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Abstract
This study aims to arrive at models to correlate the mechanical properties of recycled aggregate concrete (RAC). An experi-
ment was performed on the recycled coarse aggregate (RCA) ratio of 0%, 25%, 50%, and 100% with 400kg/m3 of cement 
content, varying water-to-cement ratio (w/c) 0.3, 0.4, 0.48, and super plasticizer (SP) dosage to produce 15 different mixes 
were investigated. Furthermore, the compressive strength (both cube  fcu and cylinder  fcyl), modulus of elasticity  (Ec), split 
tensile strength  (fct), and flexural strength  (fcr) were tested and investigated. In view of the results, new models representing 
the impact of RCA were created. The results showed that in terms of replacement ratio, at 56d, the mix with 25% of RCA 
with water-to-cement ratio (w/c) 0.3 and super plasticizer (SP) 1.5%, recorded maximum strength of 59.86MPa, 4.81MPa, 
and 5.416MPa under cube compressive strength, split tensile, and flexural strength respectively. The proposed models can 
effectively predict the  Ec,  fct,  fcr,  fcyl, and  fcu of RAC. Scanning electron microscope (SEM) was conducted to scrutinize the 
microstructure of selected mixes which shows comparatively low voids, micro-cracks, and pores. Also, machine learning 
techniques like multi-linear regression (MLR) and extreme gradient boosting (XGB) algorithms were utilized for the com-
pressive strength prediction of concrete (CSC). Results indicated that XGB for cylinder compressive strength was found to 
be 2.7% greater than cube compressive strength and MLR for cylinder compressive strength was found to be 1.5% greater 
than cube compressive strength 

.
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NAC  Natural aggregate concrete
NCA  Natural coarse aggregate
Fcu  Cube compressive strength
Fcyl  Cylinder compressive strength
Fct  Split tensile strength
Fcr  Flexural strength
MOE  Modulus of elasticity
GA  Genetic algorithm
ANFIS  Adaptive neuro fuzzy interference system
MLR  Multi-linear regression
XGB  Extreme gradient boost
SEM  Scanning electron microscope
CSC  Compressive strength of concrete
FA  Fine aggregate
CDW  Construction and demolition waste

Introduction

Concrete is the most broadly utilized structure material in 
the development industry. These days, it is assessed that the 
creation of cement may accomplish over of 10 billion tons 
each year on the earth. Despite the vast production and use 
of concrete around the world, there has been much specula-
tion that it could be a significant contribution to greenhouse 
gas emissions. Furthermore, the combustion of natural 
resources and fossil fuels emits enormous amounts of gases 
during the production of cement (Qian et al. 2018). A total 
of 4 billion tonnes of Portland cement are manufactured each 
year, with one tonne of cement producing one tonne of  CO2 
(Akbar and Liew 2020). A procedure of substituting the 
cement material with an alternative binder is of major sci-
entific interest to address the aforementioned difficulty. 
Given the current state of the climate and the phenomenon 
of global warming, a green revolution in the construction 
and other industries is urgently needed - in other words, 
enterprises must embrace and develop environmentally 
friendly materials. Bagasse ash, rice husk ash, and other 
industrial and agricultural waste products are some of the 
examples of supplementary cementitious materials utilized 
in the cement industry. However, silica fume, fly ash, and 
ground granulated blast furnace slag are extensively adopted 
and employed in the building industry. With this awareness, 
the concrete industry has fortunately discovered various sus-
tainable and environmentally friendly concrete alternatives 
such as plastic waste, electronic waste, construction, and 
demolition waste. The significant use of construction and 
demolition wastes (CDW) likely could be the sensible and 
planned approach to manage those issues as signified 
(Marinković et al. 2010). Zhang et al. (2019); Angulo et al. 
(2009); Rao et al. (2011) have inferred the issues from CDW 
are expanding up due to the speeding up of urbanization in 
the non-industrial countries, particularly in China, Brazil, 

