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Abstract
The Tibetan Himalaya region provides crucial sedimentary successions for studying the evolution of the eastern Tethyan 
depositional area. However, the palaeo-environmental conditions during the Early Cretaceous period in southern Tibet (Tethys 
Himalaya northern zone) are not well constrained. In this paper, we report on the major, trace, and rare earth elements, as well 
as the carbon and oxygen isotopic compositions of the limestone successions in the Lower Cretaceous Gyabula Formation 
of the Rongpo area. The obtained sedimentary rare earth element (REE) profiles suggest that the Rongpo area was situated 
on a passive continental margin during the Early Cretaceous. The integrated geochemical and sedimentological analyses 
and results suggest that the limestones were deposited in a non-open marine depositional environment, marked by anoxic 
conditions. The strong positive europium (Eu) anomalies (Eu/Eu* = 1.77 ± 0.07), high  SiO2 contents (average 19.30 ± 2.82%), 
and the negative δ13C values and δ18O values suggest that hydrothermal fluids may have impacted the Early Cretaceous 
Neo-Tethyan seawater geochemistry. The combined sedimentological and geochemical data provide new insights on the 
palaeo-environmental and tectonic setting of the Lower Cretaceous Neo-Tethyan successions of southern Tibet.

Keywords Southern Tibet · Early Cretaceous · Seawater geochemistry · Sedimentary/depositional environment · Tectonic 
setting

Introduction

The Cretaceous was a critical time period in the history of 
the Earth and was marked by significant climatic and envi-
ronmental changes which were associated with the develop-
ment of major greenhouse climate conditions (Bornemann 

et al. 2008; Wang 2013; Wang et al. 2014), global sea-level 
fluctuations (Haq et al. 1987; Haq 2014), continental and 
marine large igneous province (LIP) volcanism (Zhu et al. 
2009), and the associated occurrence of widespread hydro-
thermal fluid activity (Kumar et al. 2017; Wang et al. 2017), 
oceanic anoxic events (Schlanger and Jenkyns 1976; Scholle 
and Arthur 1980; Jenkyns 1980, 2010; Li et al. 2016), oce-
anic red beds (Wagreich and Krenmayr 2005; Wang et al. 
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2005; Hu et al. 2006; Neuhuber et al. 2007; Li et al. 2011), 
and the last mass extinction event of the Phanerozoic (Rus-
sell 1982; Skelton et  al. 2003). In China, marine sedi-
ments from the Cretaceous are well exposed on the south-
ern Tibetan Plateau and are considered an ideal target for 
stratigraphical, palaeontological, palaeogeographical, and 
tectonic studies (Chen et al. 1993). Recently, detailed inves-
tigations on the Lower Cretaceous sedimentary archives 
of southern Tibet have focused on the local and regional 
bio- and lithostratigraphy, sea-level changes, and the palaeo-
environmental, palaeobiological, and tectonic evolution of 
this area (Hu et al. 2008; Zhou et al. 1997; Liu and Li 2012; 
Yang et al. 2015; An et al. 2017; Huang et al. 2018). How-
ever, these studies have been centred on a geographically 
limited region in the Gyangzê, Kamba (Gamba), and Dingri 
(Tingri) areas (Fig. 1b) (Yu et al. 1983; Xu and Mao 1992; 
Yin and Wang 1998; Wang et al. 2000; Wang et al. 2005; 
Hu et al. 2006; Yue et al. 2003, 2006; Xia et al. 2008; Chen 
et al. 2008; Xiong et al. 2010; Gao et al. 2011; Li et al. 2016; 
Zhang et al. 2017; Hu et al. 2017). The few studies that have 

been conducted considering the Rongpo area have provided 
stratigraphical and palaeogeographical constraints and an 
understanding of the fossil biota, sedimentary facies, and 
palaeobiogeography of this region (e.g. Wang 1984; Searle 
et al. 1987; Zhou et al. 2004; Xia et al. 2005, 2008; Cui et al. 
2015). Moreover, it is controversial on the early Cretaceous 
palaeo-environmental conditions in southern Tibet. Previ-
ous study documents that it is an oxic marine environment 
(Xiong et al. 2010), while others suggest it is an anoxic con-
dition (Yue et al. 2006) in southern Tibet. In addition, some 
thought that the carbonates of early Cretaceous in southern 
Tibet deposited on shelf or continental slope facies (Searle 
et al. 1987; Yue et al. 2003; Xia et al. 2008), while others 
considered they deposited on deep ocean (Yu et al. 1983; Li 
et al. 2016). Therefore, it’s necessary to discuss the coeval 
palaeo-environmental conditions in the Rongpo area.

Here, we report comprehensive geochemical analyses 
(major and trace element concentrations and carbon and oxy-
gen stable isotopes) of the Lower Cretaceous argillaceous 
limestones of the Gyabula Formation in the Rongpo region 

Fig. 1  (Colour online) a 
Tectonic units of the Tibetan 
Plateau (simplified from Huang 
et al. 2019); b a sketch map of 
the Himalayan–Tibetan orogen, 
showing the location of the 
study area (modified after Hu 
et al. 2008; Lang et al. 2018)
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and provide constraints on the Rongpo depositional environ-
ment and tectonic evolution in Early Cretaceous, which is 
significant in shedding light on the palaeo-environmental 
and tectonic setting of the Lower Cretaceous successions of 
southern Tibet along the eastern Neo-Tethys.

Geologic setting and stratigraphy

The study area is located in the Tibet (southern Tibet) of 
southwest China (Fig. 1a). The Tibetan Plateau, which is 
located in the eastern part of the Tethys tectonic domain, 
is mainly composed of four continental terranes. From 
north to south, these are the Songpan-Garze (Songpan-
Ganze), Changtang (Qiangtang), Lhasa, and Himalaya ter-
ranes, which are divided by the Jinsha suture zone (JSSZ), 
the Bangonghu suture zone (BSZ), and the Indus-Yarlung 
Zangbo suture (IYZS), respectively (Fig. 1a) (Yin and Har-
rison 2000; Huang et al. 2019). The Himalaya is located 
between the Main Boundary Thrust (MBT) to the south 
and the Indus-Yarlung Zangbo suture (IYZS) to the north. 
It consists of three tectonic entities from north to south, the 
Tethyan Himalaya (TH), the Greater Himalaya (GH), and the 
Lesser Himalaya (LH), which are separated by the South-
ern Tibet Detachment System (STDS) and the Main Central 
Thrust (MCT) (Fig. 1a) (Zhu et al. 2009; Li et al. 2016). 
The Tethyan Himalaya (Gansser 1964) is delimited between 
the Indus-Yarlung Zangbo suture (IYZS) and the Southern 
Tibet Detachment System (STDS) (Fig. 1a). Tectonically, 
the Tethyan Himalaya belongs to the Indian continental plate 
(northern Gondwanaland) and is subdivided into two zones 
by the Tingri-Gamba Thrust (TGT), i.e. the northern zone 

and the southern zone (Fig. 1b) (Hu et al. 2008; Wang et al. 
1996).

