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Abstract
In the present study, the output of several empirical models for estimating solar radiation and the output of a model based on data
obtained from moderate resolution imaging spectroradiometer (MODIS) sensor (parametric model) are compared with ground
observational station to introduce a suitable algorithm for estimating solar radiation in the studied stations. For this purpose, first
the selected empirical models were calibrated according to the climatic conditions of the study area and then used to estimate solar
radiation. To this aim, empirical models were evaluated based on suitably partitioned datasets. 75% of the total data were utilized
for training phase and the remaining 25% data were used for testing phase and conducting statistical analysis. In the next step, the
parametric model (SBDART) were tested and used for predicting the solar radiation data in target stations. The results indicated
that the R2 value of models vary between 0.25 to 0.95, most of which are related to the Santa Barbara DISORT (discrete ordinates
radiative transfer) atmospheric radiative transfer (SBDART) (R2=0.95) and calibrated Angstrommodels (R2=0.89), respectively.
The mean absolute percentage error of the SBDART model is significantly different from other models (MAPE=4.3%). After
that, the lowest MAPE (mean absolute percentage error) is related to the Angstrom model (MAPE =5.98%). In addition, the
parametric model is more efficient on cloudy days than on cloudless days so that the calculated RMSE (root mean square error)
and MBE (mean bias error) indices are 9.07 W/m2.day and -0.72 W/m2.day for cloudy days, and 19.77 W/m2.day and 3.60
W/m2.day for cloudless days. In contrast, the empirical Angstrom-Prescott model had better results with observational data on
cloudless days so that the indices were RMSE =43.60W/m2.day andMBE =34.25W/m2.day for cloudy days, and RMSE =29.56
W/m2.day and MBE= 6.19 MJ/m2.day for cloudless days.
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Introduction

Solar energy is considered as one of the most reliable sources
of renewable energy in the world. The development of this

source of energy facilities in a place is possible with the as-
sessments made of the solar energy potential of that place. So,
modeling and predicting the amount of energy emitted from
the sun and high accuracy in evaluating this resource, has
provided an important area of research and accelerates tech-
nology advancement by having a positive impact on
decision-making and reducing uncertainty in development
planning (Deo and Sahin 2017). Unfortunately, due to finan-
cial, technical or organizational constraints, there are no solar
radiation stations in most parts of the world and some existing
radiometers are not accurate enough and their data are errone-
ous. Therefore, in addition to the methods based on the mea-
sured values of radiation, several other methods including the
use of artificial intelligence (Deo and Sahin 2017; Ghimire
et al. 2019; Mohammadi and Aghashariatmadari 2020), satel-
lite images (Qin et al. 2011; Kim and Liang 2010), physical
and statistical modeling based on the measured values of
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meteorological factors (El-Metwally 2004; Liu et al. 2010;
Demirhan et al. 2013; Sun et al. 2015), neural networks
(Alsina et al. 2016; Renno et al. 2015) and radiation transfer
models (Chen et al. 2016; Benajes et al. 2015; Chen et al.
2015) were proposed. Also, several large-scale models are
used to fill the data measurement gap, extend data measure-
ment periods, and estimate radiation at other meteorological
stations where radiation is not measured. Although the data
sets provided by this method contain a large amount of mea-
sured radiation data, their main part consists of modeled
values (Muneer 2004). Additionally, over the years, remote
sensing, satellites, and their data have revolutionized the field
of meteorological and climatological studies. The ability to
collect continuous temporal and spatial signals above the at-
mosphere is considered as one of the advantages of remote
sensing that makes it possible to estimate radiation in remote
areas where radiation stations are scattered. Another strength
of satellite methods is their ability to accurately plot relative
differences between adjacent areas, although absolute accura-
cy may not be perfect for each point. However, this method
was proven to be a reliable reference for describing the micro-
climatic properties of radiant energy.

Despite the importance of solar radiation on ground pro-
cesses, little effort has been made to develop and produce
high-resolution geographical maps around the world. Due to
the limitations of terrestrial database models, a number of
models were developed to estimate radiation on the planet’s
horizontal surfaces using solar or terrestrial satellites at differ-
ent resolutions (Journee and Bertrand 2010). Many models of
radiation estimation based on satellite imagery can produce
daily radiation with relatively high accuracy compared to
Pyranometric data. There are generally three different ways
to estimate solar radiation from satellite data: A) Statistical
modeling such as the HELIOSAT model for METEOSAT
satellites (Rigollier et al. 2004) and the cloud-cover index
model (Perez et al. 2002); B) physical modeling using a com-
plex radiation transfer model (Kim and Liang 2010); and C)
parameterized radiation transmission model (Yang et al.
2006). So far, the models designed to estimate radiation from
satellite observations are in a diverse range from purely phys-
ical models to absolute empirical models including the prac-
tical model proposed by Perez et al. (2002) and Janjai et al.
(2005). Pure physical models attempt to describe radiation
reaching the Earth’s surface by the radiation transfer equation,
which requires complete knowledge of tuning and calibration
of satellite images and accurate information of the constituents
of the atmosphere (Raschke and Preuss 1979; Gautier et al.
1980; Schillings et al. 2004a, b). Empirical/statistical models,
on the other hand, can involve establishing a simple regression
relationship between satellite observational values and terres-
trial measurements (Tarpley 1979; Cano et al. 1986). Further,
hybrid models use the approach of simple physical models
with some fitting to the observations. Perez et al. (1997) and

