, 1993). These basement rocks are unconformably 
overlain by a 500–700-m-thick sedimentary succession of 
Cretaceous–early Eocene strata. These are visible in out-
crops in the Safaga–Quseir area (e.g., Gebel Duwi, Gebel 
Atshan, Gebel Hamadat, Gebel Mohamed Rabah, and 
Gebel Wasif). Particularly, the ~180-m-thick sandstones 
of the Nubia Formation unconformably overlie basement 
rocks, and these sandstones are overlain by ~70-m-thick 
variegated shales. The latter were separated by Youssef 
(1957) as a distinct stratigraphical unit of Campanian age. 
The upper strata include the Duwi Formation overlain by 

~300 m of interbedded shales and limestones of the Upper 
Cretaceous–Paleocene Dakhla, Tarawan, and Esna for-
mations (Youssef 1957; Abd El-Razik 1967; Said 1990, 
2017). The youngest pre-rift unit comprises ~200-m-thick 
cherty limestones of the Thebes Formation.

The oldest syn-rift sequences include chert-cobble con-
glomerates and grits of the late Oligocene Nakheil Forma-
tion (Said 1990). It is overlain by reefal limestones, clastics, 
and evaporites of the Ranga, Um Mahara, Abu Dabbab, and 
Um Gheig formations (Philobbos et al. 1993; Said 1990). 
The Late Miocene–Quaternary sequences reach 1000 m in 
thickness offshore (Orszag-Sperber et al. 1998; Heath et al. 
1999). These are marine sandstones, conglomerates, and ree-
fal limestones of the Mersa Alam Formation and conglom-
erates, reefal limestones, and coarse sands of the Samadi 
Formation.

Sampling and methods

In this study, a multi-method approach of modal analysis, 
petrography, and whole-rock geochemistry has been per-
formed to infer the provenance, depositional tectonic set-
ting, and source area palaeoweathering of the Cretaceous 

Fig. 3   Field photographs of 
the Nubia Formation showing 
A non-conformable contact 
between the Precambrian base-
ment rocks and the overlying 
Nubia Formation at Gebel 
Duwi. Person for scale 165 cm 
long, B trough cross-bedded 
sandstones at the lower lithofa-
cies of the Nubia Formation. 
The hammer handle for scale 
is 26 cm long, C tabular planar 
cross-bedded sandstones at the 
middle lithofacies of the Nubia 
Formation with a paleoflow 
direction to the southwest, and 
D, E rippled-sandstones charac-
terizing of the upper lithofacies 
type of the Nubia Formation. 
The hammer handle for scale is 
26 cm long, and coin is 2.4 cm 
in diameter. All photographs 
are made at Gebel Duwi, Quseir 
area
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sandstones in the Red Sea Hills. One representative sec-
tion of the Nubia Formation was measured, described, 
and sampled. The locality is Gebel Duwi—a conspicuous 
mountain consisting of a long sharp ridge, which drops 
precipitously to the southwest and slopes gently to the 
northeast. Its geological setting is demonstrated in Fig. 1.

A total of 65 sandstone samples were collected from 
the studied Nubian sandstones at Gebel Duwi (Quseir 
area, Eastern Desert). For the purposes of petrographic 
analysis, 45 thin sections of the sandstones were inves-
tigated under the standard polarizing microscope. 
Description of sandstone followed the classification 
scheme of Garzanti (2016) and Garzanti et al. (2018). 
Approximately 250–300 grains were counted per thin 
section following the traditional methodology of Gazzi-
Dickinson (Ingersoll et al. 1984) for the detrital con-
stituents (quartz, feldspars, and lithic fragments) of 
each studied sample. The results of modal composition 

analysis were tabulated and plotted in QFL ternary dia-
grams of Dickinson et al. (1983).

Fine to medium-grained sandstones (250–65 μm) were 
subjected to heavy mineral separation using bromoform 
(specific gravity 2.89 gm/cm3). Then, the heavy min-
eral fractions were dried and mounted on a glass slide 
for microscopic investigation. Some of opaque and non-
opaque heavy mineral fractions have been identified in the 
studied samples.

The samples from the Nubian sandstones were ana-
lyzed for major and trace element geochemistry using 
the X-ray fluorescence (XRF) spectrophotometry tech-
nique on fused and pressed beads, respectively. Ana-
lytical precision was better than 5% for major oxides 
and trace elements. Loss of ignition (LOI) was esti-
mated by heating the dried sample at 1000 °C for 2 h. 
Major element data were recalculated to an anhydrous 
(LOI-free) basis and adjusted to 100% before using 

Fig. 4   Photomicrographs show-
ing the detrital constituents of 
the studied sandstones: A–E 
quartz-arenites from the lower 
and middle lithofacies of the 
Nubia Formation (samples # 
1, 4, 6, 7, 11, respectively), F 
fine-grained silty sandstones 
from the upper lithofacies of the 
Nubia Formation (sample # 13). 
Abbreviations: Qm, monocrys-
talline quartz; Qp, polycrystal-
line quartz; F, feldspars (micro-
cline); L, lithic fragments; op, 
opaque minerals; u, undulose 
extinction, point contacts (red 
arrows), straight contacts (yel-
low arrows), concavo-convex 
contacts (blue arrows), and 
sutured contacts (green arrows)
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them in various diagrams. Major and trace element 
analyses were carried out at the Central Laboratories 
of the Egyptian Mineral Resources Authority (EMRA) 
in Cairo, Egypt.