The study area is in the Rongpo region (N28°40′–28°50′, 
E90°45′–91°30′), which belongs to the Tethys Himalaya 
North Zone (Fig. 1b). It is located approximately 25 km 
southeast of Nanggarzê town, which lies within the Shan-
nan Prefecture in the southern part of the Xizang Autono-
mous Region in southwest China. Mesozoic strata are widely 
developed and exposed in this region, including the Middle 
Jurassic Zhela Formation  (J2z), the Upper Jurassic Weimei 
Formation  (J3w), the Upper Jurassic–Lower Cretaceous 
Sangxiu Formation  (J3–K1s), the Lower Cretaceous Gyabula 
Formation  (K1j), and the Upper Cretaceous Zongzhuo For-
mation  (K2z) (Fig. 2).

The Lower Cretaceous Gyabula Formation is the domi-
nant succession in this region with extensive outcropping 
deposits (Fig. 2). Regional folds in this area suggest that 
the strata in the Gyabula Formation formed along a north-
west–southeastern orientation. The Gyabula Formation 
conformably follows the underlying Upper Jurassic–Lower 
Cretaceous Sangxiu Formation  (J3–K1s) and has an angu-
lar unconformity with the overlying Upper Cretaceous 
Zongzhuo Formation  (K2z), due to the local structures 
and movements that result from faulting (Fig.  2). The 
Sangxiu Formation is a rock association that is composed 
of basic–intermediate volcanic rocks, pyroclastic rocks, and 
argillaceous rocks.

The lithology of the Gyabula Formation is a complex 
association of primary dark grey shales and mudstones, sec-
ondary marlstone, limestone, and yellow greyish siltstone, as 
well as sandstone, which alternate with thin silty mudstones 
and muddy siltstones, as well as argillaceous and sandy 
lenses. The dark grey shales, which are interbedded with 

Fig. 2  (Colour online) Regional geological map of the study area, including the location of the sampled profile
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mudstones and limestones, developed horizontal beddings 
(Fig. 3a–c), leading to lamellation and slight ferritization 
on the weathered surface of the shale. Belemnite fossils are 
predominant in the black-grey shales, and ammonite fossils 
also occur in some of the outcrops studied; however, the 
latter are poorly preserved.

Limestones are mainly found interbedded between 
mudrocks and shales, sometimes appearing as lenticles 
in the shale. The unweathered limestones (Fig. 3d–f) are 
marked by a microcrystalline texture under the micro-
scope (Fig. 3g–h) and are grey to dark grey in colour, 
while the weathered surfaces of the limestones are marked 
by a grey brownish colour. The limestone mainly consists 
of microcrystaline calcite in the form of subhedral grains 
(approximately 0.03 mm in diameter), which account for 
approximately 80% of the matrix. The limestone facies 

contain some bioclasts, as well as fossil algae and gastro-
pods. The remaining 20% of the matrix is composed of 
irregular tiny micrite grains and minor argillaceous impu-
rities (Fig. 3g–h).

The fossils that were reported in the Gyabula Forma-
tion include ammonites, such as Thurmanniceras, Sub-
thurmannia, Sarasinella, Calliptychoceras, Kilianella, 
Neocomites, Blanfordiceras, Spiticeras, Eulytoceras, 
Pseudohaploceras, Oxytropidoceras, Beudanticeras, and 
Douvilleiceras cf. mannilatum; bivalves, such as Inocera-
mus (Mytiloides) everesti; and brachiopoda, such as Per-
egrinella multicarinata. These fossil biota are indicative 
of the Berriasian and Albian aspects of this formation. 
Therefore, the age of the Gyabula Formation is biostrati-
graphically limited to within the Early Cretaceous (Ber-
riasian and Albian) (Xia and Liu 1997).

Fig. 3  (Colour online) Macro- 
and microphotographs of the 
Gyabula Formation: a–f outcrop 
photos of the Gyabula Forma-
tion; g–h plane and cross-polar 
images of the limestone micro-
sections studied here
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Sampling and analytical methods

The limestone samples were collected from three strati-
graphic sections (profile 101, profile 108, and profile 205) 

which comprise the Lower Cretaceous Gyabula Formation 
in the Rongpo area (Fig. 4 and Table 1), based on the sam-
pling strategies of fresh limestone outcrops. The collected, 

Fig. 4  Stratigraphic section and sample intervals in the Gyabula Formation of the Rongpo area
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Table 1  Major element (×  10−2), trace element (×  10−6), and REE (×  10−6) data from the limestones in the Gyabula Formation

Samples (limestones) P10139B03 P10153B01 P10159B01 P10832B01 P10839B01 P20538B01 P20565B01

