
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12517-021-08646-3

ORIGINAL PAPER

Calibrating the WEPP model to predict soil loss for some calcareous 
soils

Salman Mirzaee1 · Shoja Ghorbani‑Dashtaki1

Received: 24 October 2020 / Accepted: 17 October 2021 
© Saudi Society for Geosciences 2021

Abstract
Accurate soil loss prediction at the regional scale is necessary for a better understanding of the soil erosion processes and 
conservation practices. This study aimed to calibrate the WEPP model for predicting soil loss under semi-arid region condi-
tions in the northwest of Iran. Inter-rill and rill erosion were simulated at 59 points with three replications. Therefore, the 
ability of the regression equation in WEPP model and the derived regression and artificial neural network (ANN) models by 
Mirzaee et al. (2017) for predicting baseline soil erodibility parameters were evaluated to estimate soil loss. The results of the 
present study showed that the WEPP model that applied soil baseline erodibility predicted data by the regression equation in 
the WEPP model performed poorly in comparison to the derived aspatial models by Mirzaee et al. (2017). Additionally, the 
WEPP model that used soil baseline erodibility predicted data by the developed ANNs by Mirzaee et al. (2017) yielded the 
best results with the highest R2 (0.681) and the lowest RMSE (5.1 Mg  ha−1) values for predicting soil loss rate. In general, 
the prediction map of soil erosion showed that soil erosion varied from 1.0 to 26.5 Mg  ha−1.
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Introduction

One of the main paths for land degradation is water ero-
sion on croplands. Water erosion leads to loss of fertile 
topsoil and creates sediment and pollution in water bodies 
(Brown and Wolf 1984). Water erosion is a critical envi-
ronmental problem in the arid and semi-arid zones of the 
world especially in northwestern of Iran where it threatens 
to impair sustainable programs on agriculture lands. In this 
part of Iran, large amounts of agriculture land are aban-
doned every year because of natural and human-induced 
soil erosion (Mirzaee et al. 2017). Since soil erosion could 
adversely influence ecosystems on-site as well as off-site, 
the prediction of soil loss at a watershed scale has become 
vital issue in order to guarantee food security and maintain 

environmental health. Therefore, it is necessary to focus on 
the prediction and monitoring of soil erosion in croplands 
where water erosion is at the highest rate (Zhang et al. 2008; 
Wang et al. 2014).

Several models have been developed for predicting soil 
loss, including ANSWERS (areal non-point source water-
shed environment response simulation) (Beasley et  al. 
1980), GUEST (Griffith University Erosion System Tem-
plate) (Rose et al. 1983a, 1983b; Hairsine and Rose 1992a, 
1992b), WEPP (Water Erosion Prediction Project) (Laflen 
et al. 1997), and EUROSEM (European Soil Erosion Model) 
(Morgan et al. 1998). All of those models used the main 
components of factors that could influence soil erosion such 
as rainfall erosivity, soil erodibility, slope length and degree, 
soil cover, and conservation practice. The accuracy of soil 
erosion models that are used for predicting soil loss depends 
on a large number of soil and environmental parameters 
including climate, soil, management, vegetation, and topog-
raphy factors based on scientific theory (Amore et al. 2004).

The WEPP model, a physically based erosion predic-
tion model developed by the US Department of Agricul-
ture (USDA), was developed for predicting soil loss along a 
slope and sediment yield at the end of a hillslope (Flanagan 
and Nearing 1995). This physically based model is capable 
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of (i) distinguishing zones of soil particles detachment and 
deposition within channels; (ii) calculating the influences of 
backwater on soil particle detachment, transport, and depo-
sition within channels; and (iii) predicting the spatial and 
temporal distributions in soil loss and sediment deposition 
for both hill slope and watershed on an event or a continuous 
time basis (Ascough II et al. 1995; Flanagan and Nearing 
1995). The WEPP has been applied successfully for predict-
ing water erosion and sediment yield in different conditions 
in the USA (Huang et al. 1996; Laflen et al. 2004; Maalim 
et al. 2013; Brooks et al. 2016; Srivastava et al. 2020), in 
the UK (Brazier et al. 2000), in Australia (Rosewell 2001), 
in Italy (Pieri et al. 2007), and in India (Pandey et al. 2008).