Zelenka et al. (1999) indicated that solar radiation data esti-
mated by satellite imagery are more accurate than data inter-
polated through modern radiometric network measurements.
In addition, Perez et al. (2002) reported that hourly satellite
estimates are more accurate than empirical methods based on
ground station measurements at a distance of 25 km from each
other compared to field measurements. Lotfi (2012) estimated
the net radiation values of Fars province using MODIS sensor
images and showed that the. Based on the results, the estimat-
ed values show a ±13% error and concluded that this error rate
is acceptable given the area of satellite cells (6.5 ha). Zhang
et al. (2014) calculated the total amount of solar radiation for
the Tibetan Plateau using MODIS sensor data and hybrid
parametric model to provide the results with more spatial res-
olution for short-wavelength radiation than its predecessors.
Ryu et al. (2018) combined an atmospheric radiative transfer
model with an artificial neural network (ANN) to estimate
shortwave solar radiation. A series of MODIS products were
used as inputs to run the ANN. Results showed that the devel-
oped products will be useful in solar energy investigations.
Ghimire et al. (2019) designed algorithms based on deep
belief and neural networks and trained them with MODIS
satellite data in Australia to predict the monthly ground solar
radiation. Results showed that the proposed method can be
adopted to estimate solar radiation in regions where it is
impossible to setting up monitoring data acquisition
instruments. Bamehr and Sabetghadam (2021) developed
models using multiple linear regression method and artificial
neural networks using some atmospheric properties extracted
from MODIS and ozone monitoring instrument (OMI) in
Mashhad. Results indicated that the estimates were more ac-
curate using the artificial neural networks than the regression
method and in both methods, the accuracy of estimation im-
proves when cloud fraction is used as a predictor. Other stud-
ies in this area were conducted by López and Batlles (2014),
Qin et al. (2011) and Gao et al. (2015).

Iran is among the countries with high received of solar
radiation, which makes it possible to provide a significant part
of its energy demands through this clean energy source
(Aghashariatmadari 2011). However, the country’s radiation
network is weak and the number of radiation stations, despite
the great importance of this variable, is very small and the
stations are scattered throughout the country. The use of ex-
perimental models to estimate radiation is common, but these
models, despite their sometimes high errors, need to achieve
somemeteorological variables in the study period. By increas-
ing the access to satellite data, an opportunity becomes avail-
able which should be used to the fullest, especially for an
important variable such as solar radiation, which is an input
for a large number of climatic and global models. The ability
to collect continuous temporal and spatial signals above the
atmosphere is considered as one of the advantages of remote
sensing and satellite images. Moreover, the minimum data
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requirement is considered as another key advantages of this
method, especially in data-scarce regions. This feature makes
it possible to estimate radiation in remote areas where radia-
tion stations are scattered. Accordingly, the importance of the
present study is to evaluate and compare the efficiency of solar
radiation empirical models on the ground with a selected sat-
ellite based model named SBDART presented by Ricchiazzi
et al. 1998. In this regard, the data measured in four selected
radiometric stations are compared with the radiation values
obtained from the implementation of algorithms based on sat-
ellite images and a suitable algorithm for estimating radiation
in the studied stations is introduced based on the analysis of
statistical measures.

Materials and method

Study area and statistical specifications of the data

In this study, the synoptic stations in Zanjan, Kerman,
Mashhad, and Yazd were selected as study stations, and the
studies were performed from statistical quality control to the
extraction of relationships using daily data from these stations
during 2007–2015.

Daily weather data of four synoptic stations of Kerman
(latitude 30.25°N, longitude 56.97°E, altitude 1753.8 meter
above sea level), Mashhad (latitude 36.27°N, longitude
59.63°E, altitude 999.2 m asl), Zanjan (latitude 36.68°N, lon-
gitude 48.48°E, altitude 1663.0 m asl) and Yazd (latitude
31.90°N, longitude 54.28°E, altitude 1237.2 m asl) have been
received in the 8-year period of 2015–2007 through the
Iranian Meteorological Organization (IRIMO) (Fig. 1 and
Table 1). The climate of stations varies from arid to semi-arid.
Zanjan station represent the semi-arid climate type based on
De Martonne's classification. The annual precipitation of the
city is about 303.5 mm and the minimum and maximummean
annual temperatures are about 4.3°C and 18.4 °C, respective-
ly. Kerman station represent the arid climate type. The annual

precipitation of the city is about 142.5 mm and the minimum
and maximum mean annual temperatures are about 7.1°C and
24.9°C, respectively. Mashhad is another station that its daily
mean annual temperature amplitude is about 13.8°C. The total
sum of its precipitation is 246.9 mm and located in semi-arid
climate. The final station is Yazd. Its climate is defined by dry.
The annual precipitation of the city is about 55.3 mm on av-
erage, and the maximum and minimum annual temperatures
are about 26.8°C and 12.2°C, respectively. The predominant
common crop of the studied cities, in addition to their specific
crops, is wheat.