Major elements (×  10−2)
SiO2 30.77 12.52 6.46 25.39 19.58 18.20 22.16
TiO2 0.47 0.22 0.19 0.64 0.72 0.49 0.83
Al2O3 4.57 2.65 1.94 5.43 5.42 4.12 6.17
TFe2O3 5.68 1.51 0.89 3.48 2.94 2.75 3.72
MnO 0.35 0.08 0.11 0.44 0.74 0.64 0.94
MgO 1.27 1.33 0.98 0.82 0.83 0.62 0.73
CaO 29.82 43.45 48.79 33.37 36.52 37.36 33.28
Na2O 0.38 0.95 0.86 1.26 2.15 1.03 1.72
K2O 0.34 0.23 0.08 0.54 0.23 0.44 0.65
P2O5 0.22 0.28 0.15 0.10 0.12 0.13 0.16
LOI 25.95 36.28 39.34 28.36 30.54 33.56 29.13
Total 99.84 99.49 99.79 99.83 99.78 99.35 99.48
m 27.90 50.21 50.51 15.11 15.23 15.04 11.77
Trace elements (×  10−6)
V 63.0 29.3 40.1 100 80.0 64.1 89.7
Cr 46.6 20.1 21.1 63.4 72.3 51.7 77.6
Co 11.1 4.87 8.94 10.1 10.2 9.83 11.4
Ni 41.2 10.8 6.93 22.2 14.1 16.4 21.3
Cu 29.0 7.42 7.75 15.8 11.2 15.6 12.9
Ga 5.93 3.90 1.45 8.01 5.83 6.28 9.46
Rb 14.7 9.05 3.50 19.4 8.38 21.1 27.2
Sr 393 427 584 1032 594 396 412
Y 18.0 6.47 9.51 14.9 14.0 14.9 15.7
Zr 77.0 90.0 38.3 98.7 68.6 85.5 122
Nb 12.0 6.77 3.65 9.92 6.10 10.2 13.5
Cd 0.05 0.03 0.03 0.03 0.05 0.03 0.05
Cs 0.72 0.54 0.23 0.98 0.38 1.06 1.14
Ba 297 69.3 49.0 110 103 126 111
Hf 2.53 2.79 1.19 1.82 1.80 2.81 3.59
Ta 0.69 0.39 0.20 0.57 0.37 0.47 0.69
Pb 5.77 4.32 2.79 5.83 3.90 7.10 8.74
Th 3.38 2.60 1.18 2.84 1.60 3.03 3.47
U 0.63 0.27 0.21 0.58 0.34 0.65 0.62
Mn 2742 606 824 3423 5735 4924 7260
Sr/Ba 1.32 6.16 11.92 9.38 5.75 3.15 3.71
Mn/Sr 6.98 1.42 1.41 3.32 9.66 12.43 17.63
Zr/Y 4.28 13.91 4.02 6.63 4.90 5.73 7.78
V/(V + Ni) 0.60 0.73 0.85 0.82 0.85 0.80 0.81
Rear earth elements (×  10−6)
La 20.3 12.6 11.1 26.8 19.4 26.0 33.9
Ce 37.1 25.3 23.4 57.9 32.9 53.0 64.5
Pr 4.00 3.07 2.70 6.90 3.73 6.58 7.90
Nd 18.5 13.7 12.4 31.5 16.8 29.1 34.3
Sm 3.82 2.58 2.78 5.82 3.38 5.50 6.01
Eu 1.44 0.68 0.90 2.01 1.15 2.11 1.86
Gd 3.69 2.10 2.52 4.86 3.11 4.45 4.99
Tb 0.57 0.29 0.39 0.70 0.49 0.61 0.69
Dy 2.81 1.24 1.76 3.05 2.48 2.69 3.13
Ho 0.53 0.22 0.30 0.53 0.46 0.46 0.53
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non-weathered limestone samples were cut in the lab in 
order to examine the microstructure.

The major and trace elements, as well as rare earth 
element (REE) concentrations, were analysed at the Test 
Center of the Southwest Metallurgical Geology Institute in 
Chengdu, China. The major element contents were tested 
using an AxiosX fluorimeter with the GB/T14506.28–2010 
and DZG20-02 as reference standards (with an analytical 
precision of ± 1%). Trace elements were analysed using an 
iCAP6300 simultaneous spectrometer and the NexLON 
300 × ICP-MS and AxiosX fluorimeter, with DZG20-02 
and DZG20-06 as reference standards. The REEs were 
determined using a NexLON 300 × ICP-MS and are 
reported relative to the DZG20-06 standard. Based on the 
regular analyses of the reference standards, the analysis 
of the trace elements and REEs comprises an error < 2% 
error. All tests were conducted at laboratory conditions of 
23 ºC and 59% humidity.

The carbon (δ13CCarb) and oxygen (δ18OCarb) isotope 
values of the carbonate rock samples were analysed at the 
Geology Testing Center for Nuclear Industry in Beijing 
and the Experimental Technologies Center of Nanjing 
Institute of Geology and Palaeontology, Chinese Academy 
of Sciences, Nanjing, using a MAT-253 Gas Isotope Ratio 
Mass Spectrometer, using the phosphoric acid method 
(DZ/T 0184.17–1997), with an analytical precision of 
δ13CV-PDB ± 0.1‰ and δ18OV-PDB ± 0.2‰ in Beijing, and 
with standard errors less than 0.04‰ (δ13CV-PDB) and 
0.08‰ (δ18OV-PDB) respectively.

Results

Major elements

The results of major, trace, and REE concentrations in 
the studied samples are summarized in Table  1. The 

TFe2O3 =  Fe2O3 (wt%) + 1.111*FeO (wt%)
LOI = loss on ignition
m = (100 × MgO) /Al2O3

δEu = [Eu/(0.67Sm + 0.33 Tb)] PAAS

δCe = [Ce/(2Pr-Nd)] PAAS

δLa = [La/(3Pr-2Nd)] PAAS

δGd = [Gd/(2 Tb-Dy)] PAAS

δPr = [2Pr/(Ce + Nd)] PAAS

Ceanom = log [3Cen /(2Lan + Ndn)]
LREEs including La, Ce, Pr, Nd; HREEs including Ho, Er, Tm, Yb, Lu, plus Y
L/H = LREEs/REEs

Table 1  (continued)

Samples (limestones) P10139B03 P10153B01 P10159B01 P10832B01 P10839B01 P20538B01 P20565B01

