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Abstract
Landslides are considered to be the most important and frequent natural events causing considerable damage. Many areas in
Algeria and elsewhere in the world are affected by this type of phenomenon. Located in the Tellian Chain of the Northwest of
Algeria, Fergoug watershed is largely affected by several landslide events that led to (siltation of dams and roads, bridges, and
buildings destruction). The damage cost amounted to hundreds of thousands of dollars and sometimes exceeds the reaction of the
authorities concerned. In order to help local authorities in their prevention approach, a landslide sensitivity map has been realized
using different models: (i) the frequency ratio (FR), (ii) the linear multiple regressions (MLR), and (iii) the information value
model (IVM). The landslide inventory was established and includes 142 landslides and 10 conditioning factors (slope angle,
slope aspect, profile curvature, distance to rivers, roads, faults, earthquakes, land use, lithology, and precipitation). These factors
were prepared from several multisource data sources. The results were validated using the operating characteristic of the receiver
and the areas under the curves obtained using the methods FR, IVM, and MLR are respectively 0.87, 0.83, and 0.81. It is
proposed that the landslide susceptibility map produced from the FR model be more useful for the study area. The results
demonstrate that for the frequency ratio model, the very high, high, moderate, low, and very low susceptibility classes are
58%, 24%, 5%, 2%, and 9.5%, respectively. Almost 73 landslides events are situated along the Fergoug River. These results
could reveal the relative importance of different factors in explaining landslides and help engineers plan land use planning.
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Introduction

Slope movements are considered to be one of the main haz-
ards and risks in mountainous areas (VanWesten et al. 2006).
Among these phenomena, landslides and rock-fall are the
most widespread. They are characterized by the displacement
of a more or less coherent materials (soil, marls, clays ora
mixture of several type of materials) or rocks (blocks, rocks)
along a shear surface induced by gravity effect (Dikau 1999;
Palucis et al. 2018; Chattoraj et al. 2019). These phenomena
can be called as slope failures because the underlying debris
that holds the slope in place fails to maintain stability due to
the large thrust exerted by the mobilized land (Solaimani et al.
2013). Their velocity and intensity may depend on the nature
of the displaced materials as well as the slope gradient
(Mahdadi et al. 2018; Cui et al. 2019). Slow moving land-
slides (i.e., with a velocity of few centimeters per year) can
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seriously damage infrastructures, especially when volumes
are significant (Frattini et al. 2018). Rapid landslides provide
little warning and cause a large impact, especially near devel-
oped areas (Marc et al. 2015; Zygouri and Koukouvelas
2019). Landslides are considered a major risk in the world
and they can be disastrous for human life and property (Van
Westen et al. 2011). According to the rate mortality, these
phenomena represent approximately 9 % of all natural risks
in the world (Mousavi et al. 2011) and cause approximately
1000 deaths per year worldwide and approximately four bil-
lion (dollars) property damage only in the USA (Lee and
Pradhan 2007).

Algeria is one of the countries that are widely affected by
these phenomena. Landslides have seriously affected housing
and various infrastructures (buildings, roads, bridges, dams,
and railways) during the last twenty years (Mahdadi et al.
2018; Karim et al. 2019). Coastal and mountainous zones
are the most landslide prone areas of the country (Lee and
Pradhan 2007). Each year, especially in winter, extreme rain-
falls cause significant landslides affecting the roads in moun-
tainous regions and cause the isolation of several hundred
homes. In recent years, remedial works have been carried
out to repair damages on the roads with hundreds of thousands
dollars spent by the government (Manchar et al. 2018).
Because the potential problems induced by landslides are re-
lated to poor slope planning and little attention by end-users,
the Algerian authorities are warned against the damages in-
duced by landslides and the seriousness of their management
and prevention. Therefore, recently, the authorities have
highlighted the need to consider this hazard in local develop-
ment planning. Some efforts have been made to identify phe-
nomena location, improve the inventory with the characteris-
tic of phenomenon, and prevent their occurrences the main
goal is to produce landslide susceptibility, hazard, and risk
maps for specific areas.

Located in the northern fringe of Algeria, the Fergoug
watershed is very prone to landslides affecting infrastruc-
tures. In order to follow the government instructions and
to improve the landslide mapping practices for regular
objectives, we are interested in how to map landslide sus-
ceptibility with simple data-driven methods based on
available data. The defined methodology should be easily
reproducible and easily understandable by local authori-
ties to be applied on other territories. To carry out this
work, the Fergoug watershed was chosen as a case study
to assess the susceptibility using three methods answering
the above-mentioned points namely: the frequency ratio
method (RF), the value of information method (IVM),
and multiple linear regression method (MLR). After a
sensitivity analysis of the different spatial variables on
the models, the best maps obtained for each approach
are compared through two statistical tests. The results
are discussed in order to choose the most adapted

approach to the local context. The best map obtained
could be used as a basic support for planning small or
large projects while avoiding areas highly exposed to
landslides.

Study area

The Fergoug watershed, covering an area of 169 km2, is lo-
cated in the Beni Chougrane Mountains, which is part of the
western Tellian Chain of Algeria (Fig. 1a). This young moun-
tain area was structured during the Alpine phase and slowly
continues to structure itself (Upper Miocene) (Thomas 1985).
These mountains rise from 50 m (a.s.l.) near Mohamadia from
935 m (a.s.l) near Chareb Errih in the east of Mascara.
Structurally, the two plains (Ghriss and Habra) are separated
by the very tectonized ridge of the Beni-Chougrane mountain-
ous in which the Fergoug watershed is part (Fig. 1a).