and India. Even though the reusing for CDW has been led 
for over 50 years, at this point it simply covers the utilization 
of coarse aggregates and their utilization is limited because 
of the low strength and flexible modulus, low workability, 
high water penetration, high shrinkage, and creep of RAC 
has revealed (Poon and Chan 2007; Soutsos et al. 2011). 
Because of the low density and high porosity of RCA, RAC 
likely could be essentially more porous than natural aggre-
gate concrete (NAC) which was showed (Evangelista and de 
Brito 2010; Zaharieva et al. 2003) and the compressive 
strength of RAC could presumably be considerably less than 
that of NAC which was exemplified (Sim and Park 2011; 
Corinaldesi and Moriconi 2009; Lee 2009). Better results of 
RAC mixes were obtained till 40% substitution of RCA was 
inferred (Ahmed 2013; Daniel Matias et al. 2014; Sivakumar 
2014; Prasad et  al. 2021) and later on Lee (2009); 
Corinaldesi (2010) revealed that most extreme substitution 
of natural coarse aggregate (NCA) by RCA was as yet con-
fined to under 50%. Belén et al. (2011) exhibited that the 
primary properties of RAC began to concentrate after the 
2000s to apply RAC into real design. It is shown that an 
ultimate strain of RAC diminished with the expansion of the 
substitution by RCA from the aftereffects of the axial com-
pression test, although the substitution of 50% NCA by RCA 
showed a slight impact on a deflection from the shear test 
consequences of RAC beams was signified (González-Fon-
teboa and Martínez-Abella 2007). The properties of RCA 
influenced by the porous ITZ which may likely be the most 
fragile point in RAC because the strength of adhered mortar 
in RCA typically was much lower than that in NCA was 
illustrated (Etxeberria et al. 2007; Poon et al.(2004; Rawaz-
Kurda and Silvestre 2020). A similar report surmised that 
using different extents of RCA and W/C with dissimilar 
moisture conditions, the strength was discovered to be 
around 10% to 25% lesser contrasted with NAC, and in this 
way, the full substitution of RCA ordinarily decrease the 
substantial strength and thusly ought to be kept away from. 
This impact has been generally contemplated as demon-
strated (Ajdukiewiez and Kliszczewicz 2002; Hansen and 
Narud 1983; Tsung et al. 2006; Ryu 2002). Thusly, bits of 
exploration have been directed to anticipate the substantial 
compressive strength. The development business is believed 
to be overwhelmed with asset planning, hazard the execu-
tives, and arrangement challenges which consistently end in 
style absconds, project conveyance delays, value invades, 
and composed understanding questions. These difficulties 
have prompted examination inside the use of cutting edge 
AI calculations like profound figuring out how to help with 
the demonstrative and prescriptive investigation of causes 
and preventive measures. As such to enhance the exploration 
and to minimize the expense and time required for testing, 
the models reliant upon test information anticipating the 
CSC with a palatable extent of blemish may be upheld. As 
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a result, research is needed to develop a robust model that 
employs machine learning techniques and can properly esti-
mate the compressive strength of concrete. Specialists in the 
development business have made a few astounding endeav-
ors to stay aware of the speed of applying profound learning 
denoted (Taofeek et al. 2020). According to Ahmad et al. 
(2021), machine learning techniques should also be utilized 
to forecast the impacts of the environment on concrete prop-
erties. Machine learning algorithms, as outlined in the paper, 
can reduce time in the lab and predict the outcome by col-
lecting a large amount of data. Because they anticipate the 
values of multiple variables, machine learning algorithms 
are more effective than simple correlation models. As a 
result, research is needed to develop a precise prediction that 
employs machine learning techniques that can accurately 
predict CSC. Vivian et al. (2008) indicated fake neural net-
works. Regression investigation are a portion of the proce-
dures that were executed to foresee the compressive strength 
of RAC. The associations among destroyed substantial prop-
erties and strength of their RAC were set up utilizing relapse 
investigation. Additionally, other information driven-models 
like linear regression and model trees were utilized to show 
CSC as expressed (Deepa et al. 2010). During the continu-
ous years, a phenomenal thought by the specialists of mate-
rial science has been expanded unequivocally for the 28-days 
CSC on account of material mechanical property as signified 
(Neter et al. 1996; Hong-Guang and Ji-Zong 2000; Oztas 
et al. 2006; Bilim et al. 2009; Ramezanianpour et al. 2004; 
Purushothaman et al. 2015; Özcan et al. 2009) while, for the 
check of novel soft computing systems it is used as a funda-
mental model as explained (Yilmaz and Yuksek 2009). As 
a dynamic method, in regression analysis, the correlation 
between a response variable which is the dependent variable, 
and one or more independent variables are utilized for 
assessment as expressed (Waszczyszyn and Słon ́ski 2010). 
XGB is an extreme gradient boosting algorithm which is a 
valuable device to predict the compressive strength of con-
crete and in helpful underlying structure applications with 
more prominent speed and accuracy in contrast with other 
artificial models as showed (Yu Li et al. 2019; Tamayo et al., 
2016; Duan et al. 2020). Also, XGB for structural health 
monitoring and in anticipating the cross-tension strength of 
self-piercing riveted joints, showed high coefficient of 
regression and low RMSE value which achieves better exact-
ness as revealed (Donga et al. 2020; Lin et al. 2020). Bag-
ging as an ensemble strategy for high-performance concrete 
mix slump flow has been compared in the literature (Aydog-
mus et al. 2015). In comparison to single techniques, ensem-
ble models with bagging were found to be superior. For 
predicting concrete corrosion in sewers, Zounemat-Kermani 
et al. (2020) represents the performance of five soft, com-
puter base learners. The author tested both tree-based and 
network-based learners, and found that ensemble learners 

outperform them with an R2 of 0.872. These ensemble meth-
ods produce a more powerful effect while ensuring that the 
overall models work well. Ahmad et al. (2021) infers that, 
when compared to a decision tree used alone or with gene 
expression programming, a decision tree with ensemble 
modelling provides a more stable result with R2 = 0.911. 
Also, statistical tests demonstrate that the decision tree with 
ensemble improves MAE, MSE, and RMSE between the 
target and outcome response by 25%, 121%, and 49%, 
respectively.

Considering the foregoing, it may appear that tree based 
ensemble learning models have more favorable character-
istics and produce better results than individual learning 
models.

Research significance

Many attempts were made on the prediction of concrete 
compressive strength using ANN, ANFIS, GA, and MLR. 
But possibilities on the prediction of recycled concrete com-
pressive strength using gradient boosting algorithm were 
not attempted. Moreover, the difference in the statistical 
approach using gradient boosting was not available in the 
literature.

The goal of this study is to arrive at many relationship 
models to correlate the hardened properties of RAC mixes. 
Still, only a few researchers have attempted to develop a 
correlation model on the RAC, but less focused on compar-
ing the statistical models using the machine learning tech-
niques such as multi linear regression, and extreme gradient 
boosting. These are the novel research gap distinguished in 
the writing. Wherefore, this study focuses on evaluating the 
hardened mechanical properties of full and partial replace-
ment of RAC on 400kg/m3 of cement content with varying 
w/c, and SP dosage. With the obtained results, correlations 
between the various hardened properties were proposed. 
Also, by using the machine learning techniques, MLR and 
boosting algorithms like XGB were performed to predict the 
compressive strength of recycled aggregate concrete. The 
outcome of this present study contributes new knowledge to 
the existing literature in the area of identified research gaps.

Materials

Binders

At standard temperature, Rapid Hardening Portland Cement, 
portrayed with higher fineness, hydrates more rapidly than 
any other sort of cement. Wherefore, at the initial phase of 
hydration for instance 1, 3, and 7 days at determined w/c, 
the concrete containing Rapid Hardening Portland Cement 
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concrete has lower porosity and higher quality. In com-
parison to Rapid Hardening Portland Cement, the rate of 
hydration and quality improvement at Ordinary Portland 
Cement with Portland-slag and Pozzolana Portland cement 
are delayed up to 28 days as expressed (Newman and Choo 
2003; Jankovic et al., 2011). In this research, ASTM type IP 
(Portland pozzolana cement with 40% natural pozzolana) 
with cement content of 400Kg/m3 has been used. The 
cement sample showed a compressive strength of 56Mpa 
at 28 days, which satisfied the grade 53 strength criteria 
as specified in IS 269:2015. This cement content was cho-
sen since it was found to be effective in terms of strength 
(Eskandari-Naddaf and Azimi-Pour 2016; Almusawi et al. 
2020) and safe against all the exposure conditions as speci-
fied in IS 456:2000. The properties of this binder were tested 
as detailed in IS: 4031 2005 and tabulated in Table 1.