Results

Field observation and sedimentology

In the Gebel Duwi section, the Nubia Formation uncon-
formably overlies Precambrian basement rocks and is 
succeeded by the Quseir Formation (Fig. 2). The Nubia 
Formation consists mainly of varicolored whitish-gray, 
pale yellow, and reddish sandstones with few interbeds 
of siltstones and claystones (Fig. 2). It attains thickness 
of about 180 m at the studied section. Bedding is medium 
and small scale. The sandstones exhibit diverse sedimen-
tary structures such as ripples, load casts, flat- and cross-
bedding, and both planar and trough types on small and 
medium scale. They show a fining-upward cyclic pattern 
(each cycle is 0.5 to 1.0 m in thickness), coarser at bottom 

and becomes finer upward. No marine fossils were found 
in these sandstones.

The Nubia Formation in the studied section can be sub-
divided into three lithofacies types: lower, middle, and upper 
lithofacies. The lower lithofacies overly unconformably 
the basement rocks with an erosional surface in between 
(Fig. 3A) and is made up of about 70-m-thick non-fossil-
iferous, pale yellow, medium to coarse-grained, lenticular, 
and planar and trough cross-bedded pebbly sandstones 
(Fig. 3B, C). The middle lithofacies is approximately 85 m 
thick and is composed of reddish-brown, fine- to medium-
grained sandstones. These sandstones are characterized 
by the common occurrence of small-scale flat-bedded and 
planar cross-bedding. The latter exhibits a poly-directional 
pattern of palaeoflow, generally towards NNW and NNE. 
The upper lithofacies are about 25 m thick, and it consists of 
dark brown to reddish brown, fine-grained sandstones, and 
sandy siltstones that commonly show well-developed ripple 
marks (Fig. 3D, E).

Overall, the Nubia Formation was deposited predomi-
nantly in fluvial and estuarine near-shore environments 
interrupted by flood plains (cf. Shawa and Issawi 1978; 
Ward and McDonald 1979; Van Houten et  al. 1984). 

Table 1   Modal composition (%) of the analyzed sandstone samples

F fine-grained, M medium-grained, C coarse-grained, VC very coarse-grained, WS well-sorted, PS poorly sorted, MS moderately sorted, SR sub-
rounded, SA sub-angular, R rounded

Sample no Grain size Sorting Rounding Total quartz Quartz (monocrystalline) Quartz 
(polycrys-
talline)

Feldspars Lithic fragments Heavy 
mineral 
content %Non-undulose Undulose

NB1 C PS R-SR 89.6 85.72 6.09 8.19 1.39 7.66 1.35
NB2 C PS SR 89.02 88.28 6.15 5.57 0.50 8.34 2.14
NB3 C PS SR 91.19 85.3 8.48 6.22 1.66 3.50 3.65
NB4 M-C PS R-SR 90.72 85.33 8.21 6.46 1.00 6.30 1.98
NB5 M-C PS R-SR 89.34 84.33 10.16 5.51 1.33 8.33 1.00
NB6 M MS R 89.08 84.37 8.23 7.4 2.67 7.40 0.85
NB7 M MS SR 91.24 86.58 9.52 3.9 1.66 4.65 2.45
NB8 M MS R-SR 91.39 85.15 8.49 6.36 1.34 5.67 1.6
NB9 M MS-PS SA-SR 92.56 90.95 6.25 2.8 1.23 3.43 2.78
NB10 M-F MS-PS SA-SR 93.22 90.26 6.15 3.59 1.34 2.00 3.44
NB11 M MS SR-SR 90.07 87.27 7.37 5.36 2.27 5.74 1.92
NB12 M-F PS SR 93.44 87.03 6.20 6.77 1.14 4.87 0.55
NB13 F-M WS R-SR 92.07 88.35 8.15 3.5 1.33 6.00 0.6
NB14 M WS R 93.16 85.16 8.07 6.77 1.20 5.14 0.5
NB15 VF WS R 95.02 87.1 7.72 5.18 1.50 2.33 1.15
NB16 F WS SR 94.08 86.25 10.71 3.04 1.00 3.56 1.36
NB17 F-VF MS-WS SR-R 95.73 81.5 11.5 7.00 0.00 2.5 1.77
NB18 F WS SR 94.65 84.49 8.33 7.18 0.50 2.55 2.30
NB19 F WS R 94.31` 89.78 5.45 4.77 0.50 1.54 3.65
NB20 VF WS R 97.54 94.49 2.69 2.82 0.00 0.6 1.86
Average 92.26 86.88 7.97 5.41 1.17 4.6 1.8
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Fig. 5   A–C The QFL ternary 
diagram of detrital components 
of the studied sandstones (after 
Garzanti 2016 and Garzanti 
et al. 2018). D ZTR (zircon 
+ tourmaline + rutile) versus 
garnet and epidote minerals. 
Abbreviations: Q, total quartz; 
F, feldspars; L, lithic fragments. 
Deep yellow circles represent 
the studied samples

Table 2   Major element geochemical data (wt. %), CIA and CIW values of the analyzed sandstone samples

*UCC​ upper continental crust values (after Rudnick and Gao (2003))

Sample no SiO2% TiO2% Al2O3% Fe2O3%tot MnO% MgO% CaO% Na2O% K2O% P2O5% LOI % CIA CIW

