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Abstract
Evapotranspiration (ET) is a major hydrologic process to assess water budgets in terrestrial ecosystems. Since measurement of
ET may involve labor intensive field technics in large areas, estimation is preferred in most cases. The FAO Penman-Monteith
(PM FAO-56) is a widely recognized reference evapotranspiration (ETo) method for potential evapotranspiration calculations.
The method requires a detailed and comprehensive meteorological data set; however, some empirical methods and models have
attempted to calculate ET with less data. In this study, Makkink (ET_Mak), Hargreaves–Samani (ET_Har), Thornthwaite
(ET_Thor), Blaney–Criddle (ET_BC), and Penman (ET_PM) were tested against the PMFAO-56. Penmanmethod has achieved
the highest accuracy among the empirical methods. In addition, the potential of artificial neural networks (ANN), support vector
machines (SVM), random forest (RF), and multiple linear regression (MLR) for estimating ETo were investigated in a semi-arid
Central Anatolian Region of Turkey. The results obtained with the ANN (based on multi-layer perceptron) and SVM models
performed better than other tested data-driven models and empirical methods. These models could be used most effectively at
elevation range of 850–1000 m. According to our results MLP, SVM, and Penman methods provided good performances in
semi-arid regions in agricultural planning and water resources management studies. Furthermore, we concluded that integrating
maximum temperature may result in improved accuracy in ET model simulations in semi-arid regions.

Keywords Reference evapotranspiration (ETo) .Empiricalmethods .Artificial neural networks (ANN) .Support vectormachines
(SVM) . Random forest (RF) .Multiple linear regression (MLR)

Introduction

Evapotranspiration (ET) plays a key role in water resources
management, agriculture, drought, climate change adaptation,
and ecosystem productivity (Currie 1991). There are various
methods/models to estimate potential evapotranspiration but
most of them give precise outputs for specific climate zones
(Lu et al. 2005). ETp calculated under certain properties can be

regarded as the reference crop ET (ETC). ETc is usually esti-
mated from reference evapotranspiration (ETo), crop, and soil
coefficients. FAO and working group of the International
Commission on Irrigation and Drainage recommended stan-
dardized Penman-Monteith reference evapotranspiration
(ETo) as the potential evapotranspiration for short grass or a
tall reference crop (alfalfa) (Allen et al. 1998). This hypothet-
ical evapotranspiration considers a reference surface with an
assumed crop height of 0.12m, a fixed surface resistance of 70
s/m, and an albedo of 0.23; and the reference surface closely
resembling an extensive surface of green grass of uniform
height, actively growing, well-watered, and completely shad-
ing the ground. The ETo calculation is an important issue for
computing crop irrigation water requirements in agriculture.
The practical value of pan evaporation with empirical coeffi-
cients (relating ETo) has been widely used for 10 days or
longer periods (Allen et al. 1998). Furthermore, many empir-
ical or physically based equations have been developed and
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used to estimate ETo under the climate regime of the country
they were developed. How to choose the appropriate model to
estimate ETo among many evapotranspiration calculations is
generally a major problem, and method selection under the
climatic conditions of the research area is highly subjective
unless certain techniques are used. Generally, empirical ETo

methods can be categorized under six groups: (1) combination
(e.g., Shuttleworth); (2) radiation (e.g., Turc, Priestley and
Taylor, Makking, Abtew); (3) temperature (e.g., Blaney and
Criddle, Hargreaves–Samani, Thornthwaite, Hamon); (4)
mass-transfer based (e.g., Penman, Dalton); (5) water budget
methods (e.g. , Guitjens); and (6) pan evaporation methods
(e.g., Allen et al. 1998). Many studies evaluate the reliability
of these alternative empirical ETo methods for the lack of the
calculated ETo data considering the United Nations Food and
Agriculture Organization (FAO) Penman–Monteith (PM
FAO-56) as the standard method (Table 1). These studies
were conducted for purposes such as the effectiveness, im-
provement, and performance of PM FAO-56 at regional and
global scales. Performances of these ETo models have also
been evaluated under different climate conditions and land
cover. Assumptions and inputs are the most important causes
for having different results of the methods (Maes et al. 2019).

In recent years, interest has grown in testing models for
non-linear relationships. Statistical tests have been pro-
posed in many studies to help analysts check for the pres-
ence of non-linearities in an observed time series. Another
alternative to ETo estimation is the application of data-
driven models. Recently, machine learning models gener-
ated simpler equations and require fewer inputs than the
PM FAO-56 method. Thus, they are potentially good al-
ternatives in ETo calculation. As shown by numerous
studies, machine-learning approaches such as Artificial
Neural Networks (ANN) have been successfully applied
in ETo research (Zanetti et al. 2007; Traore et al. 2010;
Käfer et al. 2020). ANN, which has a nonlinear mathe-
matical structure, trains from the strength of correlation
between input and simulated variables by checking previ-
ous trends (Yurtseven and Zengin 2013).

Sudheer et al. (2003) used radial basis function (RBF)
to simulate crop evapotranspiration (ETc) for rice crops.
The simulated data was compared with the lysimetric da-
ta. The results clearly showed that RBF performed good
(modeling efficiency of 98.2–99.0%) in ETo estimation.
Trajkovic et al. (2003) used a RBF type of ANN and
found that the ANN gives accurate ET0 estimates.
Hashemi and Sepaskhah (2020) also reported the superi-
ority of multi-layer perceptron with sunshine hours and
wind speed and the radial basis function with sunshine
hours. Zanetti et al. (2007) used the multilayer perceptron
for estimating the ETo by using only data from the max-
imum and minimum air temperatures in Brazil.

Machine learning approaches using support vector ma-
chine (SVM) have also been described and evaluated bymany
studies (Wen et al. 2015; Chia et al. 2020; Seifi and Riahi
2020). SVM, which is a useful estimator for practical applica-
tions, has the ability to provide a powerful algorithm between
dependent and independent variables. This algorithm uses ro-
bust mathematical equations between dependent and indepen-
dent variables to solve complex problems (Vapnik 1995).
SVM has been a preferred approach as it adopts a global
optimum rather than a local optimum compared to ANN
method, and is less prone to overfitting than the ANN
method. However, SVM models for estimating ETo had
limited applications compared to ANN models. Wen et al.
(2015) developed SVM models for ETo estimation and com-
pared it with ANN model and three empirical models includ-
ing Priestley-Taylor, Hargreaves, and Ritchie. The study
showed that SVM showed relatively superior performance to
ANN and empirical equations in modeling ETo.

In recent years, the random forest (RF) model, which is an
ensemble learning method for classification and regression,
has become popular due to some of its advantages such as
satisfactory performance, ability of preventing overfitting,
and user-defined parameter selection in both classification
and regression problems (Feng et al. 2017). The relative im-
portance of variables can also be determined by this method.
Wang et al. (2019) conducted a competitive analysis using
different model-based approaches (random forest, gene-
expression programming) on daily climatic data from the 24
meteorological stations recorded from 2010 to 2014 and con-
cluded that random forest-based ETo models performed
slightly better than the gene expression-based models.

Multiple linear regression is a conventional model for esti-
mating the value of one dependent variable based on two or
more independent variables with linear relationship (Tabari
et al. 2012). Many researchers have attempted to estimate
the evaporation values from climatic variables with MLR.
Yirga (2019) reported the performance of MLR in ETo esti-
mation. This research stated that the model is successfully
employed for the estimation of the monthly reference evapo-
transpiration. da Silva et al. (2016) emphasized that models
can be regarded as an alternative method to estimate the ETo

when the climatic variables are insufficient for other methods.
In this study, we tested some of the recent approaches

in ETo estimation. Our study area was the middle
Anatolian region that is the driest region in Turkey.
Drought has become an important and prominent phe-
nomenon in Turkey, and especially semi-humid (semi-
dry) drought classes have shifted to semi-dry (dry) condi-
tions in Central Anatolia regions. Besides, the Central
Anatolian Region has strong and big potential for market-
ing and growing of cereal production (wheat, barley, oat,
etc.). In recent years, less rain and more ET have led to
crop failure and economic losses in the region. Spatial
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Table 1 Summary of various methods or model adopted by different authors for ETo estimation

No Author(s) Origin Using method* Reference output Length of
record

Conclusion

1 Douglas et al.
(2009)

USA Comparing (TU, PT, PM) ET
(micrometeorologi-
cal techniques)

1999−2006 PT method was found to be the best performing models for
estimating ETo

2 Li et al.
(2016)

China Comparing (BC, HA, PT,
DA, PE and SW)

ET (eddy covariance) 2008−2012 PE, SW, and PT models were more useful for estimating
crop ETo and ETa in arid regions

3 Sentelhas
et al.
(2010)

Canada Comparing (PT, HA, TH,
THref)

ETo (PM FAO-56) 2001−2007 PT method was reliable and accurate option for estimating
ETo when vapor pressure was deficit and wind speed
data were missing, mainly when calibrated locally.
When only temperature data were available, adjusted
HA and THref methods gave best estimated results to
estimate ETo.