The Fergoug watershed is located northeast of the
Tessala Mountains, south of Mohamaddia on the axis of
the Macta River (Fig. 1a). The morphology of the study
area is irregular with mountainous areas on either side of
the Macta River (Fig. 1b). These mountains are cut by a
network of fairly dense rivers sometimes feeding directly
into the Fergoug dam, making this dam the collection
point for rainwater discharged by tributaries of the main
wadi (Fergoug, (Thaghzout and Hammam; Fig. 1c, d).
Among this dense network, it is possible to observe small
plains corresponding to ancient fluvial terraces (Fig. 1b).
These mountains have a typical Tellian direction with an
ENE / WSW orientation coinciding with the anticlinal
fold systems affecting northern Algeria. This area is also
affected by faults of various nature and direction ranging
from N140° (along which the main wadi of Fergoug is
located), N70° to N20°. They are represented respectively
by dextral or senestral strike slip and reverse faults some-
times limiting the folded structures. The anticlines reveal
an ancient core represented by friable Cretaceous forma-
tions, notably marl and marl-limestone (Fig. 2b). In the
center, the lithology consists of friable Miocene rocks
such as marls, sandy clays, clays, and sandstone clays.
These formations are overlain by hard Pliocene rocks
(sand, sandstone, and limestone) forming the main ridges
(Fig. 2a). The soils derived from the weathering of these
soft Miocene materials are rich in swelling clays favorable
to runoff when surface conditions permit (Stark and
Hovius 2001; Zaagane et al. 2015), particularly when
the Mediterranean-influenced climate manifests itself in
the form of violent thunderstorms with intensities greater
than 100 mm h-1. These particular episodes can be fre-
quent especially in autumn and winter when vegetation
cover is very limited (Mekerta et al. 2008).

A characteristic feature of the manifestation of these in-
tense rainfalls on an arid Mediterranean landscape is the
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development of badlands. These erosion processes have been
widely described in the literature and generally attributed to
environmental changes (Cánovas et al., 2017; Mosavi et al.
2018). These changes are induced either by climatic oscilla-
tions or by prioritized human activity, which leads to in-
creased runoff due to vegetation cover degradation (Roose
et al. 1993). These environmental conditions of a degraded
Mediterranean environment are also conducive to the initia-
tion of landslides affecting many infrastructures in two ways:

(i) Directly: for example on the road connecting Mascara to
Mohamadia, many cases of destruction were observed
(Fig. 3). Landslides affect the roadways, generally locat-
ed on slopes more or less steep, mobilizing few part or
large part of the road (Fig. 3a, b, c, d).

(ii) Indirectly: the landslides join the erosion areas along the
banks of the Fergoug River mobilizing a large part of the
land. Materials are transported during floods towards the
Fergoug dam located downstream, thus causing its
silting (Fig. 4). These landslides are triggered in different
environments along the main course of the Fergoug
River on dense forest cover (Fig. 4a, b) or in upstream

tributaries, affecting both bare ground (Fig. 4c) and
ground with temporary vegetation cover (Fig. 4d, e).

Landslide susceptibility mapping:
background and description

The production of a landslide susceptibility maps is the first
step in the landslides risk assessment (Corominas et al. 2014).
Over the past decade, advances in modeling and geographic
information systems (GIS) have provided several of quantita-
tive methods for mapping susceptibility to landslides (Van
Westen et al. 2006). Various quantitative models have been
successfully implemented with several datasets representing
the predisposing factors (Reichenbach et al., 2018). These
models are based on the assumption that landslides follow
common environmental, physio-geographical, and geotechni-
cal behaviors under similar conditions in the past, present, and
future (Ghimire 2011; Corominas et al. 2014). To achieve
correctly a landslide susceptibility map by a quantitative
method, a preliminary stage requires the preparation of a

Fig. 1 Geographic and geomorphologic frameworks of the study area, a:
map showing the western Tellian chain related to the Northern part of
Algeria (small map in the left corner), b: Digital elevation model showing
the topographic features of the study area, the red circles represent the

landslides locations, the white dashed line represents the Sidi Daho
Synclinorium (SNCL SD); c and d: topographic cross section related to
the dashed line in b. The abbreviations FR and FD are respectively
Fergoug River and Fergoug Dam
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database about the landslides, with an inventory compiling
several information (i.e., location, typology, activity, and mor-
phometric indexes) (Zaagane et al. 2015; Thiery et al. 2020)
and different maps representing the predisposing factors.
Once the data prepared, the inventory is confronted with the
different factors listed (Fig. 5) in order to establish the rela-
tionships between events and the most influential factors

Depending on the approach chosen, the results may differ
(Thiery et al., 2007). It is sometimes necessary to compare
certain approaches with other in order to choose the best one
suiting the study site and the different field observations
(Thiery et al. 2014). In this study, the choice of the reliable
susceptibility map suitable for the study area was guided by
the degree of performance of the model used in the