Fine aggregates

Jankovic et al. (2011) expressed, when compared to the 
binder and ITZ in concrete, the aggregate particle is con-
sidered to be stronger. According to IS 383:2016, river sand 
conforming to zone II was utilized in this research with a 
particle size less than 4.75mm. The material property of 
the fine aggregate and gradation curve has been shown in 
Table 1 and Fig. 1 respectively.

Recycled coarse aggregate

RCA samples were collected from a demolished building in 
Tiruchirappalli, Tamil Nadu. The RCA samples were man-
ually crushed, then crushed again using a lab model jaw 
crusher and sieved. The crushed stone having a particle size 
of 20 mm, has been utilized as RCA. The physical attributes 
of the aggregate were tested as per IS 2386: 2002. Material 
property and particle size distribution of NCA, and RCA has 
been shown in Table 1 and Fig. 1 respectively.

Super plasticizer

Under BS: 5075–3, the SP utilized in this research was 
Conplast SP-430 and relying upon the dosage meas-
urements utilized and meets the rules in IS 9103:1999. 
Table 1 indicates the properties of the materials used.

Modeling techniques

In model prediction, to gain from the assortment of train-
ing patterns a stage contains a “training” process that helps 
the model. Multi-linear regression and gradient boosting 
are two distinct models utilized in this study for the CS 
prediction of RAC. The executions of these models depend 
on the coefficient of assurance of  R2.

Table 1  Properties of materials used

S.No Properties Natural coarse 
aggregate
(NCA)

Recycled coarse 
aggregate
(RCA)

Fine aggregate
(FA)

Cement Super 
plasti-
cizer
(SP)

1 Specific surface area  (m2/kg) - - - 331 -
2 Initial setting time (min) - - - 30 -
3 Final setting time (min) - - - 520 -
4 28d Compressive Strength (MPa) - - - 56.5 -
5 Fineness Modulus (FM) 7.23 7.72 1.92 - -
6 Specific gravity (SG) 2.76 2.5 2.54 3.13 1.2
7 Water Absorption (WA) (%) 0.36 1.95 4 - -
8 Impact Value (%) 30 34 - - -
9 Crushing Value (%) 18 21 - - -

Fig. 1  Sieve analysis
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Multi‑linear regression (MLR)

MLR is used for researching the functional connection 
between the predictor variable and response variable com-
ponents by fitting a multi-linear equation over the data. In 
contrast to simple linear regression, where a dependent vari-
able and an independent variable relate on a straight line, 
MLR utilizes multiple independent variables to fit the model 
in n-measurements though, the number of independent vari-
ables is represented by n.

Y = dependent variable
β0 = constant
βi = regression coefficient (i=1,2,3,. . . ,n)
Xi = independent variable
ε = error term
This model depends on the mean square error that decides 

the variation between the actual and computed values. This 
strategy changes the coefficients of the independent vari-
ables utilizing optimization techniques and proceeds with 
the methodology until the model is viewed as the best fit. 
Figure 2 shows the schematic representation of multi-linear 
regression model.

Extreme gradient boosting (XGB)

XGB is a decision tree-based ensemble model that predicts 
exact outcomes by combining the outcomes got from a 

(1)Y = �o+

m
∑

i=1

�ixi+�

few weaker models. It is a supervised learning technique 
and likely could be utilized to determine various com-
plex issues like regression, classification, and ranking 
(Ahmad et al. 2021). XGB depends on a gradient boosting 
framework that employs tree ensembles but unlike gradi-
ent boosting, XGB improves the approximation utilizing 
Newton's boosting method and advanced regularization as 
inferred (Chen and Guestrin 2016). The primary benefit 
of utilizing XGB or some other tree-based algorithm is its 
capacity to model the non-linear interactions between the 
features as explained (Caruana and Niculescu-Mizil 2006).

Where
L = training loss function
Ω = regularization term
Since it is a regression problem, for the loss function, 

mean squared error is used and is given by

The difference between the prediction ŷ  and the target 
y measures the differentiable convex loss function which 
is represented as “l.” To avoid overfitting the model, the 
regularization term is used which controls the complexity.

The complexity in XGB is defined as,

Where w and T represent weights and number of leaves 
or terminal nodes respectively. Figure 3 shows the sche-
matic representation of extreme gradient boost model.

(2)Obj=L(�)+Ω(�)

(3)L(�)=
∑

i
l(ŷ,y) +

∑

k
Ω(fk)

(4)Ω(fk) = �T +
1

2
�‖w‖2

2

Fig. 2  Flowchart of MLR model
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Description of data set and preparation

An experiment was performed on recycled coarse aggregate 
ratio of 0%, 25%, 50%, 100% with 400kg/m3 of cement con-
tent, varying w/c (0.3, 0.4, and 0.48) and SP dosage. Con-
crete was made by utilizing potable water. All the concrete 
mixes were prepared and cured with legitimate conditions. 
The testing of samples was done at a curing time of 7, 28, 
and 56 days. Table 2 shows the mix proportion of RAC.

The input parameters for creating models incorporate 
W/C, SP, FA, RCA, NCA, AGE and water content (WC). 
The target parameter and output acquired are assigned as 
experimental and predicted CSC respectively. Table 3 shows 
the range and Table 4 indicates the statistical parameters of 
input and output. For the succeeding step, on account of 
assessment models MLR, and XGB were selected and the 
approximation of CSC has been accomplished.