NB1 97.45 0.04 0.88 0.7 0.1 0.01 0.01 0.01 0.01 0.01 0.55 97.76 98.86
NB2 97.2 0.05 0.7 0.6 0.09 0.01 0.1 0.1 0.01 0.01 0.52 86.23 87.31
NB3 97.3 0.06 0.55 0.7 0.09 0.43 0.1 0.02 0.01 0.01 0.55 94.54 96.19
NB4 94.2 0.27 3.1 0.86 0.07 0.01 0.11 0.01 0.01 0.01 1.2 99.30 99.62
NB5 97.14 0.11 0.65 0.62 0.06 0.01 0.1 0.01 0.01 0.01 1.08 96.76 98.22
NB6 98.9 0.04 0.45 0.3 0.06 0.01 0.01 0.01 0.01 0.01 0.02 95.71 97.79
NB7 98.6 0.07 0.4 0.3 0.07 0.01 0.01 0.01 0.01 0.01 0.32 95.20 97.52
NB8 96.79 0.08 0.98 0.26 0.07 0.01 0.01 0.02 0.01 0.01 1.1 97.01 97.98
NB9 97.96 0.1 0.76 0.35 0.07 0.01 0.01 0.01 0.01 0.01 0.3 97.41 98.68
NB10 97.34 0.04 0.5 0.28 0.06 0.01 0.01 0.01 0.01 0.01 0.52 96.12 98.00
NB11 98.9 0.04 0.2 0.2 0.06 0.01 0.01 0.01 0.01 0.01 0.21 90.84 95.16
NB12 98.2 0.1 0.6 0.25 0.06 0.01 0.01 0.01 0.01 0.01 0.51 96.75 98.33
NB13 98.62 0.02 0.56 0.22 0.07 0.01 0.01 0.01 0.01 0.01 0.04 96.52 98.21
NB14 96.18 0.23 0.95 0.85 0.08 0.01 0.01 0.02 0.01 0.01 0.58 96.92 97.92
NB15 98.02 0.05 0.58 0.68 0.08 0.01 0.01 0.01 0.01 0.01 0.37 96.64 98.86
NB16 92.5 0.03 2.87 0.23 0.06 0.01 0.01 0.01 0.01 0.01 0.43 99.31 98.28
NB17 94.21 0.04 1.74 0.41 0.07 0.01 0.01 0.02 0.01 0.01 0.51 98.31 99.65
NB18 90.89 0.1 3.69 0.35 0.08 0.01 0.1 0.01 0.01 0.01 0.62 99.46 98.86
NB19 96.18 0.06 2.56 0.56 0.1 0.01 0.01 0.01 0.01 0.01 0.45 99.22 99.73
NB20 95.67 0.1 2.68 0.72 0.06 0.01 0.01 0.1 0.01 0.01 0.73 96.06 99.61
Average 96.61 0.078 1.27 0.471 0.075 0.031 0.033 0.021 0.01 0.01 -- 96.30 97.62
UCC* 66.62 0.64 15.40 5.04 0.10 2.48 3.59 3.27 2.80 0.15 -- 52.74 --
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The common occurrence of planar cross-bedded sand-
stones suggests a downstream migration of transverse 
bars and sand waves in shallow water stream channels 
under lower flow regime conditions (Miall 1988; Wanas 
et al. 2015; Sallam et al. 2018; Ruban et al. 2019; Sallam 
and Ruban 2020). The siltstones and claystone interbeds 
represent overbank (floodplain) sedimentation. Color 
mottling, desiccation cracks, and red coloration indicate 
that these floodplain deposits were subaerially exposed 
and underwent pedogenesis and soil formation (Issawi 
et al. 2005; Sallam et al. 2015; Wanas et al. 2015). The 
upper part of the Nubia Formation consists mainly of 
paralic and deltaic sediments, which gradually passed 
up into shallow-marine sediments (variegated shales and 
glauconitic sandstones) of the overlying Quseir Forma-
tion (Ward and McDonald 1979). Gradational contact 
between the Nubia Formation and the overlying Quseir 
Formation is noticed.

Petrography, heavy mineral fractions, and modal 
composition

The petrographic investigation of the studied sandstones 
revealed that the framework composition of sediments is 

largely quartz-dominated (average 92.26% of the rock vol-
ume), subordinate lithic fragments (average 4.6% of the 
rock volume and are represented mainly by siltstones and 
sandy siltstones), and minor proportions of feldspars (mainly 
microcline) and heavy fractions (Fig. 4A–F). Feldspars and 
heavy fractions constitute more or less 2% of the rock vol-
ume. The sandstones are fine to medium-grained and mod-
erately well-sorted. The matrix is chiefly composed of silt-
grade quartz. The cement material is commonly ferruginous 
and quartz overgrowths. The pores are intergranular and 
irregular in shape, and they are relatively connected. Modal 
composition analysis (quartz–feldspars–lithic fragments, 
QFL) of the analyzed samples showed that the Nubian sand-
stones have average proportions of Q92.2F1.1L4.6 (Table 1). In 
the QFL ternary diagrams of Garzanti (2016) and Garzanti 
et al. (2018), all examined sandstone samples can be clas-
sified as quartzose and pure quartzose to litho-quartzose 
(Fig. 5A–C). The recognized heavy minerals mainly com-
prise zircon, tourmaline, rutile (high ZTR index), garnet, 
kyanite, in addition to minor epidote, ilmenite, and leucox-
ene (Fig. 5D and Fig. S-1, see supplement).