Fig. 2 Geological map of the Beni-Chougrane Mountains (geographic
coordinates) a: 1, eruptive rocks; 2, Jurassic limestones; 3, ante-nappes
formations; 4, marl (early Miocene); 5, conglomerate and sandstone (ear-
ly Miocene); 6, continental formation of Bou Hanifia; 7, basis sandstone;
8, Bleu marl; 9, Lithothamniees limestone; 10, El Bordj sandstone for-
mation; 11, diatomitic formation; 12, gypsyfour and marly gypsifourous;
13, bleu marl; 14, sea sandstone; 15, continental sandstone and silt at
Helix; and 16, lake deposit; 17, limestone crust; 18, alluvium; 19,

watercourse. The black line disposed perpendicular to the alignment of
the chain represents the geological cross section, b: geological cross-
section along the Beni-Chougrane Mountains showing the geologic fea-
tures (before and after-nappes). For the abbreviations, ANT is and SNL
are respectively anticline and synclinal, BG is Bel Ghrib, MRDJ is
Merdja, CRBH is Cherb Errih. FRG is Fergoug; PRG is Mohamadia O.
is Oued e.g (Wadi or rivers)
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development of the final map. To compare them, the best way
is to use the same dataset and the same strategy of calibration,
validation with simple tests of comparison. In Figure 5, we
illustrate the strategy used for this study. Results can be used
as a basic support showing the probability of occurrence of
landslides according to different susceptibility classes
(Guzzetti et al. 2012; Caiyan and Jianping 2009; Pradhan
and Lee 2010; Erzin and Cetin 2013; Pourghasemi et al.
2012; Karim et al. 2019) (Fig. 5). Among these methods,
bivariate and multivariate methods (Pourghasemi et al. 2012;
Lari et al. 2014; Hungr 2018; Robbins 2016; Nsengiyumva
et al. 2019) become standards in the scientific community for
mapping landslide susceptibility at regional and local scales
(Thiery et al. 2020). Bivariate methods have the advantages to
explore simply the relationships between landslides and fac-
tors or combination of factors. They are simple to implement
and yielding results easily understood by practitioners.
Multivariate methods can be a little bit more complex to im-
plement because they need, sometimes, the used of specific
statistical packages, and need to explore positive relationship
of landslides and non-landslides. Moreover, they are more

difficult to explain to end-users. Nevertheless, for both
methods, their degree of prediction based on the analysis of
phenomena taken and not taken into account in the calibration
phase is generally higher than 80%, especially if the data used
are accurate and validated by the expert.

Therefore, three data-driven methods have been selected
with two bivariate (the frequency ratio — FR, and the infor-
mation value— IVM) and one multivariate method (the mul-
tiple linear regression method—MLR). The goal is to choose
the best suitable method for the test site.

Frequency ratio model

The frequency ratio model (FR) has been applied for several
case studies in order to predict areas likely to generate land-
slides (Yalcin et al. 2011; Park et al. 2013; Pradhan and Lee
2010; Manchar et al. 2018; Gholami et al. 2019). The frequen-
cy ratio, as a leading probability model, is based on the ob-
served spatial relationships between spatial distribution of
landslide and causal factors. It is used especially to reveal
the correlation between landslide locations and the factors in

Fig. 3 Roads affected by landslides in different location, a: road
connecting Mascara to Mohamadia affected as a whole by a large
landslide (dark line represents the road which leads from Mascara to
Mohamadia), b: the landslide seen from one top, the dashed lines show
the limits of the landslide area, c: the cliff corresponds to the rupture zone,
even the device designed to protect the road was affected by the great

thrust generated by landslide, c: landslide affecting part of the road
connecting Ain Fares Mohamadia in which we can see the beginning of
a slip affecting thisroad recently built, dashed lines are related to cracking
relatives to the rupture zone. The black and white arrows show the
direction of movement of the materials
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the study area. Consequently, the FR can be used to quantita-
tively assess the landslide susceptibility.

Technically speaking, FR is based on the association be-
tween landslides and predisposing factors with the

computation of a ratio between the number of landslides in a
predisposing factor class, the total number of landslides, the
area of a predisposing factor class, and the total area of the
predisposing factor (Lee and Pradhan 2007). Then, FR can be

Fig. 4 Several landslides happened along the Fergoug river, the moved
material is transported by fluvial waters to the Fergoug Dam during the
floods season, a: important landslide characterized by the presence of a
dense forest cover and b: landslide happened along river not far from the

Fergoug dam, c:Miocene marl affected by a small landslide not directly in
the Fergoug River it happened on one of its tributaries, d: soils moved
because a landslide close to the road and e: many landslide located in the
oriental slope in the central part of the study area

Fig. 5 Overall methodology flowchart showing different stages of process such as data inventorying, data preparation, computations of differents LSM
and validation
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compute using Eq. (1):

FR ¼
N
p
i =N

N
lp
i =Nl

ð1Þ

Where N p
i is the number of cells with landslides in factor

class i, N is the total number of cells with landslides. N lp
i is the

total number of cells (i.e., with and without landslides) of
factor class i, Nl is the total number of cells (i.e., with and
without landslides) in the entire study area (Javier and
Kumar 2019).

Once the ratio of each independent factor class was calcu-
lated, the landslide susceptibility index (LSI_FR) is obtained
by summing all (FR) of all factors, as indicated in Eq. (2)
(Yilmaz 2010):

LSI FR ¼ ∑FRj ð2Þ

Where j = 1 to n, and n is the total number of factors.
The model obtained shows the degree of correlation be-

tween landslides and independent factor class. The higher val-
ue of the ratio (FR > 1) shows the large relationship between
the landslides occurrence and the factor class; however, a low-
er ratio value (FR < 1) indicates a low probability of landslide
occurrence (Yalcin et al. 2011).

The information value model

The information value model has been widely used to map
sensitivity to landslides. For instance, in 2012, Pereira and his
colleagues used the Information Value Model (IVM) to assess
the role of different combinations of causative factors in the
triggering of shallow landslides in different parts of northern
Portugal. Many authors have found that the value of informa-
tion (IVM) model is very useful to define the degree of influ-
ence of the individual causative factor responsible of land-
slides (Champatiray 2000; Arora et al. 2004; Champatiray
et al. 2007; Kanungo et al. 2009; Caiyan and Jianping 2009;
Pereira et al. 2012; Balsubramani and Kumaraswamy 2013;
Passang and Kubíček 2018).