Er 1.36 0.59 0.79 1.44 1.24 1.26 1.43
Tm 0.18 0.07 0.10 0.17 0.16 0.19 0.20
Yb 1.35 0.63 0.71 1.37 1.38 1.11 1.12
Lu 0.17 0.06 0.09 0.15 0.14 0.16 0.17
δEu 1.90 1.45 1.67 1.86 1.72 2.11 1.69
δCe 1.30 1.09 1.20 1.15 1.17 1.05 1.04
δLa 1.99 1.41 1.59 1.46 1.81 1.32 1.34
δGd 0.90 0.93 0.87 0.91 0.91 0.94 0.97
δPr 0.89 0.96 0.92 0.94 0.93 0.98 0.98
Y/Ho 34.12 29.48 31.77 28.02 30.59 32.34 29.28
(La/Yb)PAAS 1.11 1.48 1.15 1.44 1.04 1.74 2.23
(La/Ce)PAAS 1.14 1.04 0.99 0.97 1.23 1.02 1.09
(Pr/Yb)PAAS 0.95 1.55 1.21 1.60 0.86 1.90 2.25
(Pr/Sm)PAAS 0.66 0.75 0.61 0.74 0.69 0.75 0.83
(Sm/Yb)PAAS 1.44 2.08 1.99 2.15 1.24 2.53 2.72
Ceanom  − 0.06  − 0.05  − 0.03  − 0.03  − 0.09  − 0.05  − 0.06
∑REE 113.82 69.61 69.42 158.19 100.74 148.17 176.37
L/H 3.70 6.80 4.32 6.64 4.18 6.34 7.35
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 SiO2 and CaO contents change greatly in the profiles that 
comprise the Gyabula Formation (profiles 101, 108, and 
205) (Fig. 4), with 6.46–30.77%  SiO2 and 29.82–48.79% 
CaO. Smaller variations were observed in the  Al2O3 and 
total  Fe2O3  (TFe2O3) concentrations, at 1.94–6.17% and 
0.89–5.68%, respectively. The concentrations of other 
oxides, such as MgO,  K2O,  Na2O,  P2O5,  TiO2, and MnO, 
vary only slightly between samples.

Trace elements

The Sr/Ba ratio in the studied limestone samples var-
ies in the range of 1.32–11.92 (Fig. 6b), with an average 
value of 5.91 ± 1.29. The Mn/Sr ratio varies in the range of 

1.41–17.63 (Fig. 5a), with an average value of 7.55 ± 2.14. 
The Zr/Y ratio varies in the range of 4.02–13.91, with an 
average value of 6.75 ± 1.20. The V/(V + Ni) ratio varies in 
the range of 0.60–0.85 (Fig. 6c), with an average value of 
0.78 ± 0.03 (Table 1).

Rare earth elements

The REE + Y concentrations of all the limestones presented 
in Table 1 are normalized to the Post-Archaean Australian 
Shale (PAAS) composite (McLennan 1989). The anomalies 
associated with the lanthanum (La), cerium (Ce), europium 
(Eu), and gadolinium (Gd) elements were calculated, respec-
tively, using the equations:

Fig. 5  (Colour online) a Ratios of Mn/Sr of the studied samples, evaluating the primary δ13C abundances in the limestones of Rongpo area; b 
correlation of δ13CPDB and δ18OPDB values of samples from the studied profile, showing weak covariation

Fig. 6  (Colour online) a m = (100 × MgO)/Al2O3 values from the 
limestone samples of the Rongpo area; b ratios of Sr/Ba of the Lower 
Cretaceous limestones that suggest a marine depositional environ-
ment for the Rongpo area; c ratios of V/(V + Ni) in the limestone 

samples studied, suggesting a relatively reduced marine depositional 
environment in the Rongpo area; the dashed line marks the indicator 
value mentioned in this paper
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La/La* = [La/(3Pr-2Nd)]PAAS; Ce/Ce* = [Ce/(2Pr-
Nd)]PAAS; Eu/Eu* = [Eu/(0.67Sm + 0.33 Tb)]PAAS; and Gd/
Gd* = [Gd/(2 Tb-Dy)]PAAS (Bolhar et al. 2004; Frimmel 
2009).

The total REE contents in the limestone samples fall in 
the range 69.42 ×  10−6 to 176.37 ×  10−6. The limestones 
of the Gyabula Formation are predominantly light REE 
(LREE)-enriched rather than middle REE (MREE) or 
heavy REE (HREE)-enriched ((Pr/Yb)PAAS = 1.48 ± 0.18; 
(Pr/Sm)PAAS = 0.72 ± 0.02; and (Sm/Yb)PAAS = 2.02 ± 0.19). 
Ce is showing moderately positive anomalies (Ce/
Ce* = 1.15 ± 0.03); Eu shows strong positive anomalies 
(Eu/Eu* = 1.77 ± 0.07). La displays positive anomalies (La/
La* = 1.56 ± 0.09), and Gd shows minor negative anomalies 
(Gd/Gd* = 0.92 ± 0.01).

Carbon and oxygen isotopes

The bulk rock carbon and oxygen isotope values of the stud-
ied limestone samples of the Gyabula Formation in the Ron-
gpo area are all summarized in Table 2. The oxygen isotope 
PDB standard is also converted to the SMOW standard fol-
lowing the formula given by Coplen et al. (1983) (δ18OPDB 
(‰) = (0.97002 × δ18OSMOW) − 29.98).

The δ13CCarb values of samples from profile 101 range 
from − 10.9 to − 9.4‰, while the samples in profile 205 
(Table 2) present δ13CCarb values from − 13.2 to − 10.1‰. 
The δ18OCarb values vary from − 12.6 to − 11.0‰ in profile 
101, while those in profile 205 vary from − 12.9 to − 11.1‰. 
The δ13CCarb and δ18OCarb values in profile 108 are − 4.5‰ 
and − 10.5‰ respectively. Relative to the nearby Gyangzê 
region (Hu, unpub. Ph.D. thesis, Chengdu University of 

Technology, 2002), the samples studied here demonstrate more 
negative carbon and oxygen isotope values (Table 2).