A calcareous soil contains high calcium carbonate equiv-
alent and pH (pH > 7.5). The existence of a high amount of 
calcium carbonate equivalent could be influenced the soil 
erosion process. However, only a few studies have calibrated 
and applied the WEPP model for properly predicting soil 
loss under calcareous conditions. The main aims of the pre-
sent study were to calibrate and apply the WEPP model for 
predicting and monitoring soil loss under calcareous condi-
tions in a semi-arid region in the northwest of Iran.

Material and methods

Study site

The study sites, with an area 619.5  km2, were located in 
Kaleybar, in the East-Azerbaijan province, northwestern of 
Iran (Fig. 1). Typically, this region was ploughed to a depth 
of 15–20 cm by using a moldboard plow. The rain-fed winter 
wheat and winter barley are the main agronomy crops in 
this region. The soil types in the study sites are Inceptisols, 
Entisols, and Mollisols (USDA 2010) with the soil parent 
materials enriched by carbonate material.

According to the measured daily data from 2001 to 2019 
acquired in the Iran Meteorological Service, the mean 
monthly temperature ranged from 4.45 to 24.69 °C with 
an average annual of 14.2 °C. The minimum and maxi-
mum temperatures occur in January and August months, 
respectively. In addition, the mean annual precipitation 
for the studied region is 383.5 mm. The mean lowest and 
highest precipitations occur in August (5.9 mm) and May 
(82.3 mm), respectively. Moreover, the mean daily precipita-
tions for Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, 
Nov, and Dec are 1.06, 1.04, 1.42, 0.66, 2.77, 1.93, 0.97, 
0.25, 0.70, 0.06, 1.05, and 0.89 mm, respectively. More than 
50% of rainfall falls in the early spring in short rainstorms 
and irregular heavy rainfalls events that lead to a serious soil 
erosion in this area (Mirzaee et al. 2017).

Fig. 1  Location of study area in 
northwest Iran and distribution 
of the 57 studied points
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Soil sampling and analysis

The soil samples (at 59 points) were taken from a depth 
of 0–15 cm using a stratified random method at vari-
ous slope classes (0–5, 5–10, 10–15, 15–20, and > 20%) 
(Fig. 1). For laboratory analysis, the sampled soils were 
air-dried and sieved by a 2-mm sieve. SOM (soil organic 
matter) was measured by wet-oxidation approach (Nelson 
1982). The CCE (calcium carbonate equivalent) content 
was determined using back-titration approach (Nelson & 
Sommers 1986). The particle size including sand-sized 
particles (0.05–2 mm) classes was measured by sieving 
method. Silt-sized particles (0.05–0.002 mm) and clay-
sized particles (< 0.002 mm) contents were determined by 
the hydrometer approach (Gee & Bauder 1986).

Measurement of inter‑rill and rill erosion at field 
scale

Inter-rill and rill erosion processes are considered in 
the WEPP model as important soil erosion components. 
Inter-rill erosion is explained as a soil detachment process 
created by rain-drop influence and transport by shallow 
sheet flow. Rill erosion is explained as a process of the 
concentrated flowability to detach and transport sediment 
(Flanagan and Nearing 1995).