The quartz grains are sub-angular to sub-rounded and 
show point to straight and concavo-convex grain-to-grain 
contacts. Monocrystalline quartz dominates (91.8–97.2%) 

Fig. 6   A–D Correlation 
diagrams of Al2O3 with other 
major oxides
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and shows unit (non-undulose) extinction (81.5–94.4%). 
A few quartz grains display slightly undulose extinction 
(2.6–11.5%). Polycrystalline (composite) quartz is less fre-
quent (2.8–8.1%). The modal composition data are shown 
in Table 1. The main diagenetic features recognized in the 
investigated sandstone samples include compaction, cemen-
tation, hematitization, and quartz overgrowths. In general, 
the studied samples of the Nubia sandstones are chemically 
(compositionally) and texturally mature.

Geochemistry

Major element geochemistry

The results of major oxides of our studied samples are 
compared to those of the upper continental crust (UCC) 
(Table 2). The studied sandstone samples are enriched in 
SiO2 (average 96.61%) (Table 2). In contrast, they have very 
low concentrations of TiO2 (average 0.078%) and MnO 
(average 0.075%), and the content of CaO, MgO, K2O, 
Na2O, and P2O5 is also very low (Table 2). The very low 
percentages of K2O and Na2O are consistent with the scar-
city of feldspar minerals. Besides, Al2O3 shows strong posi-
tive linear correlation with TiO2 (r2 = 0.78) and slight posi-
tive correlation with CaO (r2 = 0.47), whereas it displays a 

strong negative linear correlation with SiO2 (r2 = –0.81) and 
with NaO2 (r2 = –0.03) (Fig. 6A–D).

Trace element geochemistry

The results of trace elements of our studied sandstone sam-
ples are compared to those of the upper continental crust 
(UCC) (Table 3). Trace element data shows a relatively high 
concentrations of Ba (148–244 ppm), Th (8.4–11.4 ppm), 
Zr (27–117 ppm), and Sr (27–117 ppm); moderate concen-
trations of Co (44–48 ppm) and Cu (12–18 ppm); and low 
concentrations of La (14–17 ppm), Ni (4–14 ppm), Zn (3–10 
ppm), Nb (3–10 ppm), and Pb (5–12 ppm) (Table 3). Appar-
ently, the enrichment in Ba, Zr, and Sr concentrations most 
probably reflect zircon and possibly monazite in the heavy 
mineral fractions. In addition, Al2O3 has slight positive cor-
relations with Co (r2 = 0.16), Ni (r2 = 0.21), and Cu (r2 = 
0.2), while displaying relatively high positive correlations 
with Zn (r2 = 0.5) (Fig. 7A–D). Plots of Fe2O3tot versus Co, 
Ni, Cu, and Zn showed slight positive correlations, with cor-
relation coefficient (r2) values of 0.06, 0.06, 0.3, and 0.19, 
respectively (Fig. 8A–D).

Concentrations of selected trace elements of the stud-
ied Nubia samples have been normalized to average upper 

Table 3   Trace element geochemical data (given in ppm) of the analyzed sandstone samples

*UCC​ upper continental crust values (after Rudnick and Gao (2003))

Sample No Ba Co Cr Cu Sr Th La Zn Nb Zr Ni Pb Rb V Y

NB1 198.00 46.00 2.00 18.00 43 9.40 15 9 4 43 6 5 4 12.00 9.22
NB2 202.00 45.00 2.00 16.00 40 9.20 15 7 5 88 7 5 3 15.00 13.64
NB3 207.00 44.00 2.00 12.00 37 9.10 15 5 4 37 7 5 5 8.00 15.20
NB4 224.00 46.00 3.00 16.00 117 10.60 17 10 10 117 8 12 3 22.00 6.87
NB5 168.00 46.00 3.00 14.00 68 10.40 15 4 8 108 6 7 4 32.00 7.54
NB6 178.00 45.00 2.00 15.00 27 9.00 14 4 4 27 4 5 4 14.00 11.65
NB7 244.00 44.00 2.00 17.00 32 8.90 16 5 5 32 4 7 4 25.00 14.80
NB8 233.00 45.00 2.00 15.00 46 8.40 16 3 4 79 6 7 3 40.00 9.43
NB9 215.00 45.00 2.00 17.00 42 9.60 17 10 5 68 8 8 4 26.00 6.70
NB10 186.00 44.00 2.00 12.00 71 10.60 17 6 8 34 7 5 5 6.00 10.40
NB11 170.00 45.00 2.00 13.00 38 9.60 15 7 3 38 5 7 3 18.00 12.10
NB12 188.00 48.00 2.00 14.00 62 10.40 15 5 5 62 5 8 4 27.00 8.50
NB13 196.00 46.00 2.00 17.00 32 10.90 16 4 5 57 6 7 4 34.00 9.30
NB14 184.00 46.00 2.00 16.00 36 10.20 17 8 4 62 8 6 5 36.00 7.40
NB15 189.00 48.00 2.00 18.00 45 11.30 15 3 4 45 14 6 3 19.00 5.20
NB16 175.00 46.00 3.00 15.00 35 9.00 16 6 8 46 6 7 4 24.00 10.45
NB17 220.00 45.00 2.00 14.00 42 8.60 17 10 10 64 5 8 4 26.00 9.70
NB18 178.00 48.00 3.00 16.00 43 9.30 14 4 5 36 12 5 3 36.00 13.25
NB19 148.00 45.00 2.00 12.00 64 11.40 17 5 4 55 8 5 5 18.00 7.90
NB20 253.00 46.00 3.00 15.00 28 9.70 16 6 8 69 5 6 3 24.00 9.60
Average 197.80 45.65 2.25 15.1 47.4 9.78 15.75 6.05 5.65 58.35 6.85 6.55 3.85 23.1 9.94
UCC* 624 17.30 92 28 320 10.5 31 67 12 193 47 17 84 97 21
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continental crust (UCC; values from Rudnick and Gao 
2003). These include the large-ion lithophile easily mobi-
lized elements (e.g., Ba, Rb, and Sr) and high-field strength 
immobile elements (e.g., Nb and Zr) (Fig. 9), which can 
reveal significant clues into sedimentary provenance (Taylor 
and McLennan 1985).