Discussion

Evaluating the validity of geochemical data 
of samples

Before discussing the relationship between the geochemi-
cal data and environmental, as well as tectonic implications, 
it’s necessary to evaluate the diagenetic effects on these data. 
Through microscopic observation on thin sections, we choose 
these samples without micro-cavities/cracks and dolosparite 
in the rocks (Fig. 3g–h), which indicate that they are not obvi-
ously affected by the post-depositional alteration of diagen-
esis. Mn/Sr ratios were sometimes used as an indicator of 
diagenetic alteration in carbonates (Brand and Veizer 1980; 
Derry et al. 1992, 1994). From the Gyabula Formation, the 
Mn/Sr ratios of samples (except two samples, P20538B01 and 
P20565B01) are less than 10 (Fig. 5a), which indicate that 
most of our samples retain primary δ13C abundances. How-
ever, the Mn/Sr ratio is not always a good choice to trace the 
diagenetic alteration, for the samples even with higher Mn/Sr 
values (greater than 10) can still keep the relative abundances 
of δ13C which reflect their related geochemical information 
(Li et al. 2009, 2013; Derry 2010). Hence, the covariation 
of the δ13C and δ18O values is used to evaluate the potential 
geochemical impact of diagenesis on bulk rock geochemistry 
(Veizer et al. 1999; Wynn and Read 2007). Usually, samples 
with δ18O values below –10‰ were thought to be affected by 
diagenesis. All of the δ18O values of the studied samples are 
less than –10‰. However, the C-O cross-plots of the studied 
samples from Rongpo show very weak covariation between 
δ13C and δ18O (Fig. 5b), which suggest that the carbon isotope 
composition of the studied samples has likely only been altered 
to minimal extent, if at all, likely representing the original iso-
topic information of seawater during deposition in Rongpo 
area of southern Tibet.

Lower Cretaceous sedimentary/depositional 
environments of the Eastern Tethys

Marine environment

The Early Cretaceous palaeo-environment in the Eastern 
Tethys, as recorded in the marine sedimentary successions 
of southern Tibet, is generally marked by oxygenated depo-
sitional conditions (e.g. Xiong et al. 2010) but also shows 
the occasional development of anoxic conditions (e.g. Yue 
et al. 2006). The geochemical analyses of the limestones of 
the Gyabula Formation in the Rongpo area presented in this 
study (Table 1) provide insight into local palaeo-environ-
mental conditions during the Early Cretaceous.

Table 2  δ18O and δ13C data from the limestones of the Gyabula For-
mation in the Rongpo area

Area Sample Lithol-
ogy

δ13C δ18O

(PDB, 
‰)

(PDB, 
‰)

(SMOW, 
‰)

Rongpo P10139B03 Lime-
stone

 − 9.4  − 11.4 19.2

P10139-N01 Lime-
stone

 − 9.4  − 12.6 17.9

P10139-N02 Lime-
stone

 − 10.9  − 11.0 19.6

P10139-N03 Lime-
stone

 − 9.4  − 12.4 18.1

P10839B01 Lime-
stone

 − 4.5  − 10.5 20.0

P20538B01 Lime-
stone

 − 13.2  − 12.9 17.6

P20565B01 Lime-
stone

 − 10.1  − 11.1 19.5
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In modern sediments, m values (where the m value is 
defined as m = (100 × MgO)/Al2O3) have an exponential 
relationship to the average (bottom) seawater salinity in a 
depositional environment, which increases alongside the 
water salinity (Zhang 1988; Zhang and Chen 1991; Jing 
et al. 2005). The m value of the limestone samples from the 
Gyabula Formation ranges from 11.77 to 50.51 (Table 1, 
Fig. 6a). m values that lie within the range of 10 (dashed 
line in Fig. 6a) to 500 may indicate a marine depositional 
environment (Zhang 1988; Jing et al. 2005), thus implying 
that these limestones likely formed under marine deposi-
tional conditions.

The concentration of trace elements and their relative 
abundance (or ratios) can also be suggestive of conditions 
in the depositional environment, changes in the relative sea 
level, and sedimentary provenance (Zhao 1989; Deng and 
Qian 1993; Yang et al. 2009). The ratio between the sedi-
mentary concentrations of strontium (Sr) and barium (Ba), 
given as the Sr/Ba ratio, may be indicative of the depth of 
the water column, salinity, and/or the proximal vs distal 
nature of the depositional area, with Sr/Ba > 1 reflecting a 
marine environment, and Sr/Ba < 1, reflecting a terrestrial 
environment (assuming no diagenetic processes impacting 
on the original elemental composition of the host rock) (Jing 
et al. 2005; Yang et al. 2009). The average Sr/Ba values of 
the limestones in the Gyabula Formation are approximately 
5.91 ± 1.29, which is indicative of a marine environment 
(Table 1; Fig. 6b). Furthermore, the depositional environ-
ment of the Gyabula Formation is marine, which is also 
testified by fossils, such as ammonites, bivalves, brachiopo-
das, and calcareous nannofossils (Wang et al. 2000; Zhou 
et al. 2004; Xia et al. 2008; Gao et al. 2011) and sequence 
stratigraphy (Chen et al., 1993; Cui et al. 2015).

Redox state of the depositional environment

The abundance of vanadium (V) relative to nickel (Ni), 
defined as the V/(V + Ni) ratio, can be indicative of the pre-
vailing redox conditions in the depositional environment 
(Hatch and Leventhal 1992; Jones and Manning 1994). A 
sedimentary V/(V + Ni) ratio that is equal to or greater than 
0.46 may suggest a reduced depositional environment, while 
a ratio lower than 0.46 may suggest an oxidized depositional 
environment. The V/(V + Ni) ratios of the studied Lower 
Cretaceous limestones in the Rongpo area are all above 0.46, 
suggesting a relatively reducing depositional environment 
(Fig. 6c). Organic-rich black shales are often deposited in 
a reducing depositional environment. The abundant coeval 
black or grey-black shales interbedded with the limestones 
of the Gyabula Formation in the Rongpo region provide 
further lithological evidence for predominantly reducing 
depositional conditions.

Limestones record the REE signatures of seawater in 
which they were precipitated (Nothdurft et al. 2004). The 
concentration of REEs in seawater is controlled by differ-
ent input sources (such as terrestrial input from continental 
weathering and hydrothermal input) and scavenging pro-
cesses that are related to depth, salinity, and oxygen levels 
(Elderfield 1988; Piepgras and Jacobsen 1992; Bertram 
and Elderfield 1993; Greaves et al. 1999). The distinctive 
character of the seawater REE pattern reflects the largely 
uniform trivalent behaviour of the elements (except Ce 
and Eu, which vary with oxygen levels) and the estuarine 
and oceanic scavenging processes (Nothdurft et al. 2004; 
Bolhar and Van Kranendonk 2007). However, the valence 
state of Eu and Ce can easily be affected by changes in the 
redox state of the depositional environment or the sedimen-
tary pore space. Therefore, the sedimentary concentration 
of Eu and Ce is often fractionated from the other REEs 
(Nothdurft et al. 2004; Bolhar and Van Kranendonk 2007; 
Zhai et al. 2015).