A portable field rainfall capillary-type simulator 
(Fig. 2a) applied raindrops to simulate inter-rill erosion at 
59 points. This rainfall simulator had the runoff plot which 
covered an area of 0.25  m2. Additionally, the falling dis-
tance of rainfall capillary-type simulator was 40 cm with 
2.3 mm  min−1 intensity. This type of rainfall simulator was 
used to measure inter-rill erosion in several studies such as 
Kamphorst (1987), Romero et al. (2007), and Nzeyiman 
et al. (2017). In addition, rill erosion was simulated in a 
rill with a width of 0.2 m and length of 4 m in cultivated 
soil (Fig. 2b, c). Concentrated flows were added at rates of 
4, 12, 20, and 30 l  min−1 at the top of each plot through an 
energy dissipater. Each outflow rate was measured when 
observing a steady-state condition which was typically 
observed after 10 min. In this study, a steady-state condi-
tion duration was selected as 15 min to ensure that these 
situations were established for all of the inflow rates.

Application of WEPP model

Inter‑rill and rill erosion

The WEPP model divides soil loss into two impor-
tant components including (1) inter-rill erosion and (2) 
rill erosion (Flanagan and Nearing 1995). The erosion 

components were applied in this model are described as 
follows:

where G is the sediment load (kg  s−1  m−1), x is the dis-
tance down the slope (m), Di is the inter-rill erosion (kg 
 s−1   m−2), and Dr is the rill erosion (kg  s−1   m−2) (Laflen 
et al. 1991). In the WEPP model, Di and Dr components are 
accounted by the following equations (Laflen et al. 1991):

where Kib, Krb, and τcb are the baseline inter-rill erod-
ibility (kg s  m−4), rill erodibility (s  m−1), and baseline criti-
cal shear stress (Pa), respectively. I and q are the rainfall 
intensity (m  s−1) and runoff rate (m  s−1), respectively. Sf is 
the slope adjustment factor. Dc and Tc are the detachment 
capacity of the flow (kg  s−1  m−2) and transport capacity of 
the flow (kg  s−1  m−2), respectively. τ is the shear stress act-
ing on the soil (Pa). Net soil particle detachment in a rill 
occurs when flow hydraulic shear stress exceeds on the soil 
critical shear stress. Moreover, net soil particle deposition in 
a rill occurs when the sediment load in the rill flow exceeds 
on the sediment transport capacity.

The baseline inter-rill erodibility (Kib), baseline rill erod-
ibility (Krb), and critical shear stress (τcb) were estimated in 
this region for cropland soils containing at least 30% sand 
or more sand (Flanagan and Livingston 1995):

For soils containing < 30% sand, predicted by the follow-
ing equations:

where VFS is the very fine sand fraction. Moreover, 
aspatial models including regression and artificial neural 
network (ANN)-based models (Mirzaee et al. 2017) were 

(1)
dG

dx
= Di + Dr

(2)Di = KibIqSf

(3)Dr = Dc

(
1 −

G

Tc

)

(4)Dc = krb(� − �cb)

(5)Kib = 272800 + 19210000VFS

(6)Krb = 0.00197 + 0.03VFS + 0.03863e−184OM

(7)�c = 2.67 + 6.5clay + 5.8VFS

(8)Kib = 6054000 − 5513000clay

(9)Krb = 0.0069 + 0.134e−20Clay

(10)�c = 3.5
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used to predict baseline soil erodibility values from the 
observed field data. The descriptive statistics for the base-
line soil erodibility parameters i.e., the Kib, Krb, and τcb by 
using the best different models are presented in Table 1.

WEPP application

The WEPP model needs four input files including climate, 
topography, soil, and management files for predicting soil 
erosion.

Climate file The climate file as single-storm climate was gen-
erated in CLIGEN (Nicks et al. 1995) by using the amount, 
duration, and intensity of simulated rainfall data.

Topography file The WEPP model applies topography data 
for estimating soil loss. Slope degree data derived from 
DEMs (digital elevation models) with a spatial resolution 
of 30 m are processed in this study. The distribution of slope 
classes is summarized in Table 2.