Fig. 3  Flowchart of XGB model

Table 2  Mix proportions of 
RAC 

Mix ID Material Proportion (%) W/C SP WC NCA RCA FA

1 100% RCA+0%NCA 0.48 0 237.734 0 1130.564 557.729
2 75%RCA+25%NCA 0.48 0 209.9 310.518 847.995 557.729
3 50% RCA+50%NCA 0.48 0 195.37 621.037 575.405 557.729
4 25% RCA+75%NCA 0.48 0 200.98 931.56 282.645 557.729
5 0%RCA+100%NCA 0.48 0 219.718 1242.08 0 557.729
6 100% RCA+0%NCA 0.4 0 207.295 0 1290.32 556.157
7 75%RCA+25%NCA 0.4 0 179.29 332.96 909.21 556.157
8 50% RCA+50%NCA 0.4 0 174.46 665.925 606.14 556.157
9 25% RCA+75%NCA 0.4 0 169.688 998.872 303.07 556.157
10 0%RCA+100%NCA 0.4 0 187.985 1331.838 0 556.157
11 100% RCA+0%NCA 0.3 1.5 151.235 0 1308.92 546.884
12 75%RCA+25%NCA 0.3 1.5 140.79 359.511 981.72 546.884
13 50% RCA+50%NCA 0.3 1.5 135.62 719.004 654.46 546.884
14 25% RCA+75%NCA 0.3 1.5 130.407 1078.506 327.23 546.884
15 0%RCA+100%NCA 0.3 1.5 147.981 1138.01 0 546.884

Table 3  Range of input and output parameters

S.No Input/output Components/ Param-
eters

Minimum Maximum

1 Input W/C 0.3 0.48
2 Input SP (%) 0 1.5
3 Input FA 546.884 557.729
4 Input NCA 0 1331.838
5 Input RCA 0 1308.92
6 Input WC 130.407 237.734
7 Input AGE 7 56
8 Output  (fcu) Compressive strength 

(MPa)
25.57 61.60

9 Output  (fcyl) Compressive strength 
(MPa)

19.94 49.28
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Experimental work

Mechanical properties of the mixes were assessed with 
270 specimens using 150mm cubes for cube compres-
sive strength, 270 specimens using 100x200mm cylinders 
for cylinder compressive strength, 270 specimens using 
100x200mm cylinders for split tensile strength, 90 speci-
mens using 100x100x500mm prism for flexural strength 
and 180 specimens using 100x200mm cylinders for elastic 
modulus has been used. Table 5 shows the specimen and 
experiment details.

SEM analysis

The SEM examination was led for the RAC at 56 days. Con-
crete samples were cut down into  10mm3 size pieces. To stop 
the hydration interaction, the test specimens were placed in 
the oven at 95 ± 5°C for 24 h. After drying the specimens 
were cleaned utilizing a 500-grade silicon carbide paper and 
put in a desiccator to block carbonation. Then, at that point, 
the cleaned tests were sputter covered with carbon before 
testing. The SEM examination was completed utilizing the 
Tescan VEGA-3 scanning electron microscope. Three speci-
mens were prepared and tested for w/c of 0.3 which showed 
better results compared to other mixes to recognize their 
morphology.

Results and discussions

Data‑driven models

Each of the models was assembled utilizing Python 
with algorithms used from various packages. The paper 
started the disclosures of an investigation to anticipate 
the concrete compressive utilizing the strategies MLR, 
and XGB. The MLR model was assembled utilizing the 
Linear Regression model in the scikit-learn bundle by 
the Pedregosa Scikit-learn (2011). Loading the dataset 
and preparing the model took the least amount of time. 
Figure 4 (a) and (b) shows the Predictive precision result 
and the Predictive Vs Original cube compressive strength 
results for the MLR model respectively. Figure 5 (a) and 
(b) shows the Predictive precision result and the Predictive 
Vs Original cylinder compressive strength results for the 
MLR model respectively.

XGB was executed by the python platform utilizing the 
XGBoost package as illustrated (Chen and Guestrin 2016). 
Figure 6(a) and (b) shows the Predictive precision result 
and the Predictive Vs Original cube compressive strength 
results for the XGB model respectively. Figure 7 (a) and (b) 
shows the Predictive precision result and the Predictive Vs 
Original cylinder compressive strength results for the XGB 
model respectively.

Table 4  Statistical Parameters 
input and output parameters

Index Variable Range Mean (µ) Median Variance (σ2) Standard 
deviation 
(σ)

1 W/C 0.18 0.39 0.39 0.008 0.09
2 SP (%) 1.5 0.75 0.75 0.5625 0.75
3 FA 10.845 552.3065 552.3065 29.4 5.41
4 NCA 1331.838 665.5919 665.5919 443448.12 665.919
5 RCA 1308.92 654.46 654.46 428317.8 654.46
6 WC 107.327 184.0705 184.0705 2879.39 53.66
7 AGE 49 31.5 31.5 600.25 24.5
8 f’cu (MPa) 36.03 43.585 43.585 324.720 18.02
9 f’cyl (MPa) 29.34 34.61 34.61 215.208 14.67

Table 5  Specimen and experiment details

Name of the Experiment IS code used Specimen type Size of the Speci-
men (mm)

No of the speci-
mens tested

Testing Ages (days)

Cube Compressive Strength IS- 516 (2004)  Cube 150x150x150 270 7,28, and 56
Cylinder Compressive Strength ASTM-C39 (2018)  Cylinder 100x200 270 7,28, and 56
Splitting Tensile Strength ASTM-C496 (2017)  Cylinder 100x200 270 7,28, and 56
Flexural Strength ASTM-C78 (2018) Prism 100x100x500 90 7,28, and 56
Modulus of Elasticity ASTM-C469 (2014)  Cylinder 100x200 180 7,28, and 56
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Based on the models that were built, it was noticed that 
XGB for the prediction of cylinder compressive strength 
had the highest accuracy compared to the prediction of cube 
compressive strength. Similarly, MLR for the prediction of 
cylinder compressive strength had more accuracy compared 
to the prediction of cube compressive strength. This outcome 
was observed not just in the correlation coefficient but also 
for the other statistical coefficients like R2, RMSE, MAPE, 
MAE, AAE, MSE, VAF, and ME. Table 6 shows the com-
parison results for correlation and statistical coefficients.

For the prediction of cylinder compressive strength 
 (fcyl) R2 value for XGB was found to be 0.5% greater than 
MLR  (fcyl). For the prediction of cube compressive strength 
 (fcu) MLR was found to be 0.67% greater than XGB. The 
obtained results of RMSE for XGB  (fcyl) was 1.4% lesser 
than MLR model. Whereas, the RMSE for XGB  (fcu) was 
1.07% greater than MLR model. MAE for XGB  (fcyl) was 
3.96% lesser than MLR model and XGB  (fcu) was 0.85% 
greater than than MLR model. MAPE for XGB  (fcyl) was 

1.2% lesser than MLR model and XGB  (fcu) was 2.3% 
greater than MLR model. Values of AAE, MSE, ME, and 
VAF for XGB  (fcyl) showed almost accurate in contrast with 
other models.