The Ce anomaly has been used as an indicator of the 
redox state of the water column (e.g. de Baar 1983). Frac-
tionated by the co-precipitation of metallic oxides under 
oxidizing conditions, Ce presents a negative anomaly in 
seawater (Wright et al. 1987). Conversely, under reduc-
ing conditions, Ce shows a positive anomaly in the REEs 
patterns of seawater. Therefore, variations in the sedi-
mentary Ce concentrations can be used to estimate the 
redox state of the water column overlying the deposi-
tional environment. In this study, PAAS-normalized Ce 
displays moderate positive anomalies (with average values 
of 1.15 ± 0.03) (Table 1). Meanwhile, Wright et al. (1987) 
used a mathematical formula to constrain the enrichment 
or depletion factor of Ce as relative to La and Neodymium 
(Nd), defined by  Ceanom = log  [3Cen/(2Lan +  Ndn)]. In the 
formula,  Cen,  Lan, and  Ndn are normalized to chondritic 
values or to the North American Shale Composite Stand-
ard (Gromet et al. 1984). Sediments with  Ceanom <  − 0.1 
are thought to represent formation in an oxidizing deposi-
tional environment, while sediments with  Ceanom >  − 0.1 
are indicative of reducing depositional conditions (Wright 
et al. 1987; Nan et al. 1998). The  Ceanom values of the 
samples from the Lower Cretaceous Gyabula Formation 
in southern Tibet are all above − 0.1 (− 0.09 to − 0.03, nor-
malized to North American shale), further suggesting a 
reduced sedimentary/depositional environment, which is 
in agreement with the V/(V + Ni) values observed in the 
same samples.

Additionally, the distinctly positive Eu anomaly (Eu/
Eu* = 1.77 ± 0.07) also indicates an anoxic depositional 
environment as it is caused by the reaction in which  Eu3+ is 
reduced to  Eu2+, replacing the  Ca2+ ions in the limestone.
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Tectonic setting

Non‑open ocean environment

Limestone geochemical studies were used to discrimi-
nate the tectonic setting of the basin in which the studied 
limestones are formed. The ratios of La/Ce, Ce/Ce*, Zr/
Ti, and La/Sc in the limestones can be used as proxies to 
distinguish between the major tectonic and depositional 
environmental settings, such as oceanic plateaus, active 
or passive continental margins, and continental interior 
freshwater basins (Zhang et al. 2017). The REE and trace 
element geochemistry of the studied limestones were used 
to identify the tectonic setting of the Rongpo region, as 
compared to adjacent regions, such as Xigazê (Xigaze) 
(QB), Dingri (Tingri) (GB), Gêrzê (GZ), Coqên (WGZ), 
and Baishi (D1030).

The elements yttrium (Y) and holmium (Ho) have 
similar ionic radii and oceanic distributions. Owing to 
the differences in the complexation behaviour of these 
elements in seawater-derived inorganic ligands (mainly 
carbonate ions) on the surface of particulate matter, the 
present-day oceanic residence-time of Y in the global 
ocean is nearly twice as long as Ho (Nozaki et al. 1997). 
The fractionation of Y and Ho during weathering and 
the fluvial transport flux to the global ocean appears to 
be of minor influence on the relative abundance of Y 
and Ho in global seawater (Nozaki et al. 1997). How-
ever, Y is less effectively scavenged from seawater than 
any of the trivalent REEs. Therefore, the Y/Ho ratio in 
seawater is higher compared to freshwater environments 
(Nozaki et al. 1997). The limestones of the Rongpo area 
that are investigated in this study exhibit Y/Ho values 
of 30.80 ± 0.73, which are slightly higher than the value 
of PAAS (with Y/Ho values of 27.25) but much lower 
compared to the Y/Ho ratio of 60–90 in present-day 
global seawater (Frimmel 2009; Lawrence et al. 2006). 
Continental and marginal marine limestones also have 
different Ce/Ce*, (La/Yb)PAAS, and (La/Ce)PAAS values 
compared to limestones that have formed in open marine 
environments (Fig. 7) (Zhang et al. 2017). The geochemi-
cal characteristics of the studied Lower Cretaceous lime-
stones of the Rongpo area suggest that they formed in a 
non-open marine environment.

La, Ce, and praseodymium (Pr) anomalies, which are 
typically calculated as Ce/Ce* = [Ce/(0.5La + 0.5Pr)]PAAS 
and Pr/Pr* = [2Pr/(Ce + Nd)]PAAS (Van Kranendonk et al. 
2003), can also be indicative of the conditions in the dep-
ositional environment. In our samples, both La and Ce 
show positive anomalies, which is in contrast with the 
typical REE signatures observed in open marine and non-
marine (lagoonal) limestones (Fig. 8). Marine chemical 

sediments mainly show seawater-like REE + Y patterns 
(Nothdurft et  al. 2004; Bolhar and Van Kranendonk 
2007), which are characterized by light REE (LREE) 
depletion relative to heavy REEs (HREEs), a positive La 
anomaly, a negative Ce anomaly (de Baar 1991; Bau and 
Dulski 1996), and slight enrichments of Gd and Y in shale 
normalized diagrams (Zhang and Nozaki 1996; Bau 1996; 
Bau and Dulski 1996; Bolhar et al. 2004; Frimmel 2009). 
Additionally, observed seawater Y/Ho ratios are distinc-
tively high (e.g. Bau 1996). In contrast, the samples from 
the Rongpo area are relatively rich in light REEs and have 
a slightly positive Ce and weakly negative Gd anomalies. 
Combined, this suggests that the samples in this study 
formed in a non-open marine sedimentary or depositional 
environment.