Fig. 2  a Rainfall capillary-type 
simulator. b Rill experiment 
in unsteady-state conditions. c 
Rill experiment in steady-state 
conditions

(b) (c)

(a)
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Soil file The soil input data for the WEPP model were based 
on the laboratory measurement such as soil organic matter, 
calcium carbonate equivalent, sand-, silt-, and clay-sized 
particles contents as described in Table 3. The SOM map by 
ordinary Kriging method is presented in Fig. 3. Indeed, the 
baseline inter-rill erodibility (Kib), baseline rill erodibility 
(Krb), and critical shear stress (τcb) predicted data by using 

regression equation in WEPP model Flanagan and Living-
ston (1995), and the best regression- and artificial neural net-
work (ANN)-derived models by Mirzaee et al. (2017) were 
entered as soil input data. In addition, to quantify the satu-
rated hydraulic conductivity parameter (i.e., Ks), the Green 
and Ampt (1911) model (Eq. (11)) was applied, as follows:

where I is the cumulative infiltration (cm), Ks (cm  min−1) 
is the saturated hydraulic conductivity, and G is a constant 
parameter. Finally, the Ks values were obtained by fitting 
processes during parameterization of the Ks and G param-
eters in Eq. 11.

Management file In the present study, the management input 
file in WEPP model contains all data related to plant type 
and parameters, tillage type and parameters, residue man-
agement, and crop rotations. Tillage and crop management 

(11)I = Kst + Gln
(
1 +

I

G

)

Table 1  Summary statistics 
for baseline soil erodibility 
parameters

Kib inter-rill erodibility, Krb rill erodibility, τcb critical shear stress

Soil erodibility 
parameters

Min Max Mean Median St.D CV (%)

Measured data
Kib (kg s  m−4) 4.1 ×  105 5.0 ×  106 2.1 ×  106 1.9 ×  106 9.3 ×  105 42.81
Krb (s  m−1) 1.1 ×  10−4 2.15 ×  10−3 8.1 ×  10−4 7.9 ×  10−4 4.49 ×  10−4 55.43
τcb (Pa) 0.00 9.32 3.49 3.26 2.54 72.78
Predicted by regression equations in WEPP model (Flanagan and Livingston 1995)
Kib (kg s  m−4) 3.9 ×  105 5.8 ×  106 3.3 ×  106 3.4 ×  106 1.1 ×  106 33.62
Krb (s  m−1) 5.1 ×  10−3 4.05 ×  10−2 1.1 ×  10−2 1.0 ×  10−2 4.66 ×  10−3 42.36
τcb (Pa) 1.32 5.12 3.22 3.18 0.78 24.22
Predicted data by developed regression equations in Mirzaee et al. (2017)
Kib (kg s  m−4) 1.1 ×  106 3.0 ×  106 2.0 ×  106 2.0 ×  106 4.2 ×  105 20.72
Krb (s  m−1) 3.9 ×  10−4 1.7 ×  10−3 7.8 ×  10−4 7.7 ×  10−4 2.1 ×  10−4 26.92
τcb (Pa) 1.29 7.43 3.08 3.03 0.96 31.17
Predicted data by developed ANNs in Mirzaee et al. (2017)
Kib (kg s  m−4) 7.7 ×  105 3.1 ×  106 2.0 ×  106 2.1 ×  106 5.6 ×  105 27.48
Krb (s  m−1) 3.6 ×  10−5 1.8 ×  10−3 7.7 ×  10−4 7.4 ×  10−4 2.3 ×  10−4 29.87
τcb (Pa) 0.01 7.74 3.38 3.26 1.52 44.97

Table 2  The distribution of studied area in different slope classes

Slope class (%) Area (ha) Area (%)

0–2 961.6 1.55
2–6 4118.8 6.65
6–12 11,606.2 18.73
12–16 9021.5 14.56
16–25 17,074.2 27.56
 > 25 19,168.0 30.94
Total 61,950.3 100