Influence of RAC in strength improvement

The strength improvement in the RCA mix as indicated in 
Table 7 was evaluated using 7, 28, and 56 days compressive 
strength results, particularly 56 days compressive strength 
of each RCA mix was taken as a source value for the esti-
mation. For the W/C of 0.48, the mix containing 100%, 
75%, and 50% RCA for 7d acquired practically 66% of its 
compressive strength and 25% of RCA was 66.4% whereas, 
the mix containing only NCA gained 66.5% of compres-
sive strength which was found almost same. For 28d, 100%, 
75%, 25%, 50% of RCA, and 100% NCA was gained 87% of 
compressive strength. For the W/C of 0.4, the mix contain-
ing 100%, and 75% RCA for 7d gained almost 69% of its 

Fig. 4  (a) Predictive accuracy result for cube compressive strength-
MLR model. (b) Predictive Vs Original cube compressive strength 
results for the MLR model

Fig. 5  (a) Predictive precision result for cylinder compressive 
strength-MLR model. (b) Predictive Vs Original cylinder compres-
sive strength results for the MLR model
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compressive strength, whereas 50% 25% of RCA and 100% 
NCA was 69.5% compressive strength. Also, 100% and 75% 
RCA for 28d gained almost 86% of its compressive strength, 
and 50% 25% of RCA and 100% NCA gained 86.3% which 
was found almost the same. For the W/C of 0.3 with SP of 
1.5%, 100%RCA was found to be around 74% and 28d was 
found to be around 96% of compressive strength. 75%, 50%, 
25% of RCA and 100% of NCA was found to be around 75% 
also, 28d for 75%, 50%, 25% of RCA was found almost 96 to 
97%, whereas, 100%NCA for 28d gained 97% of compres-
sive strength.

Hardened density

The density of RAC mixes was observed for 7, 28, and 
56 days for the W/C 0.48, 0.4, and 0.3. For W/C of 0.48, 
100%NCA density for 7d, 28d and 56d was 2526kg/m3, 
2532kg/m3, and 2541kg/m3 respectively. 7d hardened den-
sity for replacement ratio was found between the ranges of 

2418kg/m3 to 2495kg/m3 which was 4.27% to 1.23% lower 
than the NCA. 28d hardened density for replacement ratio 
was found between the ranges of 2423 to 2487kg/m3 which 
was 4.3 to 1.78% lower than the NCA. 56d hardened density 

Fig. 6  (a) Predictive precision result for cube compressive strength-
XGB model. (b) Predictive Vs Original cube compressive strength 
results for the XGB model Fig. 7  (a) Predictive precision result for cylinder compressive 

strength-XGB model. (b) Predictive Vs Original cylinder compres-
sive strength results for the XGB model

Table 6  Correlation and statistical coefficients comparison

Statistical Measure MLR XGB

Cube Cylinder Cube Cylinder

R2 0.898 0.912 0.892 0.917
RMSE 4.5210 3.3883 4.5701 3.3414
MAE 1.8642 1.6777 1.8802 1.6137
MAPE 5.1137 5.0604 5.2355 5.0008
AAE 0.053 0.043 0.054 0.04
MSE 20.440 11.480 20.886 11.165
VAF 0.7685 0.8055 0.7799 0.8092
ME 4.38 4.01 4.38 4.01
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for replacement ratio was found between the ranges of 2432 
to 2503kg/m3 which was 4.28% to 1.49% lower than the 
NCA. For W/C of 0.4, 100%NCA density for 7d, 28d and 
56d was 2581kg/m3, 2590kg/m3, and 2580kg/m3 respec-
tively. 7d hardened density for replacement ratio was found 
between the ranges of 2413kg/m3 to 2544kg/m3 which was 
6.5 to 1.43% lower than the NCA. 28d hardened density for 
replacement ratio was found between the ranges of 2393 to 
2550kg/m3 which was 7.6% to 1.54% lower than the NCA. 
56d hardened density for replacement ratio was found 
between the ranges of 2398 to 2542kg/m3 which was 7.05 
to 1.47% lower than the NCA. For W/C of 0.3, 100%NCA 
density for 7d, 28d and 56d was 2539kg/m3, 2546kg/m3, and 
2556kg/m3 respectively. 7d hardened density for replace-
ment ratio was found between the ranges of 2430 to 2507kg/
m3 which was 4.3 to 1.3% lower than the NCA. 28d hard-
ened density for replacement ratio was found between the 
ranges of 2437 to 2501kg/m3 which was 4.3% to 1.8% lower 
than the NCA. 56d hardened density for replacement ratio 
was found between the ranges of 2447 to 2518kg/m3 which 
was 4.3 to 1.5% lower than the NCA. Due to the high w/c 
(0.48) and minimum w/c of 0.3 with SP of 1.5%, the 56days 
density increased marginally compared with 28d values. The 
intermittent high W/C of 0.4 also without SP, the density 
has marginally decreased in contrast to 28d results. Figure 8 
shows the hardened density of RAC mixes.