Passive margin

Limestones that formed in different tectonic and/or depo-
sitional settings can have different REE concentrations 
and signatures (Fig. 9), even the limestones from the same 
plate tectonic setting also have obvious undulation of REE 
concentrations but exhibit generally similar REE patterns 
(Zhang et al. 2017). Combined (Figs. 7 and 9b), we know 
that all our samples fall into the “Inland + Margin” area. 
In Fig. 9a–f, among the normalized REE + Y patterns pas-
sive margin (Fig. 9d) and Inland (Fig. 9e), it’s easy to 
find that the patterns of the study samples (Fig. 9f) are 
similar to the main trend of passive margin(Fig. 9d), with 
obviously positive Eu anomaly and LREE enrichment. 
Therefore, based on our results, and in comparison to the 
REE signatures of adjacent regions, the Lower Cretaceous 
limestones of the Gyabula Formation in the Rongpo area 
likely formed in a similar setting as those in the Din-
gri (Tingri) region, which is located on a passive margin 
(Fig. 9a–f). Although the Xigazê (Xigaze) region is geo-
graphically closer to the present study area than Dingri 
(Tingri) (Fig. 1), the REE + Y patterns of limestone sam-
ples from Xigazê (Xigaze) are quite different from that 
of Rongpo, especially the relative concentrations of Eu 
and Y (Fig. 9a and f).

The Dingri (Tingri) region belongs tectonically to the 
southern zone of the Tethyan Himalaya, while the Rongpo 
region tectonically belongs to the northern zone. As they dem-
onstrate similar REE + Y patterns (Fig. 9d and f), their depo-
sitional environments may have experienced similar tectonic 
and/or depositional settings on the Early Cretaceous passive 
margin. In the Early Cretaceous, a relatively stable environ-
ment may have developed along this passive margin in the 
Rongpo area, which may have enabled the formation of exten-
sive marine grey-black shales and mudrocks, alternating with 
limestones, at the time.
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Influence of hydrothermal fluids

Eu anomalies

Eu generally shows a strong positive anomaly (Eu/Eu* 
PAAS = 1.77 ± 0.07) in limestone sediments, because the 
reduction of  Eu3+ to  Eu2+ allows  Eu2+ to be replaced with 
 Ca2+ (Zhai et al. 2015). Several causes have been identified 
to explain the Eu anomalies that are found in sedimentary 

rocks, including the mixing of hydrothermal fluids (Bau 
and Dulski 1999; Danielson et al. 1992; Derry and Jacob-
sen 1990; Michard et al. 1983), the mixing of Eu-rich water 
that is leached from weathered rocks near the sedimentary 
source, or the formation of Eu and Fe hydroxide complexes 
(Van Kranendonk et al. 2003). However, no obvious correla-
tion is observed between the positive Eu anomalies and the 
Fe hydroxides in the limestone samples (Table 1). Based on 
the data collected in this study (six sandstone samples from 

Fig. 7  (Colour online) Ce/Ce* 
vs (La/Yb)PAAS (a) and (La/
Ce)PAAS (b) in the Lower Cre-
taceous limestones deposited in 
the Rongpo area
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the Gyabula Formation with Eu average 0.82 ± 0.09 are nor-
malized by chondrite (Boynton 1984; Ding et al. unpub.), no 
positive Eu anomaly is apparent in the clastic rocks of the 
studied formation, which indicates that the clastic rocks were 
not contaminated with water containing large amounts of Eu 
that was sourced from continental weathering, affecting the 
sedimentary process. Therefore, we infer that the positive 
Eu anomaly in the limestones was not caused by the mixing 
of basin waters with Eu-enriched waters from leached Eu-
enriched lithologies in the sedimentary source area. This 
leaves the possibility that the observed Eu anomalies reflect 
a supply of hydrothermal fluids. Probably, the hydrother-
mal fluids could provide the reduced gas, e.g.  H2S and  CH4, 
except for carbon source, which make  Eu3+ reduced to  Eu2+ 
and replace the  Ca2+ ions in the limestone.

Rocks affected by hydrothermal fluid migration typically 
show similar REE signatures (Michard 1989), with positive 
Eu anomaly, enrichment of LREEs relative to the HREEs, 
and positive Y anomaly (Klinkhammer et al. 1994; Douville 
et al. 1999; Wheat et al. 2002). Interestingly, the REE + Y 
distribution pattern of the limestones in the Rongpo area 
(Fig. 10a) shows similar patterns to those of hydrothermal 
fluids (Fig. 10b), including a strongly positive Eu anomaly 
and positive Y anomaly. Because of this, the positive Eu 
anomaly observed in the limestone samples investigated in 
this study may have resulted from mixing with hydrothermal 
fluids.

The occurrence of Lower Cretaceous volcaniclastic sand-
stones (unweathered volcaniclastic grains in the sandstones) 
in the Gucuo region (Fig. 1b) (to the west of the Rongpo 

area) (Powell et al. 1988; Patzelt et al. 1996; Chen et al. 
2007; Hu et al. 2008) and mafic magma from the Early Cre-
taceous, such as the Comai (Comei) LIP (Zhu et al. 2009; 
Huang et al. 2018, 2019), is extensive within the Tethyan 
Himalayan belt. This suggests that magma activity or hot-
spots occurred during the Early Cretaceous, likely accom-
panied by extensive hydrothermal fluid systems. The hot-
spots have been indeed found in the eastern margin of Indian 
Plate in Cretaceous (Li and Jiang 2013). The Comai (Comei) 
LIP (N28° − 29°, E90°30′ − 92°), including the study area 
(N28°40′–28°50′, E90°45′–91°30′), is an evidence for hydro-
thermal fluid in Early Cretaceous (Zhu et al. 2009).

Carbon and oxygen isotopes

Previous studies have indicated that the carbon isotope val-
ues in the bulk rock carbonates that form in different sedi-
mentary environments can vary distinctly (Rollinson 1993). 
Therefore, the carbon and oxygen isotopes can be applied to 
understand the limestone lithification (Hudson 1977). The 
values of δ18OPDB (and δ18OSMOW) and δ13CPDB of the sam-
ples investigated in this study are plotted in Fig. 11. The red 
points represent the δ18O value of the sample using SMOW 
as the standard, while the blue points represent the δ18O 
value of the sample using PDB as the standard. It shows 
that most of our samples fall within the M-V (Mississippi 
Valley-type deposit) range, representing a range of values 
that are typically associated with low-temperature hydro-
thermal fluids. The Cretaceous hotspot that existed near the 
Comai (Comei) LIP (Li and Jiang 2013) does suggest that 
associated hydrothermal fluids may have impacted the geo-
chemical signatures preserved in the studied samples. The 
Comai (Comei) LIP that was identified in the study area 
and active ~ 132–134 Ma and 136.9–143.5 Ma (Zhu et al. 
2009; Huang et al. 2019) was likely linked to the Kerguelen 
mantle plume. Thermogenic methane, typically marked by 
very negative δ13C values of ~  − 30‰, and likely associ-
ated with the mantle plume and LIP emplacement, may have 
impacted the carbon isotopic composition of the depositional 
environment and sedimentary pore space in which the car-
bonates formed. This likely caused the carbon isotopes in 
the carbonates to be very low, reaching as low as − 27.7‰ 
(Tong and Chen 2012).