4 Tukimat et al.
(2012)

Malaysia Comparing (PT, HA, MK,
HA, TH, and BC)

ETo (PM FAO-56) 1972–2001 The radiation-based methods gave more accurate perfor-
mance compared to temperature-based methods in esti-
mation of ET in the study area of Malaysia.

5 Rácz et al.
(2013)

Hungaria Comparing (PT, FAO-56,
SW, SZ, MK,
WMO-1966, MA, BC,
and PE)

ET (Pan evaporation) 2005−2010 The performance of PT, FAO-56,SW, SZ, and MK
methods appears to be superior to the other methods for
ETo calculation

6 Xu and Singh
(2002)

Switzerland Comparing (HA, BC, MK,
PT, and RO)

ETo (PM FAO-56) 1990−1994 Method performance gives the following rank of accuracy
as compared with the FAO-56 estimates: PT,MK, HA,
BC, and RO

7 Lu et al.
(2005)

USA Comparing (TH, HM, HA,
TU, MK, and PT)

ET (meteorological
techniques)

1978−1990 PT, TU, and HM methods are recommended for regional
applications of alternative reference evapotranspiration
in the southeastern USA.

8 Lang et al.
(2017)

China Comparing (MK, AB, PT,
HA, TH, HM, LI, and
BC)

ETo (PM FAO-56) 1962−2013 Radiation-based methods for ETO estimation was shown
the better performing models than temperature-based
methods among the selected methods in the study area.
Among the radiation-based methods, MK method per-
formed the best results, while HS showed the best per-
formance among the temperature-based methods.

9 Alexandris
et al.
(2008)

Belgrade Comparing (PT, TU, MK,
HA, and CO)

ETo (PM FAO-56) 2005−2006 PT and COmethods were produced best performing results
for ETo calculation

10 Efthimiou
et al.
(2013)

Greece Comparing (FAO-24,MK,
TU, PE, PT, LI, KP,
HA, and CO)

ETo (PM FAO-56) 1961−2010 The Priestley-Taylor method had the best correlation to the
FAO-56-PM method at Krania station, while at Kozane
station, the Turc method gave the best estimated values.

11 Tellen (2017) Cameroon Comparing (TU, PA,
SSmod, BC, BCmod)

ETo (PM FAO-56) 1967−1982 In general, the Stephens and Stewart (1963) modified by
Jansen and Haise method produced best statistics result

12 Kisi (2014) Turkey Comparing (CO, TU,HA,
HS, RI, IR)

ETo (Valiantzas) 1972−2002 CO equation gave the best results out of the nine methods.
The worst estimates were shown in the Turc method.

13 Rahimikhoob
et al.
(2012)

Iran Comparing (MK, TU, PT,
HG)

ETo (PM FAO-56) 1996−2005 PT and HG equations are more applicable in an
intermediate humidity region due to higher values of
coefficient of determination with PM56 method

14 Fisher and
Pringle III
(2013)

USA Comparing (ReS,TU, HA) ETo (PM FAO-56) 1997−2012 TU method was found to provide better estimates of
FAO-56 than the other methods.

15 Issaka et al.
(2017)

Qatar Comparing (BC, HS, JH,
LI, TU)

ETo (PM FAO-56) 1985−1998 TU method is easily measurable over an arid area and it is
suitable for arid areas such as Doha in Qatar.

16 Hadria et al.
(2021)

Morocco Comparing (HS, RZ, BE,
TR, DO)

ETo (PM FAO-56) 2011−2019 Temperature-based models can simulate reliably and
accurately reference evapotranspiration. Hargreaves
method is not accurate in mountainous zones.

BC, Blaney-Criddle; MK, Makking; TU, Turc; HA, Hargreaves; HS, Hargreaves-Samani; PT, Priestley-Taylor; DA, Dalton; PE, Penman; TH,
Thornthwaite; THTef, Thornthwaite with effective temperature; FAO-56, Penman-Monteith-FAO-56; SZ, Szász; MA, Mahringer; PE, Pereira; RO,
Rohwer;HM, Hamon; AB, 0Abtew; LI, Linacre;CO, Copais; PE, Penman;KP, Kimberly-Penman; PA, Papadakis; SS, Stephen-Steward;RI, Ritchie; IR,
Irmak; ReS, reduced set; JH, Jensen-Haise; RZ, Ravazzani; BE, Berti; TR, Trajkovic; DO, Dorji; SW, Shuttleworth
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variability of precipitation regimes influenced by the to-
pography has been studied before (Türkeş and Tatlı 2011;
Schemmel et al. 2013). The complex biotic and abiotic
environment in different elevation zones makes it difficult
to measure and estimate ET directly or indirectly. With
respect to the climatic composition at different elevations,
the variation of the ETo in different elevation is quite
complex. The elevation causes a manifold effect in ETo

in different locations since the dynamics of climatic pa-
rameters at different altitudes are also different. For ex-
ample, relative humidity is one of the most relevant me-
teorological factors in ETo measurement, and it is affected
by elevation with a reverse relationship. Moisture avail-
ability affected by relative humidity and absolute vapor
pressure decreases with elevation (Duane et al. 2008).
Therefore, elevation dominates climatic parameters that
affect ETo at elevation gradients. Furthermore, the spatial
variation in ETo is also affected with RS received by the
surface (Vicente-Serrano et al. 2007). Ma et al. (2019)
reported that available energy (shortwave radiation and
air temperature) increased with elevation is a more influ-
ential factor than water vapor. Sun et al. (2020) found that
net RS leaf area index and air temperature have strong
relationship with ETo in mountainous regions. Wang
et al. (2020) emphasized that the FAO-Penman Monteith
(PM) and Hargreaves-Samani (HS) perform well as ap-
propriate ETo estimation methods in high elevation zones.
Understanding the topographic characteristics, especially
elevation controlling the ETo in Central Anatolia and its
variability, is one of the scientific gaps of climate research
of Turkey. Furthermore, the elevation and ETo interaction
in dry regions of Turkey are poorly characterized despite
obvious practical importance.

One of the main objectives of this study is to determine
possible variations in ETo at different elevations and the per-
formance of selected methods/models that can be used in es-
timation of ETo.

Other objectives were the following:

& To calculate ETo using six different empirical methods
(FAO-56 Penman-Monteith method-ETo, Hargreaves-
ET_Har, Penman-ET_PM, Makking-ET_Mak,
Thornthwaite-ET_Thor, and FAO-Blaney-Criddle-
ET_BC) and make comparison between these five ETo
methods and the FAO-56 Penman-Monteith method
(ETo) in regional average values of 45 meteorological sta-
tions (represent the average of Central Anatolian Region)
and four different elevation groups (650–850 m-G1, 850–
1100 m-G2, 1100–1350 m-G3, and 1350–1600 m-G4).

& To investigate the accuracy of data-driven modeling such
as two different artificial neural network (ANN) tech-
niques, namely the multi-layer perceptrons (MLPs), radial
basis neural networks (RBNNs), support vector machine

(SVM), random forest (RF), and multi linear regression
(MLR) in estimating long-termmonthly ETo by using data
from the same 45 stations in Central Anatolian Region in
Turkey.

& Statistical evaluation of the outputs of all ETo approaches
and climatic parameters used in the assessment.

Material and method

Study work-flow

The study work-flow (Fig. 1) presents the research steps rep-
resented by subdivision method. The methodology essentially
seeks the possibility of different PET methods, ANN (MLP
and RBF), SVM, RF, and MLR model as an alternative to the
respective FAO-PM (ETo). The flowchart illustrates the pri-
mary structure of the model involving three main parts, i.e.,
calculate ETo with five simple empirical ETo methods and PM
FAO-56 method and generate alternative ETo using data-
driven models (ANN, SVM, RF, and MLR). The study was
carried out in two steps/stages. In the first step, in which de-
notes regional average, a data formation was prepared by tak-
ing the average of the climate data of 45 meteorological sta-
tions used in all analysis. At this stage, 45 meteorological
stations were evaluated as one station to represent the entire
Central Anatolian Region of Turkey. In the second step, the
data were grouped according to elevation of meteorological
station as main data formations in the paper; this step is termed
the “elevation group.” Thus, a large dataset was grouped
along four different elevation gradients (650–850 m, 850–
1100 m, 1100–1350 m, 1350–1600 m) using the elevation
of 45 meteorological stations. All analyses were evaluated
separately for both data formations. The conceptual back-
ground of the study consists of two main parts. First, ETo

was calculated with the equations of different researchers
using the unnormalized climate data to compare ETo (PM
FAO–56). Second, the climate data were used in alternative
data-driven model based on ETo calculations. Performance
evaluation was used for determining appropriate method or
model to estimate ETo in regional average and grouped data.
Therefore, the coefficient of determination (R2), mean abso-
lute deviation (MAD), Nash–Sutcliffe efficiency (NSE), the
index of agreement (d), and percent bias (PBIAS) were used to
identify the best method among the empirical methods and
data-driven ETo models.