Compressive strength—cube

Compressive strength for the cube, the RAC mixes noticed 
at different testing age periods as indicated in Fig. 9. For 
the w/c of 0.48, 56d cube compressive strength ranges 
from 38.57MPa to 43.34MPa which was found 13.2% and 
2.5% lower than NAC mix. 28d compressive strength was 

observed from 33.61 to 37.72MPa which was 13% and 
2.4% lower than the NAC mix. 7d compressive strength 
was observed between 25.57 and 28.77MPa from 13 and 
2.6% lower than the NAC mix. For the w/c of 0.4, 56d 
compressive strength ranges from 38.53MPa to 42.79MPa 
which was found 15% and 5.6% lower than the NAC mix. 
28d compressive strength was observed from 33.11 to 36.75 
MPa which was 15 % and 6% lower than the NAC mix. 7d 
compressive strength was observed between 26.77 to 29.74 
MPa from 14.6% and 5% lower than the NAC mix. For the 
w/c of 0.3, 56d compressive strength ranges from 53.53MPa 
to 59.86MPa which was found 13% and 2.8% lower than 
the NAC mix. 28d compressive strength was observed from 
51.41 to 57.84 MPa which was 13.8% and 3% lower than the 
NAC mix. 7d compressive strength was observed between 
40.16 and 44.98 MPa from 13% and 2.6% lower than the 
NAC mix. The decrease in compressive strength with the 
usage of over 30% RCA was normally seen in numerous 
studies (Ahmed 2013; Yong Ho et al., 2013; Sivakumar 
2014). The decrease was probably because of the adhered in 
RA, which affects the porous ITZ hence becomes the weak-
est point in RAC as evident (Etxeberria et al. 2007; Poon 
et al. 2004). Figure 10 shows the tested specimens prepared 
to compressive strength.

Compressive strength—cylinder

Compressive strength for cylinder, the RAC mixes noticed 
at different testing age period as indicated in Fig. 11. For the 
w/c of 0.48, 56d cylinder compressive strength ranges from 
30.08MPa to 33.8 MPa which was found 15% and 5% lower 
than the NAC mix. 28d compressive strength was observed 
from 26.22 to 29.42MPa which was 15% and 4.8% lower 
than the NAC mix. 7d compressive strength was observed 

Table 7  Strength improvement 
in RAC mix at different age 
periods

Mix ID Material Proportion (%) W/C SP f7/f56 f28/f56 f56/f56

1 100% RCA+0%NCA 0.48 0 0.663 0.869 1
2 75%RCA+25%NCA 0.48 0 0.663 0.869 1
3 50% RCA+50%NCA 0.48 0 0.663 0.869 1
4 25% RCA+75%NCA 0.48 0 0.664 0.870 1
5 0%RCA+100%NCA 0.48 0 0.665 0.871 1
6 100% RCA+0%NCA 0.4 0 0.692 0.859 1
7 75%RCA+25%NCA 0.4 0 0.694 0.860 1
8 50% RCA+50%NCA 0.4 0 0.695 0.863 1
9 25% RCA+75%NCA 0.4 0 0.695 0.863 1
10 0%RCA+100%NCA 0.4 0 0.695 0.863 1
11 100% RCA+0%NCA 0.3 1.5 0.748 0.964 1
12 75%RCA+25%NCA 0.3 1.5 0.750 0.965 1
13 50% RCA+50%NCA 0.3 1.5 0.751 0.966 1
14 25% RCA+75%NCA 0.3 1.5 0.752 0.968 1
15 0%RCA+100%NCA 0.3 1.5 0.753 0.970 1
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between 19.94 to 22.44 MPa from 14.5% and 5% lower than 
the NAC mix. For the w/c of 0.4, 56d compressive strength 
ranges from 30.05MPa to 33.38MPa which was found 
16% and 7.9% lower than the NAC mix. 28d compressive 

strength was observed from 25.83 to 28.67 MPa which was 
17.4 % and 8.3% lower than the NAC mix. 7d compres-
sive strength was observed between 20.88 to 23.2 MPa 
from 16.7% and 7.4% lower than the NAC mix. For the w/c 

Fig. 8  Hardened density of 
RAC mixes

Fig. 9  Cube compressive 
strength of RAC mixes
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of 0.3, 56d compressive strength ranges from 41.6MPa to 
46.69MPa which was found 15% and 5.3% lower than the 
NAC mix. 28d compressive strength was observed from 40.1 
to 45.11 MPa which was 15.9% and 5.4% lower than the 
NAC mix. 7d compressive strength was observed between 
31.32MPa to 35.08MPa which was 15% and 5% lower than 
the NAC mix. the strength reduction (%) of RAC mixes for 
cube was around 15.3–2.4% and for cylinder, it was around 

16.8–11.3%. Same effect has been in the study Yong Ho 
et al. (2013), in examining the efficient utilization of RAC 
in structural concrete. It is reasoned that the strength reduc-
tion of cylinder specimen is slightly higher than the cube 
specimens. The strength variation of RAC mixes compared 
to NAC mixes is inferred in Table 8.

Correlation between the 56d cube and cylinder compres-
sive strength is indicated in Fig. 12. Equation 5 shows a 
model attained by the non-linear regression with the good 
correlation coefficient of  R2 = 0.94145 to relate the cube 
 (fcu) and cylinder compressive strength  (fcyl).

Split tensile strength

Split Tensile strength for RAC mixes noticed at different test-
ing age periods as indicated in Fig. 13. For the w/c of 0.48, 
56d split tensile strength ranges from 3.214 to 3.611MPa 
which was found 13% and 2.5% lower than the NAC mix. 
28d split tensile strength was observed from 2.801 to 3.143 
MPa which was 13% and 2.4% lower than the NAC mix. 7d 
split tensile strength was observed between 2.131 to 2.397 
MPa from 13% and 2.6% lower than the NAC mix. For the 
w/c of 0.4, 56d split tensile strength ranges from 3.211MPa 
to 3.566MPa which was found 15% and 5.6% lower than 
the NAC mix. 28d split tensile strength was observed from 
2.759 to 3.063 MPa which was 15 % and 6% lower than the 

(5)Compressivestrengthofcylinder
(

fcyl
)

= 1.23f cu
0.878

Fig. 10  Tested specimens

Fig. 11  Cylinder compressive 
strength of RAC mixes
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NAC mix. 7d split tensile strength was observed between 
2.231 and 2.479 MPa from 14.6% and 5% lower than the 
NAC mix. For the w/c of 0.3, 56d split tensile strength 
ranges from 4.444MPa to 4.81 MPa which was found 13% 
and 3.2% lower than the NAC mix. 28d split tensile strength 
was observed from 4.284 to 4.72 MPa which was 13% and 
4% lower than the NAC mix. 7d split tensile strength was 
observed between 3.347MPa and 3.748MPa which was 13% 
and 2.6% lower than the NAC mix. Since the NCA pro-
vides high resistance, the tensile crack which propagates 
from the mortar is highly restricted in contrast to RCA. A 
similar effect was noticed in the literature Sivakumar (2014) 
in exploration with high-performance concrete using RCA.