Discussion

Interpretation procedures

In this study, multidisciplinary methods of petrography, 
modal analysis, heavy mineralogy, and whole-rock geochem-
istry of the Nubian sandstones at Gebel Duwi have been per-
formed to constrain their provenance, tectonic setting, source 
area palaeoweathering, and palaeoclimatic conditions. The 
present study followed the algorithm of provenance analysis 
based on the following established interpretation procedures.

The QFL schemes of Garzanti (2016) and Garzanti 
et al. (2018) and the bipyramidal diagram of Tortosa et al. 
(1991) are followed for provenance discrimination. The 

discriminant diagrams of Basu et al. (1975) and Roser and 
Korsch (1988) are followed for provenance characterization, 
whereas the tectonic setting is distinguished following the 
discriminant diagrams of Bhatia (1983), Dickinson et al. 
(1983), Roser and Korsch (1986), Kroonenberg (1994), and 
Verma and Armstrong-Altrin (2013, 2016)). The chemical 
index of weathering (CIW) and the chemical index of altera-
tion (CIA) are used to measure the degree of source area 
weathering. The CIA is calculated following the equation 
of Nesbitt and Young (1982) as CIA = [Al2O3/(Al2O3 + 
K2O + CaO* + Na2O)] × 100. The CIW is calculated based 
on the equation of Harnois (1988) as CIW = [Al2O3/(Al2O3 
+ CaO* + Na2O)] ×100 (where CaO* is CaO content in 
silicate fraction: CaO*= CaO-(10/3) × P2O5).

Provenance

In this study, the provenance analysis of the sandstones is 
based mainly on both petrography and whole-rock geochem-
istry (major and trace elements). Petrographic characteristics 
of sandstones can provide significant clues for reconstruct-
ing their depositional settings especially when fossil datasets 

Fig. 7   A–D Correlation dia-
grams of Al2O3 with Co, Ni, 
Cu, and Zn
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are unobtainable or inadequate (Akinlotan et al. 2021). Gen-
erally, quartzose and litho-quartzose are the most common 
type of sandstones in all studied samples. Due to the scar-
city of feldspars in the studied sandstones, the provenance 
was chiefly inferred by relying only on crystallinity and 
extinction of quartz grains. The high quartz contents (aver-
age 92.26%) may reflect that the samples were subjected to 
intense periods of chemical and physical weathering and 
possible derivation from pre-existing sandstones (most prob-
ably multi-recycling of Paleozoic sandstones). The quartzose 
sandstones are generally characteristic of fluviatile sedi-
ments (cf. Kolodner et al. 2009; Ahfaf et al. 2021). Based 
on the bipyramidal plot diagram after Basu et al. (1975) and 
modified by Tortosa et al. (1991), the ratio of polycrystalline 
quartz grains versus undulose (strained) and non-undulose 
(unstrained) monocrystalline quartz grains (Table 1) indi-
cates that quartz grains are possibly derived from plutonic 
igneous rocks (Fig. 10). In addition, the relative abundance 
of the unstrained quartz grains in the investigated sandstone 
samples (Table 1) points to a plutonic igneous provenance 
(Basu et al. 1975; Hindrix 2000).

The heavy mineral assemblage recognized from the stud-
ied sandstone samples comprising zircon and rutile might 
be derived from acidic igneous rocks and/or recycled older 
sediments (Folk 1974; Morton 1985; Kolodner et al. 2009), 
whereas garnet and tourmaline grains were derived likely 
from metamorphosed igneous rocks, especially gneisses 
and schists (Morton 1985; Morton and Hallsworth 1994). 
The ZTR-dominated assemblages beside the low plagio-
clase/feldspars ratio in the examined sandstone samples 
indicate their derivation from recycled older siliciclastic 
rocks. The compositional and textural maturity of the sand-
stones confirms the predominance of recycling processes 
within the basin (Wanas and Assal 2021).

The discrimination function diagram after Roser and 
Korsch (1988) indicates that the studied sandstones were 
sourced from polycyclic older quartzose sandstones 
(Fig. 11). Different proxies such as Al2O3 versus TiO2 and 
Zr versus TiO2 cross plots after Hayashi et al. (1997), Y/Ni 
versus Cr/V cross plot after Hiscott (1984), and Ni versus 
Cr cross plot after Garver et al. (1996) indicate mixed felsic 
and mafic source rocks of the upper continental crust (UCC) 

Fig. 8   A–D Correlation dia-
grams of Fe2O3tot with Co, Ni, 
Cu, and Zn
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for the studied sandstone samples (Fig. 12A–D). Plotting of 
the studied samples on the ternary Ni-V-Th*10 diagram of 
Bracciali et al. (2007) and on the bivariate Ni versus TiO2 
diagram of Floyd et al. (1989) indicates a felsic source for 
the studied sandstones (Fig. 13A, B).