The long-term statistical period of the radiation data is con-
sidered as a basis for selecting these stations. At this point,
first, the long-term statistics of the meteorological stations on
a daily basis were received from the meteorological organiza-
tion and a yearly-classified database was formed. This bank
includes data on total solar radiation (Rs), radiation received
on the horizontal surface above the atmosphere (R0), sunshine
hour fraction, horizontal visibility and cloudiness. Data
quality control was performed based on Moradi et al. (2009)
quality control algorithm. Only the variables related to radia-
tion (total radiation and number of hours of sunshine) of all
meteorological data received had statistical deficiencies.
Therefore, regarding the purpose of the study, the quality con-
trol of radiation statistics was performed with high accuracy.

Empirical models

Angstrom relationship (1924)

Angstrom Relationship is a simple linear relation which ex-
presses the amount of sunlight on a horizontal surface by its
ratio to the amount of radiation on a clear, cloudless day with a
clear sky. This relationship is the basis of many radiation
estimation models. In his proposed relation, Angstrom intro-

duces the radiation fraction (Rs Rc ) as a linear function of the

Table 1 Statistical specifications of the data used in the studied stations

舃Station 舃Latitude 舃Altitude 舃Elevation
(m)

舃Major
Cultivation

舃Minimum
Temperature
(∘c)

舃Maximum
Temperature
(∘c)

舃Precipitation
(mm)

舃Relative
Humidity
(%)

舃Sunshine
hour (hr)

舃Climate type
(Demartone)

舃Zanjan 舃36.68 舃48.48 舃1663.0 舃Wheat, apple,
grape, Olive

舃4.3 舃18.4 舃303.5 舃56 舃1810.9 舃Semi-arid

舃Kerman 舃30.25 舃56.97 舃1753.8 舃Wheat, Dates,
pistachios

舃7.1 舃24.9 舃142.5 舃26 舃2398.4 舃Arid

舃Mashhad 舃36.27 舃59.63 舃999.2 舃Wheat, barley,
canola,
saffron

舃7.6 舃21.4 舃246.9 舃48 舃2497.8 舃Semi-arid

舃Yazd 舃31.90 舃54.28 舃1237.2 舃Pomegranate,
wheat,
pistachio

舃12.2 舃26.8 舃55.3 舃27.5 舃2040.7 舃Arid
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fraction of sunshine hours (nN ).

Rs

Rc
¼ f

n
N

� �
¼ aþ b

n
N

ð1Þ

whereRc is the total radiation on a clear, cloudless day with a
clear sky; Rsis the total radiation received from the sun on a
horizontal surface on the earth's surface; n is the actual number
of hours of solar radiation,Nis the number of theoretical hours
of solar radiation calculated from astronomical relationships,
and, a, bare the empirical coefficients which should be calcu-
lated with the help of the statistical period of measured radia-
tion data and solar hours. The coefficients used in the
Angstrom formula vary depending on atmospheric conditions
(humidity, dust, etc.) and solar radiation (latitude and month
of the year).

These relationships are used when the amount of Rc (radi-
ation received on the horizontal surface of the earth in perfect-
ly clear and transparent sky conditions) is known, which is
difficult to determine. In order to overcome this limitation,
several researchers suggested the use of received radiation
on the horizontal surface above the atmosphere (R0) instead
of (Rc).

RS

R0
¼ 0:22þ 0:54

n

N

� �
ð2Þ

Accordingly, the equation introduced by Angstrom was
first modified in 1940 by Prescott. In his proposed equation,
Prescott (1940) substituted the radiation received from the sun
above the atmosphere on the horizontal surfaces for the radi-
ation in clear and transparent sky conditions, and the coeffi-
cients a, bwere 0.22 and 0.54, respectively, by using the data
of Mont weather station (USA). The Angstrom equation was
widely used after the Prescot t correct ion as the
Angstrom-Prescott equation.

In the cases which radiation data are not available and
calibration is not performed to correct the parameters, the
values a = 0.25, b = 0.5 are used (Allen et al. 1998).
Considering the importance of pure solar radiation in the
equation used to estimate evapotranspiration and water
requirement of plants and other applications of solar
radiation, it is necessary to calibrate and define the values of
coefficients in each area according to the conditions of that
area.

Swartman and Ogunlade model

Swartman and Ogunlade (1967) investigated the effect of rel-
ative humidity on the received radiation and introduced some
equation in this respect. They showed that these equations
give better estimates of solar radiation intensity than the

Fig. 1 Solar radiation stations’ distribution
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single-parameter relationship in tropical countries.

Rs ¼ 18:765
n
N

� �0:36
RHð Þ−0:15 ð3Þ

Rs ¼ 14:451þ 174:593
n
N

� �
−10:137 RHð Þ ð4Þ

where RHis the relative humidity.

Hargreaves and Samani model

Hargreaves and Samani (1982) presented a simple empirical
model to simulate daily solar radiation to estimate evapotrans-
piration when only minimum and maximum temperatures are
available. They hypothesized that the transience of atmo-
sphere on a given day was proportional to the second root of
the difference between theminimum andmaximum daily tem-
peratures (Celsius):

Rs ¼ Kr Tmax−Tminð Þ0:5Rn ð5Þ
where Rn is the total radiation received from the sun on a
horizontal surface above the earth atmosphere, Rs indicates
the total radiation received from the sun on a horizontal sur-
face on the earth surface, and Kr is considered as an experi-
mental constant to consider the effect of dust in the atmo-
sphere and the change in water vapor pressure with altitude.