The principle is very close the FRmethod. It is based on the
determination of the influence of each class of predisposing
factors on the onset of landslide in a given area. In this model,
the information has the value IVM for a class in a thematic
layer as indicated in the following equation (Chen et al. 2019):

IVM ¼ log
Conditional probability

Prior probability
Þ

Si
Ai
S
A

0
B@

1
CA

0
B@ ð3Þ

Where Si is a number of landslide pixels in factor class i, Ai
is the number of pixels in a given class i, S is a total number of
landslide pixels in the study area, and A is a total number of
pixels in the entire study area. The weights of all factor classes
were calculated through the ratio of landslide density of each
factor class to the landslide density of total area, or the infor-
mation value can provide the landslide probability in each
class and in the total area (Table 1). If IV > 0.1, the factor
classes will have the highest probability of landslide occur-
rence, but factor classes with negative values indicate the
presence of a factor with no significant contribution to land-
slide occurrence. The landslide susceptibility index (LSI) was
calculated as follows:

LSI IVM ¼ ∑
M

i¼1
X ij*IVM ð4Þ

Where Xij = 1 is the class i exist in factor j and 0 if class i
does not exist in factor j,M is the number of class considered
(Passang and Kubicek 2018).

Multiple linear regressions

MLRmethod is one of the first multivariate method applied to
assess and to map landslide susceptibility. The method was
used in different regions of the world (Felicísimo et al. 2013;
Onagh et al. 2012; Felicísimo et al. 2013; Erzin and Cetin
2013). The multiple regression model for some authors ap-
pears as an alternative to the bivariate method with better
results. This method shows that the sensitivity of landslides
changes with the standard deviation of independent and pre-
dictor variables (Yalcin et al. 2011). However, some studies
show very similar results.

In statistics, MLR is a mathematical regression method that
extends simple linear regression to describe changes in a de-
pendent variable associated with changes in several indepen-
dent variables following this equation (Lee and Sambath
2006):

LSI MLR ¼ a0 þ a1X1 þ a2X2 þ…þ anXn þ εi ð5Þ

Where εi is the error of the model which expresses or
summarizes the missing information in the linear explanation
of the values of LSII_MLR from X1, ..., Xn (specification
problem, variables not taken into account, etc. ). The coeffi-
cients a0, a1, ..., an are the parameters to be estimated.

Data and modeling strategy

The strategy used to assess landslide susceptibility and to ob-
tain the best landslide susceptibility map is split in 4 steps
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with: (i) the development of a new inventory of phenomena;
(ii) the preparation of spatial variables represented by predis-
posing factors and aggravating factors; (iii) computations of
different landslide susceptibility maps with the three selected
methods; (iv) validation of results and comparison of maps.

Landslide inventory

Landslide inventory is a key step to assess landslide suscepti-
bility and hazard (Lee and Pradhan 2013). Several authors as
Gzzetti et al. (2006), Corominas et al. (2014) and Thiery et al.
(2020) consider this operation as a basic element for all work
aimed at the susceptibility mapping. In the Fergoug water-
shed, the landslide inventory is based on diachronic interpre-
tations (Nichol and Wong 2005; Guzzetti et al. 2012) of aerial
and satellite imageries (Landsat imagery and under Google
Earth) taking into account of the resolution and the character-
istics of each imageries (i.e., tonal, contrast, size, shape, and
shadow, as well as contextual indicators such as position and
direction of phenomena; Liu et al. 2004). The remote sensing
inventory has been completed by field investigations and deep
consultation of old reports.

One hundred forty-two landslides have been identified, re-
corded, and mapped. Several information relating to

landslides have been recorded in a spatial database, with (i)
the geographic situation, (ii) the typology (translational, rota-
tional, solifluxion and muddy flow), (iii) the surface (in km2),
and (iv) all the factors involved in its initiation. The majority
of landslides identified not exceeded an area of 0.01 km2 (89%
of landslides < 1 ha) while 10.56% > 0.01 km2 with an area
reaching up to 0.0749 km2). The total area of the landslides
identified is approximately 11.14 km2, which represents ap-
proximately 6.61% of the entire surface of study area.
Phenomena affecting this area can be superficial < 20 m or
deep > 20 m. According to their form, (i) 119 cases landslides
are translational located upstream of the Fergoug River or (ii)
23 cases are rotational located mainly along the same river
(Fig. 1b).

Conditioning factors

The causes of the triggering and occurrence of landslides are
truly complex and diverse. There is not a clear agreement to
the precise reasons for their manifestation (Corominas et al.
2014). The complex nature of landslide development has led
many researchers to study how the occurrence of landslides
could be affected by various conditioning factors (Mugagga
et al. 2012). Among them, we quote predisposing factors with

Table 1 Summary of different types, levels, and complexity of
landslide susceptibility and hazard zoning according to the objectives
(modified from Fell et al., 2008), where TU = available for any use,
MSP = available for public utility mission; P = paying service; SD = on
request; CNTS = National Space Technical Center, SPC = Bridge and

roadway service, SF= Forestry service; SCGA = Geologicl servey of
Algeria; +++ =essential; ++ = important; (*) = precaution (data
verification); (**) = verification of the scale of application; I =
inventory; S = susceptibility; A = hazard

Thema Data to use Disponibility Organization
responsible for data

Domain
of use

Hazard application

Type Product Importance Precautions

Landslide Inventory Topographic maps Scan 1/25000 P CNTS I ++ *

Aerieal Photos Ortho 1/20000 P CNTS +++ **

Satelites images 30 m/pixel (Oli_8) TU MSP +++ **

Oldest reports Bridge and roadway (2018) SD SPC ++ **

Google earth Images (2019) TU MSP +++ **

Field verification / / / +++ **

Topographic data and
derived maps

Altemetric
data/DEM(SRTM)