Study area and data acquisition

According to multiple-year local assessments, Turkey is clas-
sified under seven geographical and 8 ecological regions
(ecozones) (Serengil 2018). This research was conducted in
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the Central Anatolia geographical region, and Central
Anatolia Steppe ecozone. Climatological data from 47 synop-
tic stations located in Central Anatolian Region of Turkey
were obtained from the Climate Forecast System Reanalysis
(CFSR) global meteorological dataset. The CFRS dataset con-
sist of hourly weather forecast generated by National Weather
Service’s NCEP Global Forecast Syetems. Studies showed
that the CFSR data used in hydrological models provide sat-
isfactory results (Fuka et al. 2014; Dile and Srinivasan 2014).
All stations, with 35 years of monthly meteorological data,
were selected for analysis. The data covered the time period
between January 1979 and December 2013. The locations of
the 47 stations are given in Fig. 2, and Table 2 shows some
characteristics of these stations.

The Central Anatolian Region of Turkey is a generally
semiarid area based on United Nations Environment
Program (UNEP) aridity index (Middleton and Thomas
1997) with a size of about 151,000 km2, representing 21%
of the country. The region is located between 31° 21′ to 38°
07′ E longitude and 36° 59′ to 40° 55′ N latitude. In this
region, average altitude of 1000 m and low precipitation pla-
teaus are located and it is limited by Bolu-Köroğlu Mountain
to the north, Sündiken and Uludağ Mountains to the west,
Toros Mountain to the south, and Tecer Mountains of
Turkey to the east. As the region is surrounded by high moun-
tains, the humid mild sea air cannot easily penetrate into the
region. Therefore, the region has a continental climate with
hot and dry summers and cold and snowy winters. In the
region, the terrestrial effect increases due to the increase in
altitude, and winter temperatures reach extremely low values
towards the east. The annual average temperature of the region

is 10–11 °C (Table 1). Annual precipitation averages about
418 mm, and the actual amount is determined by elevation.
Low precipitation amount in some areas of the region is not
sufficient to satisfy the water need of the crops during espe-
cially summer months. In a dry period, it would thus be nec-
essary to irrigate the crops, while in average wet seasons,
irrigation is not needed in agricultural areas. Low precipitation
generally causes low productivity in agriculture. Drought ne-
cessitates fallow practice in grain agriculture. The natural veg-
etation is mostly composed of steppes since drought prevents
forest growth.

In this study, data processing follows the raw data down-
load and converts into usable or readable form. The monthly
values of maximum temperature (Tmax), minimum tempera-
ture (Tmin), average temperature (Tavg), precipitation (P), av-
erage wind speed (U), average (RHavg), maximum (RHmax),
minimum relative humidity (RHmin), and average solar radia-
tion (RS) were obtained for 45 stations located in Central
Anatolian Region. There are two steps in the study. (1) The
regional average of the Central Anatolian Region for each
parameter was calculated by taking the average of the values
obtained from 45 stations. Therefore, each station has not been
evaluated separately in this first step. (2) In the second step,
the 45 different climate stations were divided into four differ-
ent elevation groups as follows: 650–850 m considered as
“low elevation group-G1,” 850–1100 m considered as “mod-
erate elevation group-G2,” 1100–1350 m considered as “high
elevation group-G3,” and 1350–1600 m considered as “very
high elevation group-G4.” The results of five different
literature-based equations (ET_Har, ET_PM, ET_Mak,
ET_Thor, and ET_BC), ANN (MLP and RBF), SVR, RF,

Climate
data of 45 

station

Data 
processing

Different
empirical

PET 
methods

Second 
step 

«elevation
group»

Normalization

Training 

Valization

Testing

ANN (MLP 
and RBF), 

SVM, RF and 
MLR 

simulation

Training 
ANN, SVM, 

RF and MLR  
methods

Scaling up

Performance
evaluation

ETo (PM FAO-
56) 

Selection of  
best method

or model

First step 
«regional
average»

Fig. 1 Study work-flow
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and MLR models for 4 different elevation groups were sub-
jected to performance evaluations with target output ETo. The
objective was to compare models for different elevation
groups located in different local climatic conditions.

Empirical ETo methods

The following ET methods have been chosen for the
assessment:

(a) FAO-56 Penman–Monteith method (ETo): This method
is considered the most precise method to estimate ETo.
The FAO Penman-Monteith method for calculating ref-
erence (potential) evapotranspiration ETo can be
expressed as (Allen et al. 1998) follows:

ETo ¼
0:408Δ Rn−Gð Þ þ γ

900

Ta þ 273
u2 es−eað Þ

Δþ γ 1þ 0:34u2ð Þ ð1Þ

where ETo= reference evapotranspiration (mm day−1); Δ is
the slope of the saturated vapor pressure curve (kPa 8C−1); Rn

is the net radiation (MJ m−2 day−1); G is the soil heat flux
density (MJ m−2 day−1), considered as null for daily estimates;
T is the daily mean air temperature (°C) at 2 m, based on the

average of maximum and minimum temperatures; U2 is the
average wind speed at 2 m height (m s−1); es is the saturation
vapor pressure (kPa); ea is the actual vapor pressure (kPa); (es
− ea) is the saturation vapor pressure deficit (Δe, kPa) at tem-
perature T; and γ is the psychrometric constant (0.0677 kPa
°C−1).

The following equations were recommended byAllen et al.
(1998) to estimate Rn:

Rn ¼ Rns−Rnl ð2Þ

Rns ¼ 0:77SR ð3Þ

Rnl ¼ σ
TmaxK4 þ TminK

4

2

� �
0:34−0:14

ffiffiffiffiffi
ea

pð Þ 1:35
Rs
Rso

−0:35
� �� �

ð4Þ

Rso ¼ 0:75Ra ð5Þ
where Rns is the net shortwave radiation (MJm−2 day−1); Rnl is
the net longwave radiation (MJ m−2 day−1); Rs is the incoming
solar radiation (MJ m−2 day−1); σ is the Stefan–Boltzmann
constant (4.903 × 10−9 MJ K−4 m−2 day−1); TmaxK is the

Fig. 2 Elevation (b) and precipitation zones (c) with meteorological stations in Central Anatolian Region of Turkey (a)
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Table 2 Properties of 45 meteorological stations with long-term aver-
age climatic conditions. Elevation of stations, elevation group, annual
average temperature (Tavg), annual total precipitation (P), annual total

evapotranspiration (ETO), UNEP aridity index (Middleton and Thomas
1997), and UNEP aridity index zone (Middleton and Thomas 1997)

Station
code

Near city
name

Elevation
(m)

Elevation
group

Annual Tavg
(°C)

Annual P
(mm)

Annual ETO

(mm)
P/ETO (UNEP aridity
index)