Gopinathan model

Gopinathan (1988) proposed the equations to estimate the
regression coefficientsaand bof angstrom type correlations
for predicting monthly mean daily global solar radiation.
These equations developed using average monthly values of

altitude (m), n
N and RS R0 variables with the aim to be applica-

ble to all parts of the world to compute global solar radiation.

Rs

Rn
¼ aþ b

n

N

� �
ð6Þ

a ¼ 0:265þ 0:070h−0:135
n
N

� �
ð7Þ

b ¼ 0:401þ 0:108h−0:325
n
N

� �
ð8Þ

El-Metwally model

El-Metwal ly (2004) proposed the 4 Parameter
Polynomial model in Egypt . The methods use
ground-based measurements of maximum and minimum
temperature, daily mean of cloud cover and extraterres-
trial global radiation.

Rs ¼ aRo þ bTmax þ cTmin þ dcm þ e ð9Þ

Where a, b, c, d, e are the experimental constants,
TmaxandTmin the air temperature maximum and minimum
(∘c) and cm is average cloud cover (Okta).

Garg model

Water vapor affects the permeability of the atmosphere.
Calculations by Tamm and Thormalla (1992) indicated that
increasing water vapor from 1 to 4 cm of water in a vertical bar
reduces the average daily total radiation in a cloudless sky by
5.6%. Accordingly, Garg and Garg (1982) introduced their
model by involving water vapor content in the structure of
the relationship:

RS

R0
¼ Eþ F

n

N

� �
þ H:wat

� �
ð10Þ

In this regard, RSthe average monthly total solar radiation
(Mjm−2day−1), wat is the content of atmospheric water vapor
per unit volume of air (grm−3)and E, F, Hare the coefficients
of the relationship. wat is calculated based on the equation
suggested by Hussain (1984):

wat ¼ RH 4:7923þ 0:3647Ta þ 0:0055T2
a þ 0:0003T3

a

� � ð11Þ

where RH indicates relative humidity (%) and Tais average air
temperature (degrees Celsius).

Finally, the coefficients of selected empirical models of
radiation estimation were calibrated based on meteorological
and geographical conditions in Iran (Table 2).

MODIS sensor data

Data regarding measured radiation on the ground was used as
well as MODIS sensor data. MODIS sensors are installed on
Aqua and Terra satellites. The images used by the MODIS
sensor of Aqua and Terra satellites in the form of MODIS
products were received in the 8-year period of 2015–2007
through the websites http://modis.gsfc.nasa.gov and https://
reverb.echo.nasa.gov. Due to the two sun-synchronous satel-
lites, the Terra satellite images were taken at 10:30 a.m. and
the Aqua satellite images at 13:30 local time on a daily basis.
The studied days were selected from the days approved in the
quality control tests in such a way that at least one day as its
representative was checked for each month between mid-
March and mid-August for a period of eight years. Satellite
data were extracted from level-2 MODIS sensor products
stored in HDF files, from which atmospheric and terrestrial
specifications can be obtained. The total possible amount of
precipitable water from the atmosphere was extracted from the
data (MOD/MYD05) and the visual thickness of the cloud
was derived from the products (MOD/MYD06). Similarly,
MOD/MYD04 data were used due to lack of observation of
variables such as aerosol values. In the case of high
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uncertainty in any of the required variables, the values are
obtained from MOD / MYD08 products.

All of these files are saved in either GRID or Swath.
After downloading the desired data, the obtained files
with EOS-HDF extension are processed by HEG
V2.12 software under Linux and the desired information
layers are selected. These layers were then extracted
into the Bash environment using the MODIStsp package
under the R programming language and converted to
files with the TIFF extension. All MODIS data were
geo-registered and resampled by the nearest neighbor-
hood interpolation method, which was also performed
using HEG V2.12. The required information was ex-
tracted from the layers using arcpy and os modules
under the Python 2.7 programming language.

The total amount of daily radiation is estimated by
determining the amount of momentary radiation at
half-hour intervals using the Santa Barbara DISORT
Atmospheric Radiative Transfer model. The momentary
values in this model have an internal database including
parameters such as diffuse reflection and absorption for
clouds with liquid and solid droplets under different
conditions. This database is based on the Mie
Scattering Code and ranges from an effective radius of
2 to 128 micrometers. This code, which is actually the
atmospheric transfer equation of radiation and is written
in FORTRAN language, has physical models for calcu-
lating radiation under the influence of standard atmo-
sphere, cloud, haze and surface (Liu et al. 2010). In
this study, the effective radius values according to Liu
et al. (2010) are considered as 10 μm for water droplets
in the cloud and 65 μm for ice droplets belonging to
the cloud, and the model with 4 flows by 0.005
Micrometer separation is implemented. Ozone and haze
are 0.349 atm cm for the rural type. The short wave-
length range is between 0.3 and 3 micrometers in pro-
portion to the Pyranometer used in the stations. For
cloudy skies, the total atmospheric water vapor is as-
sumed to be 1.418 gr/cc, and the cloud cover is

homogeneously composed of parallel plates and is con-
sidered static during the morning and evening.