Combined with the REE geochemistry of the stud-
ied samples, these results suggest that the composition of 
limestones of the Rongpo area was impacted or affected by 
hydrothermal fluids during its formation.

Furthermore, the negative δ18O values may also be partly 
due to the elevated seawater temperature caused by the high 
temperature at the surface of the sea (Littler et al., 2011) or 
the warmer bottom waters (Wynn and Read 2007) that result 
from the presence of hydrothermal fluid.

Fig. 8  (Colour online) Plot of [Ce/Ce*]PAAS versus [Pr/Pr*]PAAS, 
showing La and Ce anomalies in the studied samples (non-marine 
data from Bolhar et al. 2007; open marine carbonate rocks data from 
Van Kranendonk et al. 2003)
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Evolution of the Upper Jurassic to the Lower 
Cretaceous Himalaya Neo‑Tethys (Rongpo)

In the geological history of the Himalayas, the evolu-
tion of the Neo-Tethys played a critical role in controlling 

stratigraphic deposition (Guo et al., 2013; Liu and Einsele 
1994). The Neo-Tethys formed between the Lhasa block and 
the Indian Plate, beginning with a rift stage during the Trias-
sic (Liu and Einsele 1994). Based on the geochemical analy-
ses of the Lower Cretaceous limestones from the Gyabula 

Fig. 9  (Colour online) PAAS-normalized (McLennan 1989) REE + Y concentrations of limestones that were deposited at various plate tectonic 
settings in Tibet, western China. Data in a–e is from Zhang et al. (2017); data in f is from this study
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Fig. 10  a PAAS-normalized REE + Y patterns for samples from the Gyabula Formation; b modern hydrothermal fluid PAAS-normalized 
REE + Y patterns (cited from Van Kranendonk et al. 2003; Douville et al. 1999)

Fig. 11  (Colour online) δ18O 
(SMOW and PDB scales) vs 
δ13C plot showing the composi-
tion of carbonates from a vari-
ety of environments (Rollinson 
1993, with data from this study)
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Formation, we suggest that the strong negative carbon iso-
tope values of the carbonates from the Rongpo area were 
caused by the presence of (a series of) hotspots and the sea-
level rise triggered by the “oceanic plateaus” (Larson 1991).

The Lhasa Block stabilized during the period from the 
Late Jurassic to the earliest Cretaceous, while the Indian 
Plate continued to move northwards, leading to elevated 
magmatic activity and the emplacement of volcanic rocks 
into the Sangxiu Formation (Zhu et  al. 2005, 2007). 
Throughout the middle and later part of the Early Creta-
ceous, the regional oceanic crust underwent further rifting, 
leading to a maximum extension of the Neo-Tethys around 
110 Ma, as demonstrated by palaeomagnetic data obtained 
from the northern Indian Plate and the Lhasa Plate (Liu and 
Einsele 1994). The U–Pb age dating of zircons from the 
Comai (Comei) igneous rocks in southeastern Tibet indicate 
that the mantle plume started in the Early Cretaceous (Zhu 
et al. 2009). At least two hotspots were found along the Cre-
taceous southern margin of the Indian Plate (Li and Jiang 
2013). The occurrence of these hotspots likely coincided 
with the formation of the studied limestones, suggesting the 
possibility of an impact of hydrothermal fluid systems on 
the chemistry of the depositional environment and studied 
samples.

Correspondingly, the sea-level rise associated with the 
elevated production of the oceanic crust (Larson 1991) likely 
resulted in the rapid burial of organic carbon on enlarged 
continental margins, leading to a sharp relative decrease in 
12C and an increase in the 13C in the seawater over a very 
short time. However, oceanic anoxic events may lead to a 
rapid positive shift in δ13C, superimposed on these longer 
term trends, followed by a longer term trend toward a more 
negative δ13C record which is less sensitive to short-term 
changes (Föllmi et al. 2006).

This oceanic spreading phase may explain the eustatic 
(relative) sea-level rise, during which more extended and 
deeper continental margins enabled the increased sequestra-
tion of organic carbon, locally resulting in the deposition of 
organic-rich black shales and mudstones.

This spreading phase may have allowed deep hydrother-
mal fluids to mix locally with the seawater, resulting in the 
strongly positive Eu anomalies and the abundant  SiO2 (aver-
age value 19.30%) observed in the limestone deposits.

Conclusions

Geochemical analyses were conducted on the Lower Creta-
ceous limestones of the Gyabula Formation from the Rongpo 
area in southern Tibet, including the study of the major and 
trace element concentrations, REE signatures, and the carbon 
and oxygen stable isotopic compositions of these rocks.

The m values calculated by major element, the Sr/Ba 
ratio, and the REE geochemistry (e.g. Ce/Ce*-La/Ybn, 
Ce/Ce*-La/Cen, and Y/Ho) suggest that the studied lime-
stones are deposited in a non-open marine environment. 
The observed Ce anomaly  (Ceanom >  − 0.1) and elevated 
V/(V + Ni) values suggest that these limestones were also 
deposited under anoxic depositional conditions.

Based on the presented REE data, we suggest that a pas-
sive tectonic setting during the Early Cretaceous marked 
the Neo-Tethys. However, large-scale plate movement of 
tectonic blocks of the Indian sub-continent resulted in an 
extensional phase of the Neo-Tethys Ocean and possibly in 
the short-term transgression recorded in the Rongpo area. 
This extensional tectonic phase may have been the ultimate 
cause of magmatic activity at that time, with the associated 
occurrence of hydrothermal fluids, as suggested by the sedi-
mentary geochemical data presented in this study.
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