Table 3  Descriptive statistics of 
studied soil

CCE calcium carbonate equivalent, SOM soil organic matter

Properties Min Max Mean Median Std. dev CV

Clay (%) 10.0 54.0 31.3 32.0 9.10 29.1
Silt (%) 22.0 70.0 36.9 36.0 7.70 20.9
Sand (%) 8.00 50.0 31.7 34.0 10.1 31.9
VFS (%) 0.66 28.7 17.90 18.37 4.93 27.5
CCE (%) 0.50 42.0 16.4 16.1 7.93 48.2
SOM (%) 0.17 3.02 1.72 1.81 0.59 34.3
Ks (cm  min−1) 0.002 0.465 0.107 0.097 0.085 79.4
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data including tillage equipment type and date of applying, 
type of crop, planting date, harvest date, residue manage-
ment, and crop rotations were entered into the management 
files. In addition, the study area includes agricultural lands 
(25,253.2 ha; 40.8%), rangelands (20,126.8 ha; 32.5%), for-
est lands (4893.9 ha; 7.9%), rocks (5564.8 ha; 9.0%), urban 
areas (5886.6 ha; 9.5%), and water body (149.0 ha; 0.24%) 
(Fig. 4). The main agricultural crops in this region include 
cereal productions such as wheat and barley.

Evaluation of models

GeoWEPP model was applied to estimate soil erosion at 
the hillslope scale. WEPP model version 2008.907 and 
ArcGIS 9.3 (ESRI, Redlands, CA). The 59-soil sample 
points were used as randomly as a training-data set, (80%) 
and test-data set (20%). The accuracy of WEPP model for 
estimating soil loss in this study was evaluated by apply-
ing the ME (mean error), RMSE (root mean square error), 
and R2 (coefficient of determination) criteria and were 
described as follows:

where Yi and Ŷi are the measured and estimated data of 
soil loss, respectively. Yi is the mean of the measured data 
of soil loss, and N is the number of observations (i.e., 59).

Results and discussion

Prediction of soil loss by using WEPP model

Input of soil baseline erodibility predicted data 
by regression equations in the WEPP model

The prediction of soil loss by using WEPP model with input of 
soil baseline erodibility predicted data by regression equations 
in WEPP model (Flanagan and Livingston 1995) yielded the 
R2 = 0.089, RMSE = 107.3 Mg  ha−1, and ME = 92.8 Mg  ha−1 
with the test-data set (Table 4). In addition, the scatter plots 
of the measured against the estimated data of soil erosion 

(12)ME =
1

N

N∑
i=1

(Ŷi − Yi)

(13)RMSE =

⎡⎢⎢⎢⎣

∑N

i=1

�
Ŷi − Yi

�2

N

⎤⎥⎥⎥⎦

0.5

(14)R2 = 1 −

∑N

i=1
(Yi − Ŷ)

2

∑N

i=1
(Yi − Yi)

2

Fig. 3  Soil organic map for studied area

Fig. 4  The main land use classes area in studied area
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around 1:1 line for the train-data and test-data sets are present 
in Fig. 5. Based on Fig. 5, WEPP model had consistent over-
estimated soil erosion at all points. This could be described by 
the fact that soil erosion processes are highly complex. Inter-
actions of several factors such as soil texture and structure, 
runoff, rainfall, slope degree, and land use can be influenced 
soil erosion processes. Another possible reason for the over-
estimated by the WEPP equations was that those equations 
were developed from soils that had been tilled for only 100 to 
300 years, whereas northwestern of Iran soils have likely been 
tilled for several thousand years. The extended time of tillage 
may have resulted in historic erosion removing more erodible 
topsoil while leaving less erodible calcareous subsoils behind. 
This suggests that the WEPP model needs to be calibrated for 
different field conditions in different areas of the world such 
as Iran and other semi-arid areas due to the influence of cal-
careous materials on erosion processes (Ostovari et al. 2016).