Based on these values and variables monitored at ground
stations, the amount of momentary radiation at half-hour inter-
vals is calculated. According to the surface altitude, atmospher-
ic condition, solar tilt angle, and albedo of the earth surface for a
given geographical position, the SBDART model is used to
calculate direct and scattered radiation and the amounts of ra-
diation in the form of downward shortwave flux for clear and
cloudy skies are obtained. Atmospheric conditions include vis-
ibility, total water vapor, and visual thickness of the cloud. The
model with a significant number of variables is designed so that
there is a logical value instead of each variable which is not
defined. The variables used in the present study includes
Atmospheric Water Vapor (a.m. and p.m.), Cloud’s Optical
Depth (a.m. and p.m.), White sky albedo, Black sky albedo,
Horizontal visibility and Aerosol for Kerman, Mashhad, Yazd
and Zanjan in the 8-year period of 2015-2007.

These values are all obtained from MODIS products,
except for the horizontal visibility variable, for which data
were from the Meteorological Organization. These values
indicate the atmospheric characteristics at two time points
per day (10:30 and 13:30). The inclination angle of sun
was also calculated for all intervals. The daily albedos
were calculated by using interpolation operations between
the two values of Black-sky Albedo and White-sky
Albedo, as well, according to the change in the Zenith
angle. The two partial values of albedo represent the albe-
do for the direct radiation and indirect radiation, respec-
tively. In this way, each day is divided into three parts
including sunrise up to 10:30 local time (Terra satellite
transit time), 10:30 to 13:30 local time (Aqua transit time),
and 13:30 until sunset. Then, the atmospheric characteris-
tics of Terra and Aqua satellites were used for sections 1
and 3, while an interpolation was used for section 2. Since
the maximum amount of radiation occurs in section 2, this
interpolation increases the accuracy of the model.

The introduced empirical models were implemented on
study stations for the selected days, as well. Observational

Table 2 Calibrated models in
Iran Radiation Measurement
Network

舃Model Name 舃Relationship

舃Angstrom (FAO) 舃
Rs R0 ¼ 0:25þ 0:5 n

N

舃Angstrom (calibrated) 舃
Rs R0 ¼ 0:274þ 0:458 n

N

舃Swartman 舃Rs ¼ 288þ 433 n
N−2:96RH

舃Gopinathan 舃
Rs R0 ¼ 0:194þ 0:000075z−0:101 n

N

� � þ 0:498þ 0:00007z−0:105 n
N

� �
n
N

� �

舃El-Metwally 舃Rs=0.586R0+1.74Tmax−4.45Tmin−355dcm+133
舃Hargreaves and Samani 舃

Rs R0 ¼ 0:00185 Tmax−Tminð Þ½ 2−0:0433 Tmax−Tminð Þ þ0:4023� Tmax−Tminð Þ
舃Garg 舃

Rs R0 ¼ 0:348þ 0:448 n
N−0:000083wat

Rs total radiation on a horizontal surface on the Earth’s surface;n Actual number of solar radiation hours;N
theoretical hours of solar radiation; RH relative humidity; TmaxandTmin maximum and minimum air tempera-
tures;cm average cloud cover (Okta); wat content of atmospheric water vapor per unit volume of air
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data were used for the valuesn/N, which are shown as Nn.
Daily average cloud fraction (CF) data were used for estimat-
ing daily radiation by using Angstrom Prescott empirical
model and the values of MOD/MYD08_D3 products were
obtained. First, the images related to 50 days were
downloaded for each station and their CF values were extract-
ed. Since two values (morning and evening) were obtained for
each day, the average for each day was taken. During the next
step, by establishing a regression relation, an equation was
obtained for calculating the value n/N using CF. The relations
obtained for each station are presented in Table 3. Then, on the
studied days, daily radiation values were obtained through the
Angstrom-Prescott empirical model using CF values.
The required coefficients of the Angstrom-Prescott em-
pirical model for each station are considered according
to Aghashariatmadari (2011).

Performance evaluation indices

There are various error indicators used to compare and assess
the performance of models. In this research, in order to eval-
uate the performance of models against measured data, the
most- routinely used indices including coefficient of determi-
nation (R2), the mean absolute error (MAE), the root mean
square error (RMSE), and the relative root mean square error
(RRMSE) were used as follows:

(1) Root-Mean-Square Error (RMSE):

RMSE ¼ ∑n
1 Oi−Pið Þ2

h i
=n

n o1=2 ð12Þ

(2) Mean Bias Error (MBE)

MBE ¼ ∑n
1 Oi−Pið Þ� �

=n ð13Þ

(3) Coefficient of determination (R2)

R2 ¼ 1−
RMSE2

σ2
ð14Þ

(4) Mean Absolute Error (MAE)

MAE ¼ 1

n
∑n

1 Oi−Pij j ð15Þ

(5) Relative Root Mean Square Error (RRMSE)

RRMSE ¼
∑n

1 Oi−Pið Þ2
h i

=n
n o1=2

1
�
n∑

n
1Pi

� 100 ð16Þ

(6) Mean Absolute Percentage Error (MAPE):