30 m/pixel TU MSP I/A/S +++ *

Geology Geologic map Scanned map (1/50000) SD SCGA A/S +++ *

Faults lineaments
maps

Photo interpretation of
satelite images

TU MSP +++ **

Seismic source map Data base ANSS/NEIC TU MSP +++ **

Hydrology Stream network map Extraction for DEM
(30m/pixel)

TU MSP +++ **

Land use Forestry map Scanned map SD SF A/S ++ *

Photo interpretation
of satelite image

Supervised classification
(Red/Infra-red images)

TU MSP +++ **

Anthropic factor Roads Extracted from google earth
image

TU MSP +++ **

Meteorologic data Precipitation data Rainfall data SD Weather/Algeria A/S +++ **
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(i) topographic factors (e.g., slope, aspect, curvature) and geo-
logical factors (e.g., earthquakes, cave-in collapse); (ii) aggra-
vating factors (e.g., floods, snowmelt and rainfalls; Zêzere
et al. 1999).

Predisposing factors

Three topographic factors were used for this analysis (slope,
aspect, curvature, stream network). The topographic factors
were extracted based on high-precision SRTM DEM data. It
provides a quasi-global representation of the Earth’s surface at
a medium spatial resolution (30–90m). This data is obtained
from Shuttle Radar TopographyMission (SRTM) and is avail-
able in website https://earthexplorer.usgs.gov/ with medium
resolution 30 m/ cells of resolution.

Slope gradient is considered to as one of the main factors
conditioning the triggering of landslides (Van Westen et al.
2008; Petley et al. 2005; Kuriakose et al. 2008). The value
derived from the DTm is divided into five classes consistent
with a 10° interval for each (> 10°) (10°–20°), (20°–30°)
(30°–40°), and (< 40°) (Van Westen 2006; Petley et al.
2005; Kuriakose et al. 2008) (Fig. 6a). Slope aspect is consid-
ered as a influencing factor which controlled the landslides
triggering (Pradhan and Lee 2010; Schlögel et al. 2018;
Pourghasemi et al. 2012; Yan et al., 2020). Slope aspect is
defined as the direction in which a slope is oriented and it
relates to the degree of exposure to the sun. This factor also
influences the plant cover, the daily temperature, and relative
humidity ranges of a slope (Chen et al. 2019). For this pur-
pose, the slope aspect map has been classified in 8 distinct
classes (N, NE, E, SE, S, SW, W, and NW); the distribution
of landslides related to slope aspect can be shown in Figure 6
b. Another factor that can be considered in landslide hazard
analysis is topographic curvature. Indeed, slopes curvature
profile characterizes the morphology of the topography and
has a positive influence on the onset of landslides. The slope
curvature influences the training and resistance stresses in a
landslide in the direction of motion and controls the change in
speed of mass motion flowing down the slope The value of the
curvature can be either above, below, or equal to zero,
representing the convex, concave, or flat shaped curvatures,
respectively (Fig. 6c).

Geo-environmental and anthropogenic factors were in-
volved in this analysis by a landcover spatial data. The land
cover map was obtained from supervised classification of
Landsat (Oli_8) and compared to the map developed by for-
estry services. This map of has been prepared and classified
into four distinct categories (dense forest, sparse vegetation
cover, pasture areas, and totally bare soil) (Fig. 6d). (Table 1).

Geological factors were split in three different spatial var-
iables with (i) a lithological map; (ii) a characteristics of ma-
terials; and the (iii) structure with integration of faults. The
lithological map was established by digitizing two geological

maps (Mascara and Mohamadia maps with 1/50000 scale)
(Dalloni 1936). The geological section contains geologic for-
mations dating from Cretaceous to Plio-Quaternary.
According to the friability of the rocks, these formations were
classified into 4 categories and (crumbly rock, soft rock, com-
petent rock, and very resistant rocks) (Fig. 6f). The character-
istics of the material itself result from the bedrock, weathering
may be weak or fractured, or different layers may have differ-
ent strengths and rigidity. For this purpose, three geological
factors were taken into account for this analysis. The structural
map is based on fault lineaments extracted from the old geo-
logical maps, and drawn from the morpho-structural analysis
using photo-interpretation of satellite images coupled with a
shaded DEM. This data represents the distance to fault map
was constructed by generating buffers along the fault lines.
This distance was classed into 4 classes (0–250 m), (250–
500 m), (500–1000 m), and (> 1000 m), more the area is
located near the fault line, the risk of slipping is very likely
(Fig. 6e).

Aggravating factors

Aggravating factors can depicted as factors s accentuating the
possibility to have landslide occurrences without actually trig-
gering the phenomena. For example, a series of earthquakes
can accentuate the fragility of materials without triggering
landslides, or the fact that rainfall is higher than the annual
average for some areas will induce a greater sensitivity for
intense rainfalls for some land. Four aggravating factors have
been selected with (i) mean precipitation data; (ii) seismic
activity; (iii) stream network; and (iv) anthropogenic
influence.

In our study area, landslides are triggered mainly fol-
lowing rainfalls, which can be intense and sudden. Due to
lack of daily rainfall data, we used an annual mean pre-
cipitation map, produced using rainfall data from three
weather stations located around the study area. The select-
ed period is 10 years (from 2004 to 2014). The map is
obtained by applying the ordinary Kriging method. The
final map was prepared and reclassified into four classes
based on the annual average rainfall (380–410 mm),
(410–440 mm), (440–470 mm), and (470–500 mm) (Fig.
6g).