Correlation between the 56d compressive strength (both 
cube and cylinder) and split tensile strength is indicated in 
Fig. 14. Equations 6 and 7 show a model arrived by the non 

linear regression with the good correlation coefficient of R2 
as 0.9154 and 0.90728 for cylinder  (fcyl) and cube  (fcu) com-
pressive strength respectively.

Flexural strength

Flexural strength for RAC mixes noticed at different test-
ing age period as indicated in Fig. 15. For the w/c of 0.48, 
56d flexural strength ranges from 4.347MPa to 4.608MPa 
which was found 6.8% and 1.3% lower than the NAC mix. 
28d flexural strength was observed from 4.058to 4.299 MPa 
which was 6.8% and 1.2% lower than the NAC mix. 7d flex-
ural strength was observed between 3.54to 3.754MPa from 
6.9% and 1.3% lower than the NAC mix. For the w/c of 0.4, 
56d flexural strength ranges from 4.345MPa to 4.579MPa 
which was found 7.8% and 2.8% lower than the NAC mix. 
28d flexural strength was observed from 4.028 to 4.244 MPa 
which was 7.9% and 3% lower than NAC mix. 7d flexural 
strength was observed between 3.622 to 3.818 MPa from 
7.6% and 2.6% lower than the NAC mix. For the w/c of 
0.3, 56d flexural strength ranges from 5.112 to 5.416MPa 
which was found 6.9% and 1.4% lower than the NAC mix. 
28d flexural strength was observed from 5.019 to 5.324MPa 
which was 7.2% and 1.5% lower than the NAC mix. 7d flex-
ural strength was observed between 4.436 MPa to 4.695MPa 
which was 6.7% and 1.3% lower than the NAC mix. The 
lesser mechanical properties and elastic modulus of RAC 
mixes can be the conceivable explanation for the decrease 
in flexural strength. Because of the lower modulus of elastic-
ity, the RAC goes through more strain when contrasted with 

(6)Splittensilestrengthforcylinder(fct) = 0.541fcyl
0.531

(7)Splittensilestrengthforcube(fct) = 0.565fcu
0.483

Table 8  Strength variation (%) in RAC mixes compared to NAC mixes

Material proportion w/c fcu(MPa) fcyl(MPa) fct(MPa) fcr(MPa) E(GPa)

7 28 56 7 28 56 7 28 56 7 28 56 7 28 56
100%RCA 0.48 13.47 13.04 13.2 14.5 15.2 15.4 13.4 13 13.2 6.9 6.9 6.8 8.1 7.9 8
75% RCA 11.3 10.9 11 13.4 13.1 13.3 11.3 10.9 11 5.7 5.6 5.7 6.9 6.8 6.9
50% RCA 6.9 6.9 6.9 9.3 9.3 9.2 6.9 6.9 6.9 3.5 2.9 3.5 4.7 4.8 4.8
25%RCA 2.6 2.4 2.5 5 4.9 4.9 2.6 2.4 2.5 1.5 1.2 1.3 2.5 2.4 2.5
100%RCA 0.4 14.6 15.3 14.9 16.7 17.4 16.2 14.6 15.3 15 7.5 7.9 7.8 8.7 9.1 8.9
75% RCA 12.7 13.4 13 14.9 15.5 15.2 12.7 13.3 13 7.5 6.8 6.7 7.7 8 7.9
50% RCA 9.5 10.1 9.8 11.7 12.4 12 9.5 10 9.8 4.8 5.2 5 6 6.4 6.2
25%RCA 5.1 6 5.6 7.5 8.3 7.9 5.1 6 5.6 2.5 3 2.8 3.8 4.3 4
100%RCA 0.3 13 13.7 13.4 15 15.9 14.9 13 13 13 6.7 7.1 6.9 7.9 8.3 8.1
75% RCA 9.5 9 9.2 11.7 11.2 11.5 9 8 8 4.8 4.6 4.7 6 5.8 5.9
50% RCA 4.7 5.2 4.9 7.1 7.5 7.3 4.8 4.2 1.8 2.4 2.6 2.5 3.6 3.8 3.7
25%RCA 2.5 3 2.8 5.1 5.4 5.3 2.6 4 3.2 1.3 1.5 1.4 2.6 2.8 2.7

Fig. 12  Correlation between cube and cylinder compressive strength
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NAC mixes. In another point of view, voids existing in RAC 
have a more prominent impact on the tensile strength, more 
probable on its flexural strength.

Correlation between the 56d compressive strength (both 
cube and cylinder) and flexural strength is indicated in 

Fig. 16. Equations 8 and 9 shows a model arrived by the 
non linear regression with the correlation coefficient of R2 
as 0.90945 and 0.89949 for cylinder  (fcyl) and cube  (fcu) 
compressive strength respectively.

Fig. 13  Split tensile strength of 
RAC mixes

Fig. 14  Correlation between 
Split tensile and Compressive 
strength

2390   Page 14 of 20 Arab J Geosci (2021) 14: 2390



1 3

(8)Flexuralstrengthforcylinder(fcr) = 1.104fcyl
0.414

(9)Flexuralstrengthforcube(fcr) = 1.198fcu
0.365

Modulus of elasticity

Modulus of Elasticity for RAC mixes noticed at different test-
ing age period as indicated in Fig. 17. For the w/c of 0.48, 56d 
MOE ranges from 27.42 to 29.07 MPa which was found 8 % 
and 2.5% lower than the NAC mix. 28d MOE was observed 

Fig. 15  Flexural strength of 
RAC mixes

Fig. 16  Correlation between 
Flexural and Compressive 
strength
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from 25.6 to 27.12MPa which was 7.9% and 2.5% lower than 
the NAC mix. 7d MOE was observed between 22.329 to 
23.684MPa from 8% and 2.6% lower than the NAC mix. For 
the w/c of 0.4, 56d MOE ranges from 27.41 to 28.885 MPa 
which was found 8.9% and 4% lower than the NAC mix. 28d 
MOE was observed from 25.409 to 26.77MPa which was 9.1 
% and 4.3% lower than the NAC mix. 7d MOE was observed 
between 22.847MPa and 24.083MPa from 8.7 % and 3.8% 
lower than the NAC mix. For the w/c of 0.3, 56d MOE ranges 
from 32.248MPa to 34.166 MPa which was found 8.1% and 
2.6% lower than the NAC mix. 28d MOE was observed from 
31.662 to 33.582 MPa which was 8.3% and 2.7% lower than 
the NAC mix. 7d MOE was observed between 27.984 MPa 
and 29.615MPa which was 7.9% and 2.5% lower than the 
NAC mix. It was reasoned that the elastic modulus of RCA 
was lower in contrast to NCA because of its weak and porous 
nature. Literature Liu et al. (2011); Fathifazl et al. (2011) also 
identified the same effect.