MAPE ¼ 1

n
∑
n

i¼1

Pi−Oi

Oi

				
				� 100 ð17Þ

where Pi indicates the estimated daily global solar radiation,
Oi represents the observed values, σ is describes the standard
deviation, and n considered as the number of the data pairs.
The RMSE is a measure of random errors, which represents
some information about the short-term performance of the
regression. Knowing about the amount of RMSE and MAE
is important because they represent errors in the units of the
studied variables. The values of 1 in R2 represent the better
performance and perfect fit of the model, which is contrari-
wise in the case of RMSE and MAE indices (Badescu 2014).
The MAPE indicates the mean absolute percentage difference
between the estimated and measured data. Also, the RRMSE
is obtained by dividing the root mean square error to the
average of observed or measured data. Some studies such as
Deo et al. (2018) and Ghorbani et al. (2018) indicated that
different limits of this index is used to determine the accuracy
of the models such as excellent for RRMSE<10%, good for
10%<RRMSE<20%, fair for 20%<RRMSE<30%, and poor
for RRMSE>30%.

Results and discussion

In this study, the efficiency of a radiation estimation model
was investigated by using satellite images compared to the
Angst rom-Prescot t empir ica l re la t ion and eight
selected empirical models of solar radiation estimation
( A n g s t r om - P r e s c o t t m o d e l ) a n d c a l i b r a t e d
Angstrom-Prescott model, Swartman, Hargreaves &
Samani, Gopinathan, Garg, and El-Metwally). After
collecting data and preparing inputs, the models were im-
plemented and the desired statistical indicators were calcu-
lated according to the amount of radiation measured with
Pyranometers.

Table 3 Regression relations between the average cloud fraction and
sunny hours

舃Station 舃Regression relationship 舃R2

舃Zanjan 舃CF=-1.103Nn+1.0433 舃0.83

舃Kerman 舃CF=-1.166Nn+1.069 舃0.84

舃Mashhad 舃CF=-1.116Nn+1.1127 舃0.61

舃Yazd 舃CF=-1.13Nn+1.07 舃0.76
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Evaluation the efficiency of models

Figure 2 shows the comparison between the calculated and
estimated values of radiation using empirical models and para-
metric model (SBDART) and the values of statistical error
indices of the studied models in general and by station are
presented in Table 4 and Fig. 2.

As illustrated in Fig. 2 and Table 4, the coefficients of
determination vary between 0.25 and 0.95, most of which

are related to the SBDART (Parametric) model and the least
of which are related to the Hargreaves model. After SBDART
model, the highest R2 values are related to calibrated
Angstrom and Angstrom-FAOmodels (R2 =0.89), Garg mod-
el (R2 = 0.88) andGopinathanmodel (R2 = 0.86), respectively.
In addition, the mean absolute error percentage of the
SBDART model is significantly different from other models
(MAPE = 4.3%). After the parametric model, the lowest
MAPE is related to the Angstrom model (MAPE = 5.98%).