Input of soil baseline erodibility predicted data 
by the best‑developed regression model in Mirzaee et al. 
(2017)

Table  4 presents the statistical results of using WEPP 
model for prediction of soil loss with input of soil baseline 

erodibility predicted data by the best-developed regression 
model in Mirzaee et al. (2017). Applying the best regression-
derived model for predicting soil baseline erodibility data 
from more easily available soil properties in Mirzaee et al. 
(2017) yielded the R2 = 0.562, RMSE = 5.2 Mg  ha−1, and 
ME = 3.3 Mg  ha−1 with the test-data set (Table 4). The ME 
values in test-data set showed that the soil erosion predicted 
by using WEPP model had consistent over-estimated soil 
erosion (Table 4). This could be observed in the scatter plots 
illustrated in Fig. 6.

Input of soil baseline erodibility predicted data 
by the best‑developed ANNs in Mirzaee et al. (2017)

The ME, RMSE, and R2 values for the test-dataset presented 
for soil loss prediction with input of soil baseline erodibility 
predicted data by developed ANNs in Mirzaee et al. (2017) 
in Table 4. This method explained for up to 68.1% of the 
variation in soil loss prediction by using WEPP model 
(Table 4). Moreover, the scatter plots of the measured and 
predicted soil loss data for the train-data and test-data sets 
are given in Fig. 7.

Table 4  Prediction of soil 
erosion with input of soil 
baseline erodibility data 
predicted by different methods 
in WEPP model

Models Train Test

ME RMSE R2 ME RMSE R2

Regression equations in WEPP model 110.3 130.6 0.125 92.8 107.3 0.089
Regression equation (Mirzaee et al. 2017) 3.5 5.7 0.424 3.3 5.2 0.562
ANN model (Mirzaee et al. 2017) 3.4 5.4 0.519 3.5 5.1 0.681

Fig. 5  Relationships between measured and predicted soil erosion 
with input of soil baseline erodibility data predicted by regression 
equations in WEPP model

Fig. 6  Relationships between measured and predicted soil erosion 
with input of soil baseline erodibility data predicted by the best 
regression equations in Mirzaee et al. (2017)

Page 7 of 10    2198Arab J Geosci (2021) 14: 2198



1 3

Comparison of soil erosion prediction accuracy at different 
soil baseline erodibility predicted data inputs to the WEPP 
model

As can be seen from Table 4, the highest R2 value (0.681) 
and the smallest RMSE value (5.1 Mg  ha−1) at the test-data 
set were obtained by WEPP model that applied soil baseline 
erodibility predicted data by the best-developed ANNs in 
Mirzaee et al. (2017). Comparison the accuracy of WEPP 
model with different input soil baseline erodibility predicted 
data by different methods in Table 4 showed the smallest R2 
(0.089) and highest RMSE (107.3 Mg  ha−1) at the test-data 
set were from to the WEPP model that applied soil baseline 
erodibility predicted data by regression equations in WEPP 
model (Flanagan and Livingston 1995). However, results in 
Table 4 indicated that the lowest ME value (3.3 Mg  ha−1) 
was produced in WEPP model that used soil baseline erod-
ibility predicted data by the best-developed regression equa-
tions in Mirzaee et al. (2017).

Overall, the results showed that the WEPP model that 
applied soil baseline erodibility predicted data by the 
best-developed ANNs in Mirzaee et  al. (2017) was the 
best method for predicting soil loss at this region. Recent 
studies by Pachepsky et al. (1996), Khalilmoghadam et al. 
(2009), Havaee et al. (2015), and Mirzaee et al. (2017) have 
found that ANN methods outperform regression models 
for predicting different soil hydraulic attributes. One of the 
reasons for the higher accuracy when applying ANNs for 
predicting soil baseline erodibility parameters as an impor-
tant input data for soil loss prediction is non-linear rela-
tionship between target and more easily measurable basic 

soil attributes (Izenman 2008; Parchami-Araghi et al. 2013; 
Mirzaee et al. 2020). In addition, recently, increased applica-
tions of ANNs methods have been developed for modeling 
different types of soil hydrological properties. This could 
be related to their ability of this method to capture com-
plex non-linear relationships between target and more eas-
ily measurable basic soil attributes (Maier & Dandy 2000; 
Parchami-Araghi et al. 2013) that have an incomplete under-
standing of the physical processes involving.