UNEP aridity
index zone

s1 Aksaray 960.77 G2 17.89 337.46 1389.16 0.24 Semi-arid

s2 Akşehir 1002 G2 16.13 577.58 1573.51 0.37 Semi-arid

s3 Ankara 890.52 G2 17.10 406.01 1404.85 0.29 Semi-arid

s4 Beypazarı 682 G1 17.83 398.36 1480.10 0.27 Semi-arid

s5 Beyşehir 1148 G3 15.52 489.08 1347.45 0.36 Semi-arid

s6 Boğazlıyan 1067 G2 16.27 372.57 1548.98 0.24 Semi-arid

s7 Cihanbeyli 968.73 G2 18.39 323.16 1588.45 0.20 Semi-arid

s8 Cumra 1013 G2 18.78 322.01 1518.72 0.21 Semi-arid

s9 Çankırı 751 G1 15.10 407.62 1281.01 0.32 Semi-arid

s10 Çiçekdağı 900 G2 16.10 347.60 1464.67 0.24 Semi-arid

s11 Develi 1180 G3 14.80 369.47 1474.53 0.25 Semi-arid

s12 Divriği 1120 G3 13.11 390.16 1361.68 0.29 Semi-arid

s13 Esenboğa 959.33 G2 4.32 410.83 1682.88 0.24 Semi-arid

s14 Eskişehir 787 G1 4.77 348.09 1678.95 0.21 Semi-arid

s15 Etimesgut 806.15 G1 4.55 360.11 1766.77 0.20 Semi-arid

s16 Gemerek 1171 G3 2.94 403.90 1758.17 0.23 Semi-arid

s17 Hadim 1552 G4 3.25 659.43 1544.51 0.43 Semi-arid

s18 Ilgaz 885 G2 2.08 462.81 1311.70 0.35 Semi-arid

s19 Ilgın 1034 G2 4.07 424.16 1775.59 0.24 Semi-arid

s20 Kaman 1075 G2 5.08 455.35 1874.10 0.24 Semi-arid

s21 Kangal 1541 G4 1.75 409.00 1611.47 0.25 Semi-arid

s22 Karaman 1023.05 G2 5.40 330.46 2249.01 0.15 Arid

s23 Karapınar 1004 G2 5.92 286.73 1804.24 0.16 Arid

s24 Kayseri 1092 G2 15.94 390.17 1534.96 0.25 Semi-arid

s25 Kırıkkale 750.88 G1 5.15 374.63 1834.01 0.20 Semi-arid

s26 Kırşehir 1007.17 G2 5.19 382.13 1901.69 0.20 Semi-arid

s27 Kızılcahamam 1033 G2 14.24 581.15 1224.40 0.47 Semi-arid

s28 Konya 1030.61 G2 17.23 323.09 1401.44 0.23 Semi-arid

s29 Kulu 1010 G2 17.30 391.24 1542.12 0.25 Semi-arid

s30 Nallıhan 650 G1 16.88 331.94 1435.93 0.23 Semi-arid

s31 Nevşehir 1259.54 G3 16.37 414.33 1483.35 0.28 Semi-arid

s32 Niğde 1210.5 G3 15.18 332.55 1423.71 0.23 Semi-arid

s33 Pınarbaşı 1500 G4 13.08 423.69 1377.75 0.31 Semi-arid

s34 Polatlı 886 G2 17.92 356.86 1399.78 0.25 Semi-arid

s35 Sarız 1500 G4 13.08 521.54 1371.26 0.38 Semi-arid

s36 Seydişehir 1131 G3 15.36 772.11 1369.61 0.56 Dry subhumid

s37 Sivas 1285 G3 13.43 438.95 1391.10 0.32 Semi-arid

s38 Sivrihisar 1070 G2 17.26 402.14 1418.86 0.28 Semi-arid

s39 Sorgun 1110 G3 15.65 431.66 1417.85 0.30 Semi-arid

s40 Tomarza 1397 G4 14.29 403.84 1459.90 0.28 Semi-arid

s41 Ulukışla 1453 G4 15.32 320.08 1407.04 0.23 Semi-arid

s42 Ürgüp 1060 G2 16.38 380.47 1491.67 0.26 Semi-arid

s43 Yozgat 1298.43 G3 5.19 587.72 1423.86 0.41 Semi-arid

s44 Yunak 1140 G3 18.34 450.17 1464.30 0.31 Semi-arid

s45 Zara 1347 G3 13.00 531.80 1320.66 0.40 Semi-arid
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maximum temperature (K); TminK is the minimum tempera-
ture (K); SR/SRo is ratio between the incoming solar radiation
and the clear sky solar radiation (MJ m−2 day−1), which is less
or equal to 1; and Ra is the extraterrestrial solar radiation (MJ
m−2 day−1). The other parameters of equation of ETo were
determined as follows:

Δ ¼ 4098 0:6108exp 17:27T= T þ 237:3ð Þð Þ½ �
T þ 237:3ð Þ2 ð6Þ

es ¼

0:6108 exp
17:27Tmaxcð Þ

Tmaxc þ 237:3

� �� �
þ

0:6108exp 17:27Tmincð Þ= Tminc þ 273:3ð Þð Þ½ �
2

ð7Þ

ea ¼ RH

100
es ð8Þ

where Tmaxc is the maximum temperature (°C); Tminc is the
minimum temperature (°C); and RH is the mean daily relative
humidity, calculated from maximum and minimum values.

The following equation was used to the equation of a log-
arithmic wind speed profile to convert wind speed data ob-
tained at height of 10 m to the standard height of 2 m.

U 2 ¼ UZ
4:87

ln 67:8z−5:42ð Þ
� �

ð9Þ

where z is the height of the wind speed measurement (=10 m).

(b) Hargreaves method (ET_Har): The Hargreaves method
(Hargreaves and Samani 1985), which is a temperature
based equation, estimates ETo (mm d−1); using only the
maximum and minimum temperatures, and is expressed
by Eq. 10:

ETo ¼ C0Rs Tmaxc−Tmaxcð Þ0:5 T þ 17:8ð Þ ð10Þ
where Rs is the extraterrestrial solar radiation, in mm day−1;
and Co the conversion parameter (=0.0023).

(iii) Penmanmethod (PET_PM): This method is still a mass-
transfer-based method in estimating free water surface
evaporation E because of its simplicity and reasonable
accuracy. Penman (1948) proposed the following
equation.

ETo ¼ 0:35 1þ 0:98

100U 2

� �
es−eað Þ ð11Þ

where U2 wind speed at 2 m high in miles day−1; es the satu-
ration vapor pressure at the temperature of the water surface;
ea the actual vapor pressure in the air.

(iv) Makking method (PET_Mak): For estimating potential
evapotranspiration (mm d−1) Makking (1957) proposed
the following equation.

ETo ¼ 0:61
Δ

Δþ γ
Rs

λ
−0:12 ð12Þ

where Rs = the total solar radiation in cal cm−2 day−1;Δ = the
slope of saturation vapor pressure curve (in mb/8C); γ = the
psychrometric constant (in mb/8C); λ = latent heat (in calories
per gram); P = atmospheric pressure (in millibar).

(e) Thornthwaite method (PET_Thor): The Thornthwaite
method is a temperature-based method for calculating
PET can be expressed as (Thornthwaite 1948):

ETo ¼
0 ; Tavg < 0°C

16
10 T avg

I

� �a

; 0°C≤Tavg≤26:5°C

−0:43T avg
2 þ 32:24T avg−415:85 ; Tavg > 26:5°C

8>><>>:
ð13Þ

I ¼ ∑
12

k¼1
0:2Tkð Þ1:514 ð14Þ

a ¼ 0:000000675I3−0 : 0000771I2 þ 0:01792I

þ 0:49239 ð15Þ

where ETo = reference evapotranspiration estimated by
Thornthwaite equation (mm month−1), Tavg = mean monthly
air temperature (°C), I = thermal index imposed by the local
normal climatic temperature regime, and a = exponent being a
function of I. The value of a varies from 0 to 4.25, while the
thermal index I varies from 0 to 160.

(f) FAO Blaney Criddle method (FAO_BC): Blaney-
Criddle equation (BC) is a simpler method comparing
than other empirical methods and the method use only
air temperature as an input data. The equation calculates
evapotranspiration for a “reference crop” and this crop is
an actively growing green grass with 8–15 cm high.
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Blaney and Criddle (1950) proposed a very simplified
calculating approach of the temperature-based equation.

ETo ¼ kp 0:46Ta þ 8:13ð Þ ð16Þ
where ETo = potential evapotranspiration from a reference
crop, in mm, for the period in which p is expressed; Ta =mean
temperature in °C; p = percentage of total daytime hours for
the used period (daily or monthly) out of total daytime hours
of the year (365 × 12); k = monthly consumptive use coeffi-
cient, depending on vegetation type, location and season, and
for the growing season (May to October); k varies from 0.5 for
orange tree to 1.2 for dense natural vegetation.

ANN method

Soft computing methods such as artificial neural net-
works (ANN) have been successfully employed to de-
velop a new estimation model(s) for estimating the
available model parameters. ANN is an information pro-
cessing system that consists of three main layers as
input, hidden, and output. ANN works in layers where
send parallel-operated information with a series of pro-
cessing elements called neurons. The function of these
neurons provides various conversion functions for syn-
aptic weights with their information. Training was oc-
curred in this process. All neurons receive weighted
inputs which run as interconnect between input vari-
ables or the outputs, add a bias term and pass the result
by an activation function. The basis of this process can
be formulized in the following equations.

I J ¼ ∑
n

i¼1
wijxi þ bi ð17Þ

y j ¼ f I Jð Þ ð18Þ

f xð Þ ¼ ex−e−x

ex þ e−x
ð19Þ

where Ij is the activation value of neuron j of the ith layer; wij

is the weight of the ith input and the neuron j of the layer; xi is
the ith input value, bi is the ith bias term, yj is the output of the
neuron j, and f(x) is the activation function.

In ANN andMLR, the variables in dataset were normalized
to increase the model performance. Min-max feature scaling
(unity-based normalization) is used to bring all values into the
range 0 and 1. The general form of normalization that is using
in this study is presented in Eq. 20:

X norm ¼ x−xmin

xmax−xmin
ð20Þ

In this study, ANNs of the multi-layer perceptron (MLP)
and radial basis function (RBF) were employed. The back
propagation learning algorithm was used in MLP training pro-
cess. A structure of MLP consists of at least three layers of
nodes: an input layer, a hidden layer, and an output layer.
Figure 3 represents a three-layer structure of MLP. Each neu-
ron that uses a nonlinear activation functions except for the
input layer. Every node is fully connected in MLP, and each
node connects with a weight of wij and Kj from input layer to
hidden layer and hidden layer to output layer, respectively.