An earthquake or series of earthquake can accentuate the
slope instability by the inertial loading it imposes or by caus-
ing a loss of resistance of thematerials of the slope (Hadji et al.
2016; Yang et al. 2017; Huang et al. 2017). The Beni-
Chougrane region, as all areas of northern Algeria, is charac-
terized by moderate seismic activity (Refas et al. 2019).
Indeed, large earthquakes shook this area in 1967 and 1994
(Benouar et al. 1994; Bezzeghoud and Buforn 1999).
Therefore, the seismic sources were extracted from the inter-
national database (ANSS), of which 6 large sources located in
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the vicinity of the Fergoug watershed. A buffer was applied
around these sources. Based in this strategy, the prepared ras-
ter map was classified into 4 classes representing by distances
(> 500 m), (500–1 km), (1–3 km), and (> 3 km) (Fig.
6h).Remote areas of seismic sources have a low probability
of generating a landslide.

The distance to stream networks can a fundamental param-
eter controlling the landslide occurrences. We can then con-
sider that the basal cutting of the banks can induce landslides

by foot failure. In the Fergoug watershed, three rivers cross it
diagonally with lengths 24.9, 12.7, and 9.70 km respectively
for Fergoug, Taghzout, and Hammam rivers. Moreover many
tributaries spread out along the study area. Then, we extracted
the water system from the SRTM-DTM, and buffers of a
distance of 50 m were applied. The raster map was coded
using a distance-based strategy. According to this distance,
five classes have been highlighted: (< 50 m), (50–100 m),
(100–150 m), (150–200 m), and (> 200 m) (Fig. 6i).

Fig. 6 Causal factors responsible for triggering landslide a: slope, b: aspect, c: curvature, d: tectonic fault, e: lithology, f: land cover, g: stream network,
h:rainfall, i: road traffic and j: earthquakes. The white circles represent the spatial distribution of landslide
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Human activities and road construction works (digging,
excavation, and trenching) can be an important aggravating
factor for landslide occurrences. The slope gradient can be
artificially increased inducing a higher failure probability.

Beyond this increase in local slopes, many authors have
shown along roadways the effect of traffic on landslide initi-
ation (Shipway et al. 2015; Voumard et al. 2013; Jotic et al.
2018). Indeed, this road traffic can cause incessant vibrations
that then affect the stability of the slope. To determine this
effect, we mapped out all roads crossing the Fergoug area
and then proceeded to apply buffers at random distances
(500 m), (1 km), (2 km), and (> 2 km) (Fig. 6j). This strategy
is based on the fact that the closer the area is to the road, the
higher the probability of triggering a landslide.

Landslide susceptibility modeling

For each selected method, the procedure to compute landslide
susceptibility map is the same with a confrontation of the
events (i.e., landslides) with the factors. The reliability of each
model used to produce susceptibility map is carried out
through a classical procedure based on the computation of
receiver operating characteristics (ROC) and the area under
curve (AUC). The tests were performed by comparing known
landslide location data with the landslide susceptibility map.
To determine the reliability of three models of landslide sus-
ceptibility (FR, IVM, and RLM) applied in this study, we
performed a check using the receiver operating characteristic
curve, or ROC curve, which is graphical representation creat-
ed by plotting the true positive rate (TPR) known as sensitivity
against the false positive rate (FPR) known as specificity and
this at various threshold settings (Pourghasemi et al. 2012). By
tradition, the ROC curve is plotted using False Positive Rate
on X-axis (shown in Eq. (6)) and True Positive Rate on Y-axis
(shown in Eq. (7)):

X ¼ Specificity ¼ 1−
TN

TN þ FP

� �
ð6Þ

Y ¼ Sensitivity ¼ TN
TP þ FN

� �
ð7Þ

Where TP (True positive) is the number of landslide pixels
correctly classified in the landslide class, and TN (True nega-
tive) is the total number of non-landslide pixels correctly clas-
sified in the non-landslide class of ground. FP (false positive)
is the number of landslide pixels classified in the non-
landslide class; FN (False negative) is the non-slip pixels clas-
sified in the class of landslides (Xu et al., 2012).

Usually, AUC curves range from 0.5 to 1.0. The model
with a higher AUC is considered the best. If the area under

the ROC curve (AUC) is close to 1, the test result is excellent
(Hong et al., 2016). On the other hand, if the model does not
predict well, then this value will be close to 0.5. Related to test
value, it can be divided in five class, the value ranges from
0.50 to 0.60 (poor), 0.60–0.70 (average), 0.70–0.80 (good),
0.80–0.90 (very good), and 0.90–1.00 (excellent)
(Pourghasemi et al. 2012).

Results and discussion

Results are analyzed in three steps with (i) analysis of predis-
posing factors, (ii) analysis of aggravating factor, and (iii)
analysis of final maps. Each part is discussed. By this way,
we explore and analyze simultaneously the influence of each
predictive factor and how each model how each model be-
haves in relation to the data.