The studied sandstones show high Ba and Co concentra-
tions, and the high Ba/Co ratio confirms the derivation from 
a weathered intermediate igneous provenance (Cullers et al. 
1988; McLennan et al. 1993; Cullers 2000; Akarish and 
El-Gohary 2008; Löwen et al. 2018). Trace element values 
given in Table 3 show that the studied sandstones are rich in 
Ba, Th, and Sr, while exhibit depletion in transitional ele-
ments (e.g., Cr, Ni, and V). Notable negative anomalies of 
Cr, Rb, Sr, and Ba (see Fig. 9) are most probably attributed 
to the remarkable paucity of feldspars. On the other hand, 
high positive anomalies of Co, Zr, and Nb suggest prevail-
ing felsic than mafic provenance. The low concentrations of 
Cr and Ni may suggest a mafic provenance, and the minerals 
containing these elements (e.g., pyroxenes) were broken down 
over time as a result of chemical and physical weathering 
(Zhang et al. 1998; Osae et al. 2006; Akarish and El-Gohary 
2008). Relatively high concentration of Zr indicates increas-
ing of heavy minerals, especially zircon and garnet.

Tectonic control of deposition

The results of the undertaken petrographic examination 
imply that the studied sandstones are distinguished by high 
content of quartz, predominance of monocrystalline quartz, 
and scarcity of feldspars and lithic fragments. These char-
acteristics are consistent largely with deposition in the con-
tinental craton interior basins (Crook 1974; Potter 1978; 
Taylor and McLennan 1985). Additionally, plotting detri-
tal mode data of the analyzed samples on the QFL ternary 

diagram of Dickinson et al. (1983) suggests that the Nubian 
sandstones are mainly of cratonic interior and quartzose 

Fig. 9   A UCC-normalized 
multi-element diagram for the 
studied sandstones. Average 
normalized values derived from 
Rudnick and Gao (2003)

Fig. 10   Point-count data of the studied Nubian sandstones plotted on 
the diagram of Tortosa et al. (1991) for provenance discrimination
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recycled orogenic tectonic provenances (Fig. 14) (cf. Taylor 
and McLennan 1985; Ahfaf et al. 2021).

Percentages of quartz in the sandstones can also be 
used to recognize their tectonic settings. According to 
Crook’s classification (1974), the studied sandstones are 
quartz-rich (average 92.26%); thus, they are consistent 
chiefly with the sandstones of the Atlantic-type (i.e., pas-
sive margin).

Plotting of the major element values on the ternary and 
bivariate diagrams of Bhatia (1983), Roser and Korsch 
(1986), Kroonenberg (1994), and Verma and Armstrong-
Altrin (2016) (Figs. 15A–C and 16A, B) ascertains that the 
studied sandstones were deposited mainly in the passive 
continental margin. Plotting trace element values on the 
logarithmic function diagrams after Verma and Armstrong-
Altrin (2016) (Fig. 17A, B) implies a passive continental 
margin setting of the studied sandstones. The employment of 
the function diagram of Verma and Armstrong-Altrin et al. 
(2013) implies that the studied sandstones are attributed to 
continental rift setting (Fig. 17C).

Fig. 11   Provenance of the studied sandstones based on discriminant 
function diagram of Roser and Korsch (1988)

Fig. 12   Bivariate plot diagrams 
showing the provenance of the 
studied Nubian sandstones: A 
Al2O3 versus TiO2 diagram 
(after Hayashi et al. 1997), B Zr 
versus TiO2 cross plot diagram 
(after Hayashi et al. 1997), C 
Cr/V versus Y/Ni cross plot 
(after Hiscott 1984), and D Ni 
versus Cr diagram (after Garver 
et al. 1996)
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Source area palaeoweathering and palaeoclimate

In the studied sandstones, the high proportions of monocrys-
talline quartz (average 94.85% of the total quartz), less 
amount of polycrystalline quartz grains (average 5.41% of 
the total quartz), as well as the very scarcity of feldspar min-
erals (average 1.17%) (Table 1) indicate a prolonged chemi-
cal palaeoweathering of the source rocks and several phases 
of recycling (Dabbagh and Rogers 1983; Wanas and Abdel-
Maguid 2006; Al-Habri and Khan 2008).

The calculated CIA and CIW values for the studied sand-
stone samples range from 86.23 to 99.46 (average 96.30) and 
87.31 to 99.73 (average 97.62), respectively (Table 2). These 
high values of the CIA and CIW indicate intensive weath-
ering and reflect warm humid climatic conditions in the 
source rock area. The CIA values for the studied sandstones 
are plotted in the Al2O3 - (CaO* + Na2O) - K2O ternary 
diagram after Nesbitt and Young (1982) (Fig. 18A). The 
highest degree of alteration (CIA) points to felsic-granitic 
source. As indicated in Table 2, the high values of the CIA 
and CIW are attributed mainly to the depletion of mobile 
elements (e.g., Ca, Na, and K) relative to the less mobile and 
residual elements (Al and Ti) (Nesbitt and Young 1982). On 
the ternary Al2O3-Zr-TiO2 diagram of Garcia et al. (1991), 
the analyzed sandstone samples display high Zr and rela-
tively low Al2O3 and TiO2 (Fig. 18B) indicating an increas-
ing of sorting (Nesbitt et al. 1996). The bivariate plot of 
SiO2 versus total Al2O3 + K2O + Na2O proposed by Suttner 
and Dutta (1986) was used to identify the chemical maturity 
of the Nubia sandstones as a function of climate. This plot 
reveals the increasing of chemical maturity of the studied 
sandstones under humid and semi-humid climatic conditions 
in the source area (Fig. 18C).