Radial basic functions (RBF) calculate distance
criteria with respect to the center, and the algorithm
can be constructed accordingly. Figure 4 represents a
RBF structure consisted of a three-layer structure name-
ly (1) input layer, (2) hidden layer, and (3) output layer.
The general construction is just like a MLP but there
are some differences between MLP and RBF. The most
characteristic feature of the RBF network is the activa-
tion function (Hp(x) as networks neuron) in hidden
layers using Gaussian Bell function that is the most
widely used function of RBF (Fig. 4). This function
calculates the distance between the neuron center in
the hidden layer and the input vector for each neuron
in the input layer. The final output is obtained by run-
ning sum of dot products of activation function and
distance. Therefore, it describes the way that the unit
responds to the total input.

We selected parameters of the input layer considering
using correlation performance with the reference evapotrans-
piration (Table 2). Some monthly climate variables that are
Tmax, RHavg, and RS were used in the input layer. The opti-
mum hidden layer node numbers of the ANN models were
obtained after trying different hidden layer network struc-
tures that errors can be minimized. The optimum iteration
number of ANN networks was also tried. The training of the
ANN models was stopped at 250 iterations due to the mean
square error between the observed and estimated values de-
creased with increasing iteration numbers until this number
of iterations. The learning process of the MLP and RBF was
carried out with daily data series extracted from the 45 se-
lected locations between January 1979 and January 2004
(70% of the whole data set). The data series from January
2004 to July 2014 (30% of the whole data set) were used for
testing. The hyperbolic tangent and SoftMax activation func-
tions were used for the hidden nodes for MLP and RBF
models, respectively. It was found that the network structure
of 3-5-1 in MLP and 3-9-1 in RBF leads to the best results.
3-5-1 denotes an MLP model comprising 3 inputs, 5 hidden,
and 1 output node.
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MLR method

Regression analysis is one of the statistical tools, which can be
considered the process as fitting a model to data. In a linear
regression model, data and linear functions can be used to
construct the relation that model real-world applications and
output parameters are estimated from the data. MLR use sev-
eral (two or more) explanatory (independent) variables to es-
timate the outcome of a response (dependent) variable with a
linear equation to fitting a linear model. The independent var-
iable x is associated with a value of the dependent variable y in
MLR analysis. A typical MLR model expressed as in Eq. 21
below:

bY ¼ a0 þ ∑
m

j¼1
ajX j ð21Þ

where Ŷ is the model’s output, Xj (from X1 to Xm) is the inde-
pendent input variables to the model, and aj (from a0 to am) is
partial regression coefficients. The magnitude of each regres-
sion coefficient (aj) in MLR model shows explanatory power
of relationship between dependent and independent variables.

SVM method

Support vector machine (SVM), which is a well-known ma-
chine-learning method based on classification and regression

Input layer Output layerHidden layerFig. 3 General architecture of the
MLR

Input layer Output layerHidden layerFig. 4 General architecture of the
RBF
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analysis theory introduced by Vapnik (1995). The optimal
support vector network automatically generated SVMs net-
work architecture while ANN architecture generally involves
manual trial-and-error procedures. The types of kernel func-
tions namely linear, sigmoid, polynomial, radial basis func-
tion, and multi-layer perceptron are successful in explaining
complex data sets. In this study, linear kernel function uses in
SVM models. The kernel function is similar to a two-layer
perceptron model of the neural network. Unlike the process
in standard neural network, the weight of the network is found
by solving a quadratic programming problem with linear con-
straints. In general architecture of the SVM (Fig. 5), the final
output connected with hidden nodes are the support vectors
(SVs) of the SVM and the weights of SVM network.

The relationship between a dependent variable (y) and a set
of independent variables (x) is determined by f(x) in SVM for
regression, according to the following equation:

F Xð Þ ¼ ∑
n

k¼1
an:K x; xnð Þ þ b ð22Þ

where an is the Lagrangemultipliers, B is a bias term, andK(x,
sn) is the kernel function which is based upon reproducing
kernel Hilbert spaces. In this study, the input vectors (xn) refer
to the daily records of Tmax, RHavg, and RS while the target
value (y) refers to ET0 values calculated using the FAO-56
PM. In this study, the SVM (100, 10) model has the regular-
ization constant = 100 and width of the RBF kernel = 10.

RF method

Random forest is one of the machine learning models that can
be applied to both regression and classification problems. The
algorithm uses decision trees using a CART-like procedure
that uses a subset of observations through the bootstrap ap-
proach (Tsangaratos and Ilia 2017). It is necessary to

understand the decision trees structure, which is the basic part
of the model on the basis of the random forest. In the model,
many individual trees are created by sampling the variables in
the data set. Random forest aims to provide better accuracy by
using these many decision trees to create a forest. The subsets
of variables are generated in the method and each node in the
decision tree is divided by the best of this subset of variables.
Each variable is classified by each decision tree and thus
contribution of variables is well determined to explaining the
variance in the dependent variable. Breiman (2001) intro-
duced that many regression trees in RF are installed on mar-
ginal functions which are dependent on random vector (Θ),
indicator function (I), and specified numerical predictor hk(X).
The marginal functions might be given as follows (Breiman
2001):

mg X ; Yð Þ ¼ avkI hk Xð Þ ¼ Yð Þ−max
j≠Y

avkI hk Xð Þ ¼ jð Þ ð23Þ

The overall result is given as the average of the sub-results
from each tree. The average generalization error of RF can be
given as follows:

PE* forestð Þ ¼ PX ;Y mg X ; Yð Þ < 0ð Þ ð24Þ

There are two theorems that can be given in RF algorithm.

Theorem 1 By the number of trees increases, we will have the
following:

PX ;Y Pθh X ; θð Þ ¼ Yð Þ−max
j≠Y

Pθ h; θð Þ ¼ j < 0
�

ð25Þ

The average generalization error of a tree will be as fol-
lows:

PE* treeð Þ ¼ PθPX ;Y Y−h X ; θð Þð Þ2 ð26Þ

Input layer Output layerHidden layerFig. 5 General architecture of the
SVM
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Theorem 2 Suppose that PY = PXh(X, θ) for all Θ, so:

PE* forestð Þ⩽ρ:PE* treeð Þ ð27Þ
where ρ is represented as a weighted correlation between the
Y − h(X, θ) and (Y − h(X, θ′) (Breiman 2001).

Overfitting, which is one of the biggest problems of deci-
sion trees, is decreasing with training on different data sets in
the random forest model. In addition, the chance of finding an
outlier in subset of variables created by bootstrap method is
reduced. The random forest training algorithm (for both clas-
sification and regression) applies bootstrap aggregating, or
bagging, to tree learners. More details about random forest
can be found in Breiman (2001). In this study, RF is used as
regression model to estimate ETo. The important tunable pa-
rameters are the number of trees (ntree) and the number of
estimators in the random subset of each node (mtry). The de-
fault values of mtry (one-third of all estimator variables) were
used in this study. The process of ntree decision which affects
the forecast performance was used during parameter optimi-
zation to yield the minimum error. An iterative evaluation and
out-of-bag error (mean squared error for regression problems)
were used as the selection criteria in ntree defining. The num-
ber of trees was especially used in terms of parameter optimi-
zation to yield the minimum error in the study. In general,
RMSE decreased with increasing ntree, and r increased corre-
spondingly. In this study, two number of trees were consid-
ered differently, for first forest 100 trees and second forest 30
trees. Since the 100-tree gives, the random forest with 100
trees is not included in the results section due to its results
are very similar to the results of RBF (ANN). Thus, the ran-
dom forest with 30 trees was considered in the evaluation of
the study.

Performance criteria

Two performance criteria are used in this study to assess the
goodness of fit of the models, which are R2, root mean square
error (RMSE), Nash Sutcliffe efficiency (NSE), the index of
agreement (d), and percent bias (PBIAS) by using the follow-
ing equations (Moriasi et al. 2015).

R2 ¼
∑
n

i¼1
Oi−O

� �
Pi−P

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Oi−O

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
Pi−P

� �2
r

2664
3775
2

ð28Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
Oi−Pið Þ2

s
ð29Þ

NSE ¼ 1−
∑
n

i¼1
Oi−Pið Þ2

Oi−O
� �2 ð30Þ

d ¼ 1−
∑
n

i¼1
Oi−Pið Þ2

∑
n

i¼1
Pi−O
			 			þ Oi−O

			 			� �2 ð31Þ

PBIAS %ð Þ ¼
∑
n

i¼1
Oi−Pi

∑
n

i¼1
Oi

x100 ð32Þ

whereOi is the results of methods or model as ETo in mm d−1;

Pi is the ETo in mm d−1; O is the results of methods or model
as ETo, and n is the total number of data.