Soil erosion map by the GeoWEPP

Figure  8 indicates the regions susceptible to soil ero-
sion. The map accuracy in this study was the R2 = 0.623, 
RMSE = 5.4  Mg   ha−1, and ME = 3.8  Mg   ha−1 with 
the test-data set. As the results from Fig. 8, 25,875 ha 
(41.8%), 23,302 ha (37.6%), 9439 ha (15.2%), 1283 ha 
(2.1%), and 2051 ha (3.3%) were in soil erosion classes 
including 1.0–7.0, 7.0–10, 10.0–14.0, 14.0–16.0, and 
16.0–26.5 Mg  ha−1, respectively. The lowest soil erosion i.e., 
1.0–7.0 Mg  ha−1 class is in the flattest part of the watershed. 
These parts of the studied area were used for horticultural 
productions because of the availability of water. In some 

Fig. 7  Relationships between measured and predicted soil erosion 
with input of soil baseline erodibility data predicted by the best ANN 
model in Mirzaee et al. (2017)

Fig. 8  Soil erosion map for studied area
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parts of this area, where most of the rain-fed cereals farming 
occurs, crop rotation is rain-fed cereals-fallow, and slope 
steepness is high, so soil erosion values are high. Moreover, 
as can be seen from Fig. 8, the higher rates of soil erosion 
occur mainly in the north and southwest parts of the stud-
ied area. In contrast, the lower rates of soil erosion observe 
mainly in central and east parts of the studied area (Fig. 8).

Several studies have focused on determining soil loss 
tolerance (T-value) in calcareous soils of semi-arid regions 
in Iran (Ostovari et al. 2020; Gohardust et al. 2011). Gohar-
dust et al. (2011) reported that about 43.7% of the studied 
region had a T-value of 5.37 Mg  ha−1 in the Chehel-Chay 
Watershed of Golestan Province, Iran. In addition, Osto-
vari et al. (2020) showed that T-values ranged from 3.5 to 
22.5 Mg  ha−1. In the present study, soil erosion prediction 
data by the best method ranged from 1.0 to 26.5 Mg  ha−1 for 
in a single event (Fig. 8). This is an important characteristic 
to note for calibrating WEPP model for the different field 
conditions.

Conclusions

Inter-rill and rill soil erosion were measured in a semi-arid 
region on some calcareous soils in northwestern of Iran. 
The results of this research indicated that the best regres-
sion- and ANN-derived models in Mirzaee et al (2017) per-
formed better than the regression model in the WEPP model 
in Flanagan and Livingston (1995) for predicting soil loss. It 
can be a result that the WEPP model needs to be calibrated 
for different field condition especially in calcareous soils 
under the impairing of calcareous materials. In this way, 
the best ANN-derived models for predicting soil erodibility 
parameters data in Mirzaee et al (2017) provided more accu-
rate estimations of soil loss by using WEPP model than the 
best regression-derived models for soil erodibility param-
eters in Mirzaee et al (2017) as input data in WEPP model. 
The WEPP model that applied soil baseline erodibility pre-
dicted data by the best-developed ANNs in Mirzaee et al. 
(2017) was able to explain for up to 68.1% of the variation 
in soil loss prediction. Moreover, soil erosion prediction map 
showed that soil erosion at the studied area varied from 1.0 
to 26.5 Mg  ha−1 for a single event. In general, it is necessary 
to calibrate the WEPP model for an accurate prediction of 
soil loss rate for local soils.
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