Table 4 Calculated statistical indices of models

舃Calibrated Angstrom 舃SBDART 舃Swartman 舃Hargreaves 舃Gopinathan 舃El-
Metwally

舃Garg 舃FAO
舃Angstrom

舃Zanjan 舃RMSE (W/m2) 舃18.1 舃10.4 舃79.5 舃77.4 舃34.7 舃1162.7 舃34.7 舃73.1

舃MBE(W/m2) 舃3.6 舃-1.3 舃-61.9 舃-13.0 舃23.2 舃920.0 舃23.2 舃55.8

舃t 舃0.7 舃0.46 舃4.5 舃0.6 舃3.2 舃4.7 舃3.3 舃30.7

舃R2
舃0.90 舃0.97 舃0.83 舃0.42 舃0.87 舃0.73 舃0.87 舃0.85

舃MAPE% 舃7.4 舃3.9 舃36.3 舃17.3 舃12.7 舃624.2 舃12.7 舃19.8

舃MAE(W/m2) 舃16.6 舃10.97 舃78.7 舃44.2 舃29.7 舃1170.9 舃29.7 舃55.8

舃RRMSE% 舃7.1 舃6 舃46.3 舃45.1 舃20.2 舃676.7 舃20.2 舃42.6

舃Yazd 舃RMSE (W/m2) 舃7.92 舃10.38 舃128.5 舃41.92 舃36.31 舃1116.9 舃30.59 舃35.35

舃MBE(W/m2) 舃0.11 舃2.36 舃-102.5 舃27.56 舃25.47 舃814.01 舃22.86 舃27.62

舃t 舃0.05 舃0.87 舃4.94 舃3.26 舃3.68 舃3.98 舃4.2 舃4.68

舃R2
舃0.86 舃0.97 舃0.89 舃0.64 舃0.92 舃0.73 舃0.86 舃0.86

舃MAPE% 舃14.79 舃3.9 舃44.2 舃23.9 舃13.4 舃495.1 舃11.6 舃15.09

舃MAE(W/m2) 舃7.54 舃10.89 舃139.77 舃39.82 舃36.37 舃1110.02 舃31.17 舃7.96

舃RRMSE% 舃1.98 舃4.08 舃50.5 舃16.5 舃14.3 舃439.3 舃12.03 舃13.9

舃Mashhad 舃RMSE (W/m2) 舃23.1 舃13.13 舃113.0 舃63.5 舃40.6 舃1272.6 舃37.9 舃44.2

舃MBE(W/m2) 舃-0.2 舃2.55 舃-107.8 舃33.1 舃29.5 舃1155.0 舃29.5 舃38.3

舃t 舃0.0 舃0.59 舃9.5 舃1.8 舃3.2 舃15.4 舃3.7 舃5.2

舃R2
舃0.86 舃0.96 舃0.89 舃0.23 舃0.84 舃0.62 舃0.86 舃0.86

舃MAPE% 舃14.8 舃5.03 舃44.2 舃23.9 舃14.8 舃446.4 舃13.2 舃15.1

舃MAE(W/m2) 舃20.0 舃11.37 舃98.0 舃51.2 舃33.9 舃1155.0 舃30.3 舃7.4

舃RRMSE% 舃9.3 舃5.8 舃5.0 舃28.1 舃18.0 舃20.0 舃16.8 舃19.6

舃Kerman 舃RMSE (W/m2) 舃21.1 舃14.46 舃126.8 舃99.5 舃45.5 舃1086.4 舃42.7 舃22.7

舃MBE(W/m2) 舃5.8 舃-2.53 舃-124.8 舃-57.7 舃37.3 舃981.8 舃36.5 舃9.5

舃t 舃0.9 舃0.56 舃15.7 舃2.3 舃4.4 舃6.7 舃5.2 舃3.3

舃R2
舃0.89 舃0.89 舃0.89 舃0.42 舃0.83 舃0.53 舃0.86 舃0.86

舃MAPE% 舃7.2 舃4.061 舃46.7 舃27.4 舃14.5 舃428.9 舃14.0 舃16.7

舃MAE(W/m2) 舃17.8 舃11.16 舃124.4 舃73.6 舃40.1 舃981.8 舃38.0 舃9.5

舃RRMSE% 舃8.1 舃5.5 舃48.6 舃38.1 舃17.4 舃4.2 舃16.3 舃8.7

舃Total 舃RMSE (W/m2) 舃19.3 舃13.5 舃126.8 舃81.5 舃40.6 舃1272.6 舃36.9 舃43.3

舃MBE(W/m2) 舃-0.5 舃-0.6 舃-120.8 舃-1.0 舃32.1 舃1155.0 舃30.8 舃38.9

舃t 舃0.2 舃0.3 舃22.5 舃0.1 舃9.2 舃15.4 舃10.8 舃14.6

舃R2
舃0.89 舃0.95 舃0.83 舃0.25 舃0.86 舃0.62 舃0.88 舃0.89

舃MAPE% 舃6.0 舃4.3 舃46.7 舃23.2 舃13.5 舃446.4 舃12.4 舃15.0

舃MAE(W/m2) 舃15.5 舃11.1 舃120.8 舃60.2 舃35.0 舃1155.0 舃32.1 舃38.9

舃RRMSE% 舃7.5 舃5.2 舃48.9 舃31.5 舃15.7 舃491.2 舃14.2 舃16.7

RMSE root-mean-square error;MBEmean bias error; R2 : coefficient of determination;MAPEmean absolute percentage error;MAEmean absolute error,
and RRMSE relative root mean square
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The MAPE measurement value for other models is higher
than 12% and the highest percentage of mean absolute error
is related to the El-Metwally model with the rate 446.4.
Furthermore, the relative root mean square error (RRMSE)
is equal to 5.2% and 7.5% for the SBDART and calibrated
Angstrom models, respectively. For other statistical error in-
dicators, the SBDART model performs significantly better
than other models.

Figure 2 shows how the calculated data are distributed
around the bisector line. As shown, only the SBDART model
and then the calibrated Angstrom model have little scattering
of points around the bisector line. The highest scatter rate is
related to Hargreaves and El-Metwally models, whose error
indices were higher in Table 4 than other models. The RMSE
values of different models vary based on the overlapped data
of all stations studied in the range 13.5–1272.6 W/m2.day.
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Fig. 2 Output distribution of
models versus the values
observed at the studied stations

Page 9 of 13     1508Arab J Geosci (2021) 14: 1508



At Zanjan station, the RMSE values of different models
change in the range of 10.4-1162.7 W/m2.day. The lowest
mean absolute percentage error (MAPE) is equal to 3.9%
and the highest rate of coefficient of determination (R2) is
equal to 0.97 and both indicators are related to the SBDART
model. The calibrated Angstrom model with values of MAPE
=7.4% and R2 =0.9 after the parametric model has a better
estimate of solar radiation at this station. At Yazd station,
SBDART model with a considerable difference from other
models withMAPE=3.9% and R2=0.97 have the best estimate
of solar radiation in this station. Statistical indices of
SBDART model of Mashhad station indicated a better esti-
mate of this model than other models (MAPE =4.3% and R2

=0.96). In a similar situation for Kerman station, SBDART
model with indices of MAPE =4.7% and R2 =0.95 has better
performance than experimental models. In terms of RMSE
index, the best performance is related to the parametric model,
and the Angstrom-Prescott empirical model using satellite da-
ta has the highest error compared to the studied models like
the coefficient of determination index. This is also not the case
with Kerman station, and seems to be related to the fact that
satellite data related to the daily average cloud fraction (CF) fit
well with sunshine hour data (Table 3).