Results and discussion

In the first step of the study, which denotes regional average,
all approach and analysis were made by considering the aver-
age of data from 45 meteorological stations that represent the
Central Anatolian Region. At this step, the stations were not
compared, and the Central Anatolian Region was evaluated as
a single station by taking the average of all stations. In the
second step, 45 stations were divided into 4 groups according
to their elevations, and the meteorological dataset of each
stations are averaged within their elevation group. Thus, the
performance of models and methods was analyzed according
to four different groups in the second step.

The results of first step (regional average)

The mean, minimum, maximum, standard deviation, variation
coefficient, and skewness of monthly statistical parameters of
regional average dataset for the entire time series are given in
Table 3. The statistical parameters of the training, testing, and
whole data are shown in the table separately. The performance
of ANN models was affected by skewness of the time series
data (Zheng et al. 2018). It was shown that ETo and all vari-
ables have quite low skewness values in the complete dataset.
The precipitation shows higher skewed distribution compar-
ing other parameters for each period (see SK values in
Table 3). Accordingly, the skewness values for all data sets
were seen to be roughly similar although the SK values of Tmin

quite differed from others for each period. The greater of CV
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values, which is defined as the standard deviation divided by
the mean, shows the greater level of dispersion around the
mean. The mean ETo (131.70 mm/month) in testing period
set is quite higher than the mean ETo in the training and whole
data period (119.27 and 127.96 mm/month, respectively). As
can be seen from the R2 in whole series, Tmax (R2= 0.84,
p<0.05), RHavg (R2= 0.68, p<0.05), and RS (R2= 0.79,
p<0.05) are closely correlated with ETo.

In this study, monthly ET was estimated using six different
data-driven models including ANN (MLP and RBF), SVR,
RF, and MLR. The ET_MLP, ET_RBF, ET_SVM, ET_RF,
and ET_MLR models use the same input variables. The
Penman-Monteith FAO-56 equation (ETo) was accepted as
the reference equation; and other empirical equations
(Hargreaves-Samani, Penman, Makking, Thornthwaite,
Blaney Criddle), data-driven models (ET_MLP, ET_RBF,
ET_SVM, ET_RF), and statistical model (ET_MLR) were
compared with ETo. Table 4 shows the results of all models
and equations based on the MAD, RMSE, d, and NSE calcu-
lations in training and testing period. Generally, considering
its high R2 and lowMAD and RMSE, the ET_RBFmodel and
ET_PM formula produced better results in the field of this
study within all equation methods, while the worst perfor-
mance belongs to the ET_Mak in data-driven models. This
result is similar in the Kingdom of Saudi Arabia where the

Makking equations perform worse than different selected
methods (Islam et al. 2020). It is clear from Table 4 that the
ET_MLP and SVM model outperformed all other models in
terms of all performance criteria in training period. ET_RF
and ET_MLR equation results are close to each other, based
on their high R2 and low RMSE in training period.

It is apparent that all of the methods and models performed
well in training and testing periods, and the values of RMSE,
d, and NSE had very small difference between training and
testing periods, and all R2 were also greater than 0.85. In
testing periods, it is apparent that MLP (R2=0.999, p<0.05)
and SVM models (R2=0.998, p<0.05) were better than others
in testing period for ETo estimation, (Table 4). Therefore,
ET_MLP and ET_SVM were selected as the best fit models
for estimating the ETo in training and testing period. The per-
formance of the MLP and SVM model on the testing dataset
showed that theMLP and SVMmodels can be used to provide
accurate and reliable ETo estimations. Based on the results of
Table 4, Penman method (ET_PM) whose input combinations
were U, actual and saturation vapor pressure had the highest
value of R2 (0.989; p<0.05), NSE (0.99), and d (0.99), than
other empirical equations in the training period. The results of
performance evaluation showed that ET_PM also performs
clearly better than other empirical methods in testing period
based on R2 (0.988), RMSE (20.74 mm/month), d (0.98), and

Table 3 Statistical parameter of climatic data and ETo in training period, testing period, and entire period

Period Stat. Para. ETo Tmax Tmin Tavg P U2 RHmax RHmin RHavg RS

All Mean 127.96 22.74 1.48 11.54 47.52 3.00 83.27 41.91 63.18 18.24

Std. 83.47 10.08 10.97 10.47 41.60 0.61 13.35 17.32 16.35 7.58

SK 0.52 −0.25 0.28 0.21 1.50 0.50 −0.91 0.71 −0.11 −0.06
Min. 7.39 −1.48 −34.38 −22.23 0.00 1.34 27.03 5.06 10.00 3.86

Max. 445.58 44.32 41.11 36.20 550.07 5.69 100.00 99.00 96.75 33.30

CV 0.65 0.44 7.42 0.91 0.88 0.21 0.16 0.41 0.26 0.42

R2 - 0.84* 0.58 0.43 0.23 0.00 0.60 0.53 0.68* 0.79*

Training Mean 119.27 23.31 2.97 11.03 42.77 2.90 82.26 42.11 62.14 18.24

Std. 76.92 9.88 11.18 10.42 36.79 0.57 13.78 17.30 16.41 7.59

SK 0.37 −0.24 0.32 0.28 1.16 0.59 −0.92 0.72 −0.17 −0.07
Min. 7.77 −1.48 −32.90 −22.23 0.00 1.34 27.03 5.06 10.00 4.29

Max. 401.47 44.32 41.11 36.20 311.92 5.58 100.00 99.00 96.56 32.49

CV 0.64 0.42 3.76 0.94 0.86 0.20 0.17 0.41 0.26 0.42

R2 0.84* 0.57 0.38 0.24 0.00 0.57 0.51 0.65* 0.79*

Testing Mean 131.70 21.40 −2.01 12.73 58.61 3.22 85.61 41.43 65.59 18.23

Std. 85.86 10.40 9.61 10.48 49.34 0.65 11.96 17.36 15.97 7.56

SK 0.55 −0.25 −0.16 0.06 1.56 0.21 −0.77 0.68 0.05 −0.06
Min. 7.40 −0.46 −34.38 −16.53 0.00 1.46 41.62 5.57 30.14 3.86

Max. 445.59 42.98 29.00 36.20 550.07 5.69 99.83 91.13 96.75 33.30

CV 0.65 0.49 −4.78 0.82 0.84 0.20 0.14 0.42 0.24 0.41

R2 0.86* 0.65 0.62 0.23 0.00 0.68 0.59 0.76* 0.82*

Std., standard deviation; SK, skewness; CV, coefficient of variation; R2 , coefficients of determination with ETo; * p<0.05
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NSE (0.98). In both periods, it was found that the ET_MLP
method provides best accuracy (R2=0.998), highest d value
(1.00), and lowest RMSE value (2.02 mm/month) in all
methods. Malik et al. (2017) reported better performances
(RMSE = 0.214 mm/month) by multi-layer perceptron neural
network to estimate monthly pan-evaporation (EPm) in Indian
central Himalayas. This indicates that the accuracy of the
models may vary according to the climate of the research site,
the type of climatic data, and the sample size. In this study,
ET_RBF and ET_RF models have almost same R2, and both
models performedworse than ET_SVMand ET_MLPmodels
in testing period. As can be seen from the Table 4, all perfor-
mance statistics illustrated a reasonably better performance for
all data-driven models than empirical methods. These results
are parallel with previous studies (Karimaldini et al. 2011;
Tabari and Talaee 2013) which indicate that the performances
of data-driven models were better than local calibrated phys-
ical model or conventional methods. It is evident that all data-
driven models and statistical method (ET_MLR) are rather
simple in terms of input parameter, and its difference from
empirical methods is that it contains RHavg in the input pa-
rameters group. The results of models show that the models, in
which Tmax, RHavg, and RS are needed, performed well in
reference to ETo modeling and could be used with limited
weather data. The results of performance show that the pres-
ence or absence of critical input significantly impacted the
performances of equation methods. However, the perfor-
mance values can vary with model dynamics (numbers of
hidden nodes, epoch values, type of activation functions used,
etc.) in data-driven models with the same input set.