Correlation between the 56d compressive strength (both 
cube and cylinder) and modulus of elasticity is indicated in 
Fig. 18. Equations 10 and 11 show a model arrived by the 
non linear regression with the correlation coefficient of R2 as 
0.89003 and 0.89035 for cylinder  (fcyl) and cube  (fcu) com-
pressive strength respectively. Table 9 shows the relationship 
between different mechanical properties of RAC.

(10)MOEforcylinder(E) = 6.344fcyl
0.44009

Scanning electron microscope

Since the RCA contains adhered mortar have microcracks 
thus it gets fundamental to inspect the impact of microcrack, 
pores, and voids present in the concrete. SEM scan for RCA 
is shown in Fig. 19. Figure 19 (a) shows the pores and cracks 
present in RCA respectively. Figure 19 (b) shows the porous 
layer between the aggregate and the cement paste, which 
forms the wall of the Interfacial Transition Zone (ITZ). Fig-
ure 19 (c) shows the dense microstructure of RAC. Since the 
RCA already has a porous microstructure, water absorption 
of RAC increases in contrast to NAC.

Limitations and future work

Regardless of the fact that this paper uses machine learning 
approaches to arrive at models and correlates the mechani-
cal properties of RAC, the work’s shortcomings should 
be addressed. This research is limited to prediction from 
concrete's various mechanical properties and correlation 
between them considering only 400kg/m3 of cement content. 
Also, the durability, corrosion, abrasion behavior of concrete 
may be considered in the future work. As concrete is the 
most extensively utilized substance on the planet after water, 
it is also advised that its characteristics be incorporated.

(11)MOEforcube(E) = 6.935fcu
0.3687

Fig. 17  Modulus of elasticity of 
RAC mixes
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Other algorithm based machine learning techniques such 
as artificial neural network, support vector machine, stochas-
tic gradient boosting, nearest neighbors and program based 
genetic programming may also be utilized as only Multi lin-
ear regression and extreme gradient boosting is described 
in this paper. Environmental effects on concrete qualities 
should also be predicted using machine learning approaches. 
Extreme gradient boosting can be used to obtain great accu-
racy in both experimental and predicted results.

Conclusions

Concrete compressive strength was predicted and their 
results were compared using data-driven models such as 
multilinear regression, and extreme gradient boosting. 
Results demonstrate that the experimental cylinder com-
pressive strength values of XGB have greater predictions 
of 0.5% than those of the MLR model. Especially results 

from establishing an XGB for  fcyl, illustrate a good degree 
of coherency between predicted and actual output values. 
The obtained cylinder compressive strength results of 
RMSE, MAE, and MAPE values of XGB were found to 
be 3.3414, 1.6137, and 5.0008 that are small enough which 
indicates the estimates are most precise in comparison to 
MLR. Regarding the fit of a model R2, for  fcyl, the accuracy 
of XGB was found to be 0.917. Although the R2 for  fcyl, the 
value of MLR was found greater than 0.9

From the data-driven models, for both accurate and ease-
work, XGB and MLR are used for concrete compressive 
strength prediction. From this study, it is inferred that the 
tree-based algorithm was able to perform better regression 
for  fcyl than other algorithms.

Correlations between the various mechanical properties 
of RAC mixes were established with a good correlation coef-
ficient ranges around 0.899 to 0.941.

Due to the porous structure and micro-cracks present in 
RCA, the percentage of water absorption increased which 

Fig. 18  Correlation between 
MOE and Compressive strength

Table 9  Relationship between 
different mechanical properties 
of RAC 

Correlation between R2 value Proposed Models (MPa)

Cube and Cylinder compressive strength 0.94145 fcyl = 1.23  fcu
0.878

Split tensile and Compressive strength fcyl = 0.9154
fcu = 0.90728

fct = 0.541  fcyl
0.531

fct = 0.565  fcu
0.483

Flexural and Compressive strength fcyl = 0.90945
fcu = 0.89949

fcr = 1.104  fcyl
0.414

fcr = 1.198  fcu
0.365

MOE and Compressive strength fcyl = 0.89003
fcu = 0.89035

E = 6.344  fcyl
0.44009

E = 6.935  fcu
0.3687
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showed an adverse impact on the properties of RAC mixes. 
But the usage of superplasticizer conplast SP 430 effectively 
controlled and increased the mechanical properties of RAC. 
For the w/c of 0.3 with SP of 1.5%, 25% replacement of 
RCA showed greater results as compared to other w/c. It was 
recorded that cube compressive strength (2.8% lesser), cylin-
der compressive strength (5.2% lesser), Split tensile strength 
(3.2% lesser), flexural strength (1.4% lesser), and elastic 
modulus (2.6% lesser) than normal aggregate concrete.

Although for other w/c, 25% replacement of RCA showed 
better results and 100% replacement of RCA with optimum 
results which recorded cube compressive strength as (8 to 

10 % variation), cylinder compressive strength as (10 to 
12%) Split tensile strength as (8–10% variation), flexural 
strength as (4–5% variation), and elastic modulus as (5–6% 
variation).

For 100% replacement of RCA, 28th day cube compres-
sive strength  (fcu) for was found to be 53.33MPa and 28th 
day cylinder compressive strength  (fcyl) was found to be 
around 40MPa. Hence, it is recommended to be used for all 
structural applications.

The RAC model which employs MLR and XGB can be 
employed successfully without requiring a considerable 
investment of time and money, as in the scenario with long-
term experiments.
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