Palaeogeographical interpretation

The usage of various interpretative approaches based on 
geochemical and petrographic data permits making a series 
of the relevant interpretations. Additionally, the position 
of the samples of the sandstones is illustrated on several 
provenance-related diagrams (Figs. 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17 and 18). Generally, these interpretations 
imply that the sandstones were sourced mainly from an older 
quartzose sedimentary provenance.

In southern Egypt, thick Paleozoic successions are 
well developed in three sedimentary basins, namely, 
Uweinat–Gilf, South Nile Valley, and Etbai (Issawi et al. 
2016; Issawi and Sallam 2018). The Paleozoic rocks in 
these basins consist mainly of fluvial and glacial sediments 
(mostly sandstones and conglomerates). These sediments 
were classified into the Araba Fm. (Cambrian) at the base, 
followed upward by the Gabgaba Fm. (Ordovician), Naqus 
Fm. (Silurian), Wadi Malik Fm. (Devonian), Gilf Fm. (Car-
boniferous), and Abu Ras Fm. (Permo-Triassic) (Osman 
et al. 2003, 2005; Issawi and Sallam 2018). These lithostrati-
graphic units unconformably overlie the Precambrian base-
ment rocks (Klitzsch 1981; Garfunkel 1999, 2002). It is 
apparently that the Paleozoic sediments in these basins 
were derived mostly from intense denudation, disintegra-
tion, and erosion of the surrounding Precambrian rocks of 
the Arabo–Nubian Shield and Gebel Uweinat located in 
southwestern Egypt (Fig. 19). During the Early Cretaceous, 

Fig. 13   A Plots of the studied sandstone samples on the Ni–V–Th*10 
ternary diagram after Bracciali et al. (2007) and B Ni/TiO2 bivariate 
diagram of Floyd et al. (1989) used for provenance determination of 
the analyzed sandstone samples
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multiple cycles of erosion and sedimentation took place 
(Kolodner et al. 2006), and the Paleozoic rocks were eroded 
and recycled repeatedly by ancient fluvial streams flowed in 
poly-directional patterns. This recycling process led to the 
formation of thick sheets of younger matured cross-bedded 
sandstones in low-lying basinal areas in the passive conti-
nental margin in southern and southeastern Egypt (Fig. 19). 
In Libya, the country bordering Egypt from the west, Ahfaf 
et  al. (2021) documented a predominant plutonic prov-
enance with some metamorphic supply for the Upper Sarir 
quartzose sandstones in the Sirt Basin, which are coeval 
with the Nubian sandstones in southern Egypt and northern 
Sudan. They also indicated that the Sarir sandstones were 
formed from a cratonic basement in humid palaeoclimatic 
environments accompanied by a rigorous chemical palae-
oweathering in the source area. These conditions probably 
produced similar Lower Cretaceous quartzose sandstones in 
other territories in north and north-eastern Gondwana (Ahfaf 

et al. 2021). On the other side, in Palestine/Israel which bor-
der Egypt from the northeast, Kolodner et al. (2009) attrib-
uted the origin of the Lower Cretaceous Nubian sandstones 
cropping out in the Negev Desert to recycling of relatively 
proximal Paleozoic sandstones, using U-Pb Sensitive High 
Resolution Ion Micro-Probe (SHRIMP) dating of detrital 
zircon from these sandstones. From the foregoing discus-
sion, it is concluded that the studied Nubian sandstones 
were partly produced by fluvial recycling from Paleozoic 
sandstones in the proximal surrounding basins, with a con-
siderable contribution of basement denudation. This inter-
pretation is consistent and in agreement with the conclusion 
of Shawa and Issawi (1978) that attributed the source area 
of the Nubian sandstones to an exposed landmass located 
in southeastern and southern Egypt. This provenance pat-
terns need to be brought in correspondence to the palaeogeo-
graphical reconstructions of northeastern Africa in the Early 
Cretaceous in regard to the palaeolocation of the study area.

Fig. 14   Ternary plot diagram of detrital components of the studied sandstones on the tectonic provenance discrimination diagram of Dickinson 
et al. (1983). Abbreviations: Q, total quartz; F, feldspars; L, lithic fragments
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According to Guiraud et al. (2001, 2005), the northeastern 
Africa was embraced by a large epeiric sea in the Cretaceous 
(Fig. 19). Since the Early Cretaceous, this sea penetrated 
from the north, i.e., it was a marginal sea of the Eastern 
Mediterranean (Golonka 2004). The southern edge of the 
noted epeiric sea reached the southern part of modern Egypt, 
and it was controlled by a W–E-trending fault system with 
strike-slip displacements (Guiraud et al. 2005). The land 

corresponded to the African–Arabian continental landmass, 
with lowlands dominated by alluvial and lacustrine plains 
and denudated uplands located not so far from the coastline; 
the study area was located at the very land–sea transition 
(Fig. 19). More generally, the Nubia Formation exposed at 
Gebel Duwi represents a wide intracontinental zone mark-
ing a transition between the interiors (denudated land) and 
the periphery (epeiric sea) of a very large continent. The 