The comparison of the ETo values calculated by FAO PM-
56 and the values estimated by different empirical methods
and data-driven models in testing period was shown in Figs. 6
and 7, in the form of line graphs, scatter plots, and residual

graphs. The slope of regression lines ranged from 0.23 to 1.08
in empirical methods while in data-driven models, these
values ranged from 0.89 to 0.99. The ETo values estimated
by the ET_MLP, ET_SVM, and ET_PM were close to that
calculated using the ETo values and followed the same trend
as in ETo. It was clearly shown from the figures that the
ET_MLP, ET_SVM, and ET_PM models closely follow the
corresponding ETo values and less scattered estimates com-
pared to other methods. Therefore, these methods are consid-
ered as best alternatives for estimating monthly averages of
monthly ETo based on the values of R2. The slope of regres-
sion lines for each method was <1.0 except for the ET_PM
and ET_RF method, indicating that ET_PM and ETo methods
had strong relationships with the ETo among all empirical
methods and data-driven models, respectively. However, in
general, the estimated ETo in empirical methods cannot catch
the observed values and produce less accurate results than the
data-driven methods including ANN, SVM, RF, and MLR in
testing period based on R2. For example, the R2 of the
ET_MLP, ET_RBF, ET_SVM, ET_RF, and ET_MLR
models varies from 0.956 to 0.999 (Fig. 7); the R2 of the
ET_HAR, ET_PM, ET_Mak, ET_Thor, and ET_BC models
slightly decreases and varies from 0.854 to 0.988 (Fig. 6) in
testing period, respectively. These results indicate that types
and number of input variables affect better efficiency in the
ETo estimation. In equation methods, a radiation-based model
(ET_Mak) compared to other empirical methods was not sat-
isfactory, with R2 value of 0.854. It is seen that the Hargraeves
method shows less predictive accuracy when considering the
peak values of estimated ETo values in equation methods in
Fig. 6. An evaluation that only base on R2 may not be suffi-
cient to decide since R2 is oversensitive to extreme values and
insensitive to both additive and proportional differences be-
tween observed and model-estimated values (Legates and

Table 4 The performance
statistics of the models and
equations in training and testing
period

Methods Training period Testing period

R2 MAD RMSE d NSE R2 MAD RMSE d NSE

ET_Har 0.924* 69.13 91.09 0.85 0.63 0.930* 69.27 91.56 0.85 0.62

ET_PM 0.989* 14.65 18.23 0.99 0.99 0.988* 17.42 20.74 0.98 0.98

ET_Mak 0.874* 29.32 35.45 0.96 0.94 0.854* 32.00 38.46 0.95 0.93

ET_Thor 0.941* 58.23 63.02 0.91 0.82 0.938* 55.30 59.64 0.92 0.84

ET_BC 0.960* 26.10 31.28 0.97 0.96 0.951* 25.14 30.71 0.97 0.96

ET_MLP 0.999* 1.58 2.02 1.00 1.00 0.999* 1.69 2.22 1.00 1.00

ET_RBF 0.956* 12.62 17.14 0.99 0.89 0.956* 12.70 17.47 0.99 0.99

ET_SVM 0.999* 9.50 10.18 1.00 0.81 0.998* 8.49 9.31 1.00 1.00

ET_RF 0.978* 30.04 33.03 0.97 −2.74 0.977* 30.49 33.25 0.97 0.95

ET_
MLR

0.982* 8.87 10.61 1.00 0.72 0.979* 9.45 11.43 0.99 0.99

*p<0.05
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McCabe 1999). The error term calculations based on
goodness-of-fit indicators (d, RMSE, and MAD) are also suit-
able for model evaluation than R2 as they calculate the devia-
tion or error between each pair of observed and estimated
values based on the measurement uncertainty. Thus, d,
RMSE, and MAD were used in addition to evaluate the per-
formance of all techniques and these values are shown in
Table 4. Also shown in Figs. 6 and 7 is graphical representa-
tion of temporal variation between observed and estimated
monthly ETo values by empirical methods and data-driven

models during testing period. Initially, ETo values of cooler
months were observed as low and then increased gradually
when number of high-temperature months increased in all
trends. The record shows marked fluctuations between winter
and summer, which implies that changes in climatic condi-
tions that alter evapotranspiration, could easily affect balance
and interaction with surface and subsurface water. However, it
can perceptibly be seen in Fig. 6 that the Hargraves method
did not accurately estimate the evapotranspiration values of
the high-temperature months. ET_Har method was not good
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Fig. 6 Relationship between
results of empirical methods and
reference evapotranspiration with
scatter plot (left) (a), time series
(middle) (b), and temporal resid-
ual graph (c) in testing period
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enough in forecasting peak ETo values. This could be due to
the fact that the study area is characterized by a semi-arid
continental climate of mild cold winter and hot dry summer,
where atmospheric conditions other than temperature, and RS

are more favorable to evaporation and transpiration.
Therefore, peak ETo values inefficiency could be caused by
the formulation used in the ET_Har method. Likewise, the
scatters of the ET_PM, which base on a combination tech-
nique using U and vapor pressure of input parameters, based
models are less dispersed, generally overestimating the ETo

with very low errors. Generally, ET_PM models indicate
overestimation while values of ET_Mak, ET_Thor, and
ET_BC models remain under peak of ETo values for the
Central Anatolian Region. The result of empirical methods,
which indicates the superiority of the ET_PM models on the
combination-based one, could be considered as a reliable al-
ternative method for ETo estimation among empirical
methods. The Penman method uses vapor pressure deficit,
actual vapor pressure, and an empirical U function. ET_PM
method run underestimates ETo little. Lee et al. (2004)
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Fig. 7 Relationship between
results of data-driven models and
reference evapotranspiration with
scatter plot (left) (a), time series
(middle) (b), and temporal resid-
ual graph (c) in testing period
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reported that this difference derived from empirical wind func-
tion used in the equation and the function takes many different
forms in literature. The estimation results of ETo using data-
driven methods for the regional average values in Central
Anatolian Region have revealed that the SVM and MLP
models can achieve reliable estimates. In the study, data-
driven models estimated peak ETo values more accurately.
The data preprocessing such as normalization of the data in
data-driven models enabled a finest accuracy for capturing
peak magnitudes (Demirel et al. 2009). In particular, among
data-driven models, the SVM and MLP-based models used in
this study were found to have better performances than the
RBF, RF, and MLR models (statistical method); they in-
creased the estimation accuracy by up to 98% in regional
average dataset. The obtained results were in well agreement
with some previous studies (Sayyadi et al. 2009;
Rahimikhoob 2010; Traore et al. 2010) that all reported the
application of MLP model and their superior accuracy com-
pared to other methods for ETo estimation in different climates
around the Earth. As far as the performance of the ET_SVM
model is concerned, the results appeared to be quite
satisfactory, and similar results were obtained by Tabari
et al. (2012) and Mohammadrezapour et al. (2019) for semi-
arid environment. The selection of kernel function type is
responsible for performance of SVM model for estimating
of ETo (Seifi and Riahi 2020). As mentioned earlier, a very
satisfactory performance has been obtained by using the linear
kernel function of SVMmodel. However, Tabari et al. (2012)
had found RBF is the best kernel function among the other
functions of SVM models. With regard to the overall perfor-
mance of the applied all empirical methods and data-driven
models in testing period, the hierarchical performance for re-
gional average in Central Anatolian Region follows the order:
ET_MLP > ET_SVM > ET_PM > ET_MLR > ET_RF >
ET_RBF > ET_BC > ET_Thor > ET_Har > ET_Mak,
respectively.

All regression model residuals as a function of observed
ETo of testing period andmonth of year were also examined in
Figs. 6 and 7. These graphs explain the vertical distance be-
tween the actual data point and the estimated point on the line.
Figures show an example of model residuals versus observed
ETo for all (regional average) dataset. The seasonality can be
seen in the residuals at all methods or models, which is more
clearly pronounced at some models such as ET_Mak (Fig. 6)
and ET_MLR (Fig. 7). The magnitude of seasonality, which
increases with increasing estimated ETo magnitude, is partic-
ularly pronounced for notable residuals of ET_RBF and
ET_RF models. The reason of these results can be explained
by considering that the RHavg is a seasonally dynamic prop-
erty. In other words, this parameter leads the seasonality more
pronounced in residuals. Besides, the seasonal magnitude (the
difference between the maximum and minimum value) of
seasonally varying RHavg values explained as a percentage is

considerably higher than the other parameters. Therefore, the
residuals in all models using RHavg as an input parameter were
found higher than others that did not use this parameter. For
example, the residuals for ET_Har model are not strongly
related to ETo magnitude or month of year. The residuals also
show relatively unbiased situations for the models. According
to the results of equation methods depicted in Fig. 6, the
ET_Har, ET_PM, and ET_Mak methods tended to overesti-
mate observed ETo while the ET_Thor method tended to un-
derestimate ETo. In the ET_BC method, residuals generally
showed a balanced distribution by years. As can be seen from
Fig. 8, the all methods were found to be mostly positive re-
siduals after 2010 and 2011 (Fig. 8a, b). The graphs of cumu-
lative average residuals clearly depict cumulative underesti-
mate and overestimate estimations (Fig 8c, d). Before 2009,
the ET_MLP model, which is the best data-driven model,
estimated cumulative overestimate values in 2006, while
ET_PM, which is the best empirical method, tended to over-
estimate after 2011. As has been shown in Fig 8c, d, cumula-
tive residual plots may display a tendency to overestimate and
underestimate with relation to control of wet and cold biases in
considered years of the study area.