Combining empirical models and satellite data

The results of statistical analysis of empirical models show
that the increase in model variables does not necessarily in-
crease their accuracy and the estimation of models with less
input such as Angstrom model is more accurate than other
models. On the other hand, as shown in Table 5, by comparing
the three models of Angstrom Prescott based on station obser-
vations, the parametric model and Angstrom based on satellite
data on different days in terms of fraction of sunshine hours
(cloudy and cloudless day), the parametric model is more
efficient on cloudy days than on cloudless days so that the
calculated RMSE and MBE indices for cloudy days are 9.07
W/m2.day and - 0.72 W/m2.day, and are 19.77 W/m2.day and
3.60 W/m2.day, respectively, for sunny days. In contrast, the
empirical Angstrom-Prescott model had better results with
observational data on cloudless days so that the indices were
RMSE = 43.60 W/m2.day and MBE = 34.25 W/m2.day for
cloudy days, and were RMSE = 29.56 W/m2.day and = MBE

= 6.19 W/m2.day for cloudless days. With the calculated in-
dices for the Angstrom-Prescott model with satellite data, it is
not possible to judge whether it is different or insensitive to
cloudy or sunny days. Furthermore, this model has not been
very sensitive to nNchanges.

Sensitivity analysis of models

The sensitivity of empirical solar radiation models to meteo-
rological variables was analyzed. The implemented method is
based on changing the meteorological value by a defined per-
centage steps and computing the corresponding percentage
change in Rs while keeping the other variables constant at
their long-term averages. This was accomplished in the study
area by changing the variables from −20 to + 20% with ± 5%
increments that were deemed to influence Rs. These variables
included: Tmax, Tmin, RHmean%, cloudiness, Hourly Vapor
Pressure (hvp) and sunshine hours.

Figure 3 shows the relative change in Rs due to the relative
change in a selected meteorological variable. As it can be seen
in the figure, in Calibrated Angstrom-FAOmodel, in response
to the change in n/N by 20%, Rs changed about 10%. This
value was about 11% for n/N in main Angstrom-FAO model.
As well as, for Gopinatan model, a 20% change in n/N led to a
7.1% change in Rs. In the case of El-Metwally model, this
value was about 28% for the cloudiness and about 1.1% and
1.4% for Tmax and Tmin, respectively. Also, For Swartman
model, with n/N and RHmean variables, Rs had the highest
sensitivity to n/N with a change of 7%. Furthermore, it can
be seen at the Garg model, in response to the change in hvp by
20%, Rs varied about 30%. This value is about 20% for n/N.
And finally in Hargreaves model the highest changes of Rs is
belong to Tmax by value of 34 % in comparison with 12.5%
variation in response to a 20% change in Tmin.

Conclusion

The present study proposed a satellite based method based on
SBDART algorithm to predict the global solar radiation in
target stations with more accuracy. The ability to collect con-
tinuous temporal and spatial signals above the atmosphere is
considered as one of the advantages of remote sensing and

Table 5 Comparison of models
in different sky conditions in
terms of cloud cover

舃Model 舃Angstrom-Prescott (Satellite
based)

舃Angstrom-Prescott
(observational based)

舃Parametric

舃Nn 舃MBE
(W/m2)

舃RMSE
(W/m2)

舃MBE
(W/m2)

舃RMSE
(W/m2)

舃MBE(W/m2)
(W/m2)

舃RMSE
(W/m2)

舃0.5< 舃19.70 舃41.74 舃34.25 舃43.60 舃-0.72 舃9.07

舃0.5> 舃18.39 舃44.97 舃6.19 舃29.56 舃3.60 舃19.77
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satellite images. Also, the minimum data requirement is con-
sidered as another key advantage of this method, especially in
data-scarce regions. This featuresmakes it possible to estimate
radiation in remote areas where radiation stations are
scattered. In addition to being more accurate nationwide (rath-
er than point-to-point), satellite data have far lower costs. Each
of the two satellite based methods used here have advantages
and disadvantages. The parametric model is accurate for

different sky conditions (R2 = 95% and RRMSE =5.2%) and
only uses satellite data without any need of other meteorolog-
ical data. However, its complexity, having a large number of
input variables, as well as being time consuming (especially
due to the lack of access to high-speed computer systems) are
considered as its weaknesses. On the other hand, the satellite
based Angstrom-Prescott model has no complexity in the pro-
cess and requires a small number of variables thus it can be
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easily used for different areas. This model needs accurate sun-
shine hour’s data and requires calibration of relationship co-
efficients for the study area. However, its lower accuracy rel-
ative to the parametric model (R2 = 0.57 and RRMSE=
16.9%) in some precise applications may not yield good re-
sults. Based on the findings of this study, the proposed satellite
based method is highly efficient in predicting global solar
radiation values. By considering the importance of solar radi-
ation values, the performance of other modern models can be
evaluated for simulating this variable. Due to the difference in
model efficiency in different climatic conditions, it is sug-
gested that the applicability of introduced parametric model
is also evaluated in different climate conditions.
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