The results in Table 2 show that the values obtained by the
information value model (IVM) are almost consistent with the
values of the frequency ratio (FR). The statistical correlation
between landslides and their independent factors was deter-
mined by the multiple linear regression (MLR) model. Based
on constant values of regression coefficients, the landslide
occurrence predicting equation was obtained as follows:

LSI MLRð Þ ¼ 0:692–0:194 Roadsð Þ−0:086 Vegetationð Þ
þ0:175 faultsð Þ þ 0:085 expositionð Þ
þ0:138 Slopeð Þ−0:013 Lithologyð Þ−0:048 Rainfallð Þ
þ0:208 Stream networkð Þ þ 0:189 Earthquakesð Þ
þ0:027 Curvature topographyð Þ:

ð8Þ

Analysis of predisposing factors

Slope aspect bounded for (NE, E, SE, and S) has rational
correlation with landslide occurrence; however, the higher
value (FR = 5.87) marked the Northern slope exposition
(Fig. 6a). This can be explained by the morphological dispo-
sition of the mountainous chain. Indeed, Beni-Chougrane
Mountains are oriented ENE-WSW and the ridges divide
slopes into two categories, Northern and Southern slopes.
These mountains are anticlines limb with steep slopes. These
anticlines are overturned to the south; therefore, the north-
facing slopes are larger than the southern facing, and are char-
acterized by a significant number of landslides, the north-
facing slopes are wetter than those facing south. Among the
slope categories, high landslide frequency ratio is observed in
slope smaller than 10° (FR = 2.09). This is due to the total lack
of sufficient plant cover to protect these lands. Knowing that
Fergoug forest is located in the Western part and occupied the
higher altitudes. In addition, these lands are the result of
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Table 2 A spatial relationship between listed landslides and conditioning factors in the study area. For abbreviations, FR = frequency ratio, IVM =
information value model and MLR = multiple linear regression

Factors/CLASS N0. of pixels Pixels
domain

Pixels domain
%

Landslide occurrence
(N)

Landslide occurrence
%

FR IVM MRL

Aspect 0.085

NE 15390 15390 9.13 393 3.53 0.39 − 1.37 –

E 31080 15690 9.31 607 5.45 0.59 − 0.77 –

SE 47260 16180 9.60 585 5.25 0.55 − 0.87 –

S 69950 22690 13.46 407 3.65 0.27 − 1.88 –

SW 92740 22790 13.52 32 0.29 0.02 − 5.56 –

W 117830 25090 14.88 91 0.82 0.05 − 4.19 –

NW 146910 29080 17.25 611 5.48 0.32 − 1.65 –

N 168600 21690 12.86 8416 75.53 5.87 2.55 –

Slope 0.138

< 10 55970 55970 33.20 7730 69.38 2.09 1.06 –

10–20 140920 84950 50.39 1280 11.49 0.23 − 2.13 –

20–30 163850 22930 13.60 1672 15.01 1.10 0.14 –

30–40 167800 3950 2.34 362 3.25 1.39 0.47 –

> 50 168600 800 0.47 98 0.88 1.85 0.89 –

Faults 0.175

0.25 35660 35660 21.15 7987 71.68 3.39 1.76 –

0.50 94720 59060 35.03 1538 13.80 0.39 -1.34 –

1 149290 54570 32.37 1523 13.67 0.42 -1.24 –

2 168600 19310 11.45 94 0.84 0.07 -3.76 –

Lithology 0.013

Crumbly rocks 24640 24640 14.61 2988 26.82 1.83 0.88 –

Soft rocks 102040 12450 7.38 1448 13 1.76 0.82 –

Competent rocks 156150 54110 32.09 5743 51.54 1.61 0.64 –

Resistant rocks 168600 77400 45.91 963 8.64 0.19 − 2.64 –

Rainfall (mm) −
0.0-
48

380–410 33920 33920 20.12 2981 26.75 1.33 − 0.18 –

410–440 77850 43930 26.06 1591 14.28 0.55 − 0.89 –

440–470 127250 49400 29.30 3186 28.59 0.98 − 0.46 –

470–500 168600 41350 24.53 3384 30.37 1.24 0.13 –

Stream network (m) 0.208

< 0.1 32675 32675 19.38 7435 66.73 3.44 1.56 –

0.1–0.25 71886 39211 23.26 2164 19.42 0.84 0.89 –

0.25–0.5 113175 41289 24.49 983 8.82 0.36 3.75 –

> 0.5 168600 55425 32.87 560 5.03 0.15 − 2.57 –

Roads (Km) 0 − 0.19

< 0.5 16.99 16990 10.08 1978 17.75 1.76 0.82 –

0.5–1 54.85 54850 32.53 5017 45.03 1.38 0.47 –

1–2 57.14 57140 33.89 2999 26.92 0.79 − 0.33 –

> 2 39.62 39620 23.50 1148 10.30 0.44 − 1.19 –

Earthquake (KM) 0.189

< 1 6490 6490 3.85 2198 19.73 5.12 2.36 –

1–2 111780 105290 62.45 8507 76.35 1.22 0.29 –

> 3 168600 56820 33.70 437 3.92 0.12 − 3.10 –

Landcover
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anarchic exploitation by farmers. The frequency ratio is less
than 1, indicating a lower probability of triggering a landslide
in the slope class ranged between 10° and 20°. However, the
areas which correspond to slopes ranging from 20° and higher
than 50° are exposed to very significant chemical and physical
alteration processes and there are characterized by higher val-
ue (> 1). This is due to the rising of shear stress in steep slopes
under the gravity effect (Fig. 6b).

The relationship between curvature and landslide indicates
that they generally occur in or near concave slopes where FR
values are significant and are greater than 3. Our results show
also that the FR values are more significant in concave slope
and less significant (< 1) in the flat slope (Fig. 6c).

The results obtained using the FR model show that regions
most sensitive to landslides are distributed in areas situated
near faults (Fig. 6d). FR value of 3.39 is obtained for areas
closer to the fault line which are characterized by a distance
not exceeding to 0.25 km. These areas represent 71.68 % of
landslide occurrence. Our results show also that the less im-
portant FR is obtained for area located far from the fault line.
Indeed, the FR ratio is −1.34, − 1.4, and − 3.76 respectively
for zones situated between 0.5 and 1 km, between 1 and 2 km,
and beyond 2 km.