The results of the second step (elevation groups)

The statistics given in Table 5 illustrate the difference between
some selected data characteristics in the 4 different elevation
groups. Tmin of all group except for G4 in whole data shows a
significantly greater level of dispersion around the mean com-
pared with other CV of all groups. The parameter with the
highest CV value in the whole data of G4 is Tmax. It is seen
in Table 5 that the CV values of other parameters are also
close to the value in Tmax of G4. The precipitation has higher
skewed distribution in all groups, just as in complete dataset
shown in Table 5. Another important statistical characteristic
of the selected climate data is the highest R2 found between
the ETo and Tmax in training period of all four groups in the
ranges 0.84 and 0.86 (p<0.05) and the lowest R2 between the
ETo and U2 in training period of all groups ranges within an
interval of 0.00 and 0.04 (p>0.05)

Test results of the six different optimal data-driven models
for each station are provided in training period (Table 6) and
testing period (Table 7) using long-term monthly data of
elevation-based groups. In training/testing period, it is clear
from the Tables 6 and 7 that the RMSE values of empirical
methods in training period are considerably higher than the
RMSE results of testing period. For the ET_RBF, ET_RF, and
ET_MLR models, the maximum RMSE (15.12, 29.17, and
12.93 mm/month) values were found for the G1, respectively.
The maximum R2 of all models in G1were found in ET_MLR
(R2= 0.998, p<0.05) and ET_SVM (R2= 0.998, p<0.05).
These models presented the highest d value (1.00; 1.00) and
NSE equal to 1.00 and 0.99, respectively. For the ET_Thor,
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however, the maximum RMSE value was found to be 3.50
mm/month in the G2. It can be clearly seen in Table 7, the G2
group shows already better performance for all performance
criteria than the other groups in testing period. Therefore, it
has been determined that the models used for ETo estimation
in the Central Anatolian Region can be used most effectively
at an altitude between 850 and 1000 m. The values of perfor-
mance are similar for all elevation groups in training period
(Table 7). Once again, the ET_Har method performed the
worst in G3, due to significant underestimations, with a
RMSE value of 78.95 mm/month, NSE value of −0.11. The
values d, NSE, and R2 shown in Table 7 indicate that the
ET_MLP was the best simple method for estimating ETo in
G4 (R2 = 0.75). It is clearly seen from Table 6 that the accu-
racy of the ET_MLP is generally better than the other models
in ETo estimation. In four groups, the ET_MLPmodel has the
best accuracy. The ET_SVMand ET_PMmodels respectively
also performed well in all groups while the ET_Mak yielded
the worst estimation in all groups in testing period (Table 7).
Estimated ETo values by models are lower than the observed
ETo values since 2009.

PBIAS (%) indicates the model performance with overes-
timate (PBIAS < 0) or underestimate (PBIAS > 0) of ETo, and

values of the PBIAS nearer to 0 suggest a model or method
with more predictive skill. Safeeq and Fares (2012) emphasize
that value of PBIAS more than 15% and less than 25% was
considered an indicator of average performance; however, a
value between 10% and 15% indicates a good performance,
and a value less than 10% indicates a very good performance.
As it can be seen, model efficiency using PBIAS is higher for
data-driven models as compared to the use of empirical
methods in both training and testing period of each group
(Fig. 9). The model performance of ET_MLP and ET_RBF
in the entire training and testing period is considered “very
good” on the basis of the PBIAS values vary between 0 and
−2%, respectively (Fig. 9). Celestin et al. (2020) found that the
World Meteorological Organization (WMO) and the
Mahringer (MAHR) models performed well with monthly
data compared to the PM FAO-56 model with PBIAS of
−2.5% and −2.6% after the calibration period, respectively.
With regard to PBIAS, The ET_Thor method provided the
highest PBIAS values in all group in both periods. From the
MAD, d, and NSE perspective, ET_Thor shows acceptable
performance in both training and testing periods (Tables 4,
5, and 6). However, the maximum RMSE and MAD values
are exhibited by ET_Har method in non-group in both periods
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Fig. 8 Residuals and cumulative
residuals graphs for testing
period. a Annual average
residuals of empirical methods. b
Annual average residuals of data-
driven models. c Cumulative re-
siduals graph of ET_MLP. d
Cumulative residuals graph of
ET_PM
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(Table 4). ET_BC, ET_Mak, ET_PM, ET_SVM, and
ET_RBF are underestimating the reference evapotranspiration
for all elevation groups and regional average (non-group) in
training and testing period. ET_MLP in regional average and
ET_MLR in G2 group are equally suitable with 0% PBIAS,
and they could also be used satisfactorily to estimate reference
evapotranspiration for the study area.

For further analysis, the developed predictive models of
reference evapotranspiration are examined by Taylor diagram
(Taylor 2001). Taylor diagram classifies the results of
methods or models by using standard deviation and the R2

of observed and simulated data. The radial coordinate shows
the value of standard deviation; the concentric semi-circles
represent the magnitude of standard deviation, and the angular
coordinate indicates the values of R2. Estimated ETo by

different methods and models that run it with observed ETo

will lie nearest to the point marked “reference” on the x-axis.
Figures 10 and 11 display the standard deviation and R2 (with
observed ETo) for the results of different equation methods
and models calculated from the various inputs, respectively.
The data-driven models (Fig. 11), in general, are produced
more accurately than empirical methods (Fig. 10), with the
latter having a relatively low d and NSE values (Table 7).
On the basis of the results shown in the Taylor diagram, four
elevation groups for the variables are determined by concen-
tric analysis, which falls in the range of 78–86, with respect to
ideal model points of both empirical methods and data-driven
models in testing period. The ET_PM for the Taylor diagram
is composed of the models that perform highly for estimated
ETo (Fig. 10). Taylor diagram analysis reveals that ET_MLP
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Empirical methods in training
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has the R2 (range between 0.997 and 0.999), lowest standard
deviation (range between 74 and 80 mm/month), and smallest
RMSE (range between 0.04 and 5.71, and captures observa-
tions better than all data-driven models in all group.

Conclusion

The performances of ETo, developed based on two main ap-
proaches (regional average and elevation group) to the esti-
mated ETo produced by the five different empirical methods
(ET_Har, ET_PM, ET_Mak, ET_Thor, and ET_BC) and the
six different data-driven models (ET_MLP, ET_RBF,
ET_SVM, ET_RF, and ET_MLR), were assessed for the
Central Anatolian Region of Turkey. The performances of
the empirical methods and data-driven models are reported
to provide evidence for suitable techniques for estimating
ETo values.

Monthly selected climatic data variables of 45 meteorolog-
ical stations, over a period of 35 years (1979–2013) were used

in this study. This study conducted by two stages of data
preparation. In the first stage, the average of all parameter
values obtained from 45 meteorology stations was evaluated.
In the second step, the data set was divided into 4 elevation
groups. Correlation of the parameters with ETo was taken into
account in the selection of input parameters. Climatic vari-
ables considered in all stations showed that ETo is strongly
and positively correlated with Tmax, RHavg, and RS, with a R

2

equal to 0.84, 0.68, and 0.79, respectively. It has been found
that these three variables can be effective in modeling evapo-
transpiration in a semi-arid region. Therefore, these variables
should be included in long-term monitoring programs, espe-
cially in agricultural planning and water resources manage-
ment in semi-arid regions due to evapotranspiration is an es-
sential factor that causes a great change in the water budget,
especially in fragile semi-arid ecosystems.

Based on the performance of a grouping result evaluations,
it is found that the MLP and SVM models in G2 (850–1100
m) can be employed successfully in modeling the monthly
mean ETo, because both approaches yield better estimates

(a) (b)

(c) (d)

Fig. 10 Taylor diagram of the
correlation coefficient (r), the
centered root mean square
difference, and standard deviation
between estimated ETo of
different groups (a G1, b G2, c
G3, and d G4) by using empirical
methods and ETo values in testing
period
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with high value of R2, compared to other empirical methods
and yet MLP being slightly more successful than SVM.
Therefore, this research suggests that a reference evapotrans-
piration in semi-arid region can be modeled using only a few
input parameters with the help of a simple but effective data-
driven models. We find that Penman method has achieved the
highest accuracy in terms of all performance criteria among
the empirical methods. The Penman method is suitable for
estimating the reference evapotranspiration, and it can be used
reliably in semi-arid areas.

From this study, it can be concluded that in case a single
climatic variable such as U or sunshine duration is missing,
the alternative models can be used for computing accurate PM
FAO-56 model semi-arid environments. The results are en-
couraging and suggest an easy-to-use and accurate estimate
to assess reference evapotranspiration model as an alternative
to empirical approaches, because the advantage of the soft
computational methods lies in the possibility of having

improvements in the performance criteria by modifying the
important tunable parameters.
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