Fig. 15   Plots of the major ele-
ment composition of the studied 
sandstones on the discrimina-
tion diagrams for tectonic set-
ting (after Bhatia (1983))

Fig. 16   Plots of the major ele-
ment composition of the studied 
sandstones on the discrimina-
tion diagram for tectonic set-
ting: A after Roser and Korsch 
(1986) and B after Kroonenberg 
(1994)
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composition of the studied sandstones at Gebel Duwi reveals 
its fluvial origin, which corresponds well to the existence 
of the alluvial plain. Deltaic origin of the upper lithofacies 
of the Nubia Formation and its gradual transition to the 
shallow-marine deposits of the overlying Quseir Formation 
imply long-term transgression that is also well-documented 
by the regional-scale palaeogeographical reconstructions 

(Guiraud et al. 2005; An et al. 2017). Moreover, it is evident 
that the lower and middle lithofacies of the Nubia Formation 
were deposited on the alluvial plain, but not so far from the 
coastline, as the lithofacies change occurred already during 
the deposition of this formation.

The provenance patterns revealed by the present study are 
in agreement with the palaeogeographical reconstructions 

Fig. 17   Tectonic setting dis-
crimination of the Nubian sand-
stones. A Multi-dimensional 
discriminant function diagram 
for the discrimination of tec-
tonic settings after Verma and 
Armstrong-Altrin et al. (2013). 
Multi-dimensional discriminant 
function diagrams for the dis-
crimination of active and pas-
sive margin settings after Verma 
and Armstrong-Altrin (2016): 
B using major elements and 
C using both major and trace 
elements. Abbreviations: Arc, 
island or continental arc; Rift, 
continental rift; Col, collision

Fig. 18   A Ternary Al2O3–
CaO*+Na2O–K2O plot diagram 
for the studied sandstones (after 
Nesbitt and Young 1982). CaO* 
is the molar proportion of CaO 
in the silicate fraction; and CIA 
is the Chemical Index of Altera-
tion; B Al2O3–Zr–TiO2 ternary 
diagram showing the influ-
ence of sorting process (after 
Garcia et al. 1991) and C binary 
plot diagram of SiO2 versus 
(Al2O3+K2O+Na2O) for the 
determination of the climatic 
conditions during the deposition 
of the studied sandstones (after 
Suttner and Dutta (1986))
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(Guiraud et al. 2001, 2005; Wanas and Assal 2021). The 
detrital material was denudated from the uplifts of the con-
tinental interiors. Most probably, these were the uplifts of 
modern southeastern part of Egypt. However, the spatial ori-
entation of lowlands and uplifts (Fig. 19) allows hypothesiz-
ing delivery of some material also from the Arabo-Nubian 
Shield. Two questions are about the tectonic setting and 
the palaeoclimate. The results of the present study indicate 
on a stable tectonic regime. However, the Cretaceous fault 
activity, volcanism, and rather rapid changes in configura-
tion of the principal palaeogeographical elements (Guiraud 
et al. 2005) imply that it was not so stable. This controversy 
should be explained in the terms of insufficient resolution of 
the provenance-related interpretation techniques for making 
clear distinction between fully stable and tectonically active 
regimes of the continental interiors. As for the climate, it 
appears that it was humid in the source rock areas, i.e., in 
the denudated uplifts. The relatively close position of the 
latter to the study area implies that humid conditions could 
be typical to the alluvial plain too. This is in agreement 
with some other interpretations (e.g., Selim 2017). How-
ever, Beauchamp et al. (1990) noted earlier the dry deposi-
tional environments of the sandstones, and Klitzsch (1990) 
suggested regional climate changes. So, the open question 
for further investigations is whether the Lower Cretaceous 

sandstones at Gebel Duwi reflects the accumulation of the 
entire Nubia Formation in humid conditions or these sand-
stones deposited during any humid episode.

Although the precise age of the Nubia Formation remains 
debatable (e.g., Bosworth et al. in Hamimi et al. 2020), this 
does not challenge the proposed palaeogeographical inter-
pretations in regard to the persistence of more or less the 
same conditions through the Cretaceous (Guiraud et al. 
2001; Wanas and Assal 2021). It is worth to add that the 
provenance-related interpretations for the Lower Cretaceous 
sandstones exposed at Gebel Duwi in the Quseir area resem-
ble the outcomes of the previous study of the Middle Juras-
sic sandstones in the Khashm El-Galala area (Sallam and 
Wanas 2019). Probably, there were universal patterns of the 
mechanisms of crystalline basement denudation and fluvial 
sandstone formation at the long-existed continental interi-
ors–periphery transition of northeastern Africa.

Conclusions

The studied Nubian sandstones at Gebel Duwi (Quseir 
area, Eastern Desert) are quartzose and litho-quartzose 
that are enriched in SiO2 and Ba, Co, Th, Zr, and Sr. These 
sandstones were deposited on an alluvial plain, and they 

Fig. 19   Early Cretaceous palaeogeographical map (modified after Guiraud et al. (2001))
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were partly formed through multiple stages of fluvial 
recycling from Paleozoic siliciclastic rocks, with a con-
siderable contribution of basement denudation in a humid 
environment, which certainly favored intense chemical and 
physical weathering. The enriched ZTR (zircon + tour-
maline + rutile) content and paucity of feldspars confirm 
an increasing proportion of detritus recycled from older 
siliciclastic units. The compositional and provenance fea-
tures of these sandstones characterize the very transition 
from the interiors of a large continent and its periphery.
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