Values of FR = 1.83 and are attributed to zones which is
characterized by a crumbly rock in particular marls and clays.
Due to the presence of clay and marl particles exposed to
water, these reach very quickly the liquidity limit and the lands
slide easily. Resistant rocks are characterized by very less
value (FR = 0.19) (Fig. 6e).

The denuded areas are represented by significant value FR
= 9.49. However, FR is less than 1 in areas characterized by
permanent forest cover (Fig. 6f).

The results shown in Table 2 show that values obtained by
the information value model (IVM) are almost consistent with
the values of the frequency ratio (FR). In fact, the most

significant values are those which correspond to approximate
areas with faults. IVM values are also important in areas char-
acterized by IVM values of 1.06, 0.88, and 3.25 respectively
for steep slopes, crumbly rocks, and bare soil.

According to the equation (Eq. (8)) obtained, 6 parameters
statistically significant; however, 3 parameters generally con-
sidered as less important. For faults, the regression coefficient
Cr have positive value respectively (Cr = 0.175). Indeed, this
topographic factor is considered to be one of the determining
factors in the triggering of landslides, and represents the most
effective parameter in terms of landslides occurrence. This
shows their decisive role in promoting landslide activities.

Slopes, curvature, exposure, and lithology have proven to
be moderately important in the current context with low
values respectively 0.138, 0.085, 0.027, and 0.013.

Coefficients related to the vegetation and roads were re-
corded with negative Cr values (− 0.086 and − 0.019), which
proves that these factors are less important to promote land-
slide activities.

Analysis of aggravating factors

Our results show that 66.73% of landslide occurrence is re-
ported to areas which correspond to distances of river ranges <
100 m. In these zones, the FR is marked by a higher value (FR
= 3.44). The values of the FR become lower as wemove away
from rivers. FR is 0.84, 0.36, and 0.15 respectively for areas
between (100–250 m), (250–500 m), and beyond 500 m (Fig.
6g).

This indicates a good correlation between these hydrolog-
ical parameters and landslide occurrence. The erosion exerted
in the meanders of a river continuously digs deep in the bed of
the river, undermining and weakening the banks, and causing
their collapse. This is caused by a breakage of the stopper of
the foot and thus leads to undermining of the banks. To this

Table 2 (continued)

Factors/CLASS N0. of pixels Pixels
domain

Pixels domain
%

Landslide occurrence
(N)

Landslide occurrence
%

FR IVM MRL

−
0.0-
86

Permanent vegetal cover 168600 59510 35.30 11 0.10 0 − 8.48 –

Temporary Vegetal
cover

44100 44100 26.16 1067 9.58 0.37 − 1.45 –

Pastures 103400 59300 35.17 6496 58.30 1.66 0.73 –

Bare soils 109090 5690 3.37 3568 32.02 9.49 3.25 –

Curvature 0.027

Concave 37505 37505 22.24 396 3.55 0.16 − 2.65 –

Flat 129154 91649 54.36 592 5.31 0.10 − 3.35 –

Convex 168600 39446 23.40 10154 91.13 3.90 1.96 –
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end, areas closer to rivers (< 100 m) have a stronger relation-
ship with landslides. Presumably, areas characterized by a
dense hydrographic network have also, a high probability of
landslides occurrence (Karim et al. 2019).

Our results show that it exists a very important relationship
between annual and daily precipitation and the occurrence of
landslides. This indicates that landslides correlate very well
with high rainfall values (FR = 1.24) (Fig. 6h). This confirms
that precipitation, especially rains, is the trigger for landslide.
It has been found that cumulative precipitation of 10 to 30
days is mainly associated not only with the triggering of land-
slides but also with their reactivation.

In the case of our study area, this is can easily observed in
the landslides affecting the Mohamadia road (Fig. 3a, b).
Indeed each winter, the municipality implements remediation
work after the damage caused by the landslide and this to
ensure the continuity of road traffic. In the case of our study
area, there is a positive dependent relationship between alti-
tude and precipitation, landslides generally occur in high alti-
tude areas surrounding in particular the Sidi Daho syncline
(Fig. 1b). It should be noted that torrential rains are considered
to be the main trigger for landslides in the Fergoug watershed.
Several landslides are triggered during the wet seasons, espe-
cially in winter. The relationship between roads proximity and
landslides indicates that it occurred generally near roads at
distances smaller than 500 m (Table 2) where FR = 1.76.
Several roads are typically affected by this phenomenon
(Fig. 3 and Fig. 4d). Indeed, in the case our study, the degra-
dation of the roads begins with a simple cracking due to the
removal of a stabilizing abutment in downstream, and then
these cracks develop to evolve to more or less spaced open-
ings leading to the sliding of the entire facade (Fig. 6i). Inmost
time, this degradation is due to the anarchic construction of
roads by increasing the gradient of slope without thinking on
the stability measures (Solaimani et al. 2013) (Fig. 6i) (Fig.
3d). In many parts of the world, earthquakes are frequently
accompanied by gravitational instabilities, particularly land-
slides and rock fall (Marc et al. 2015; Li et al. 2016; Zaagane
et al. 2016; Roback et al. 2018; Veh et al., 2019). During the
twentieth century, nearly 80 earthquakes caused between
100.000 to 1.000.000 landslides that claimed tens of thou-
sands of lives (Keefer 1984). The zones characterized by an
important seismic activity are also the seat of several land-
slides. Indeed in our study, FR = 5.12 value characterizes all
areas situated less than 1 km from the seismic source (Fig. 6j).

FR values decrease in areas far from seismic sources where
landslides are rare.

Our results show that IVM values are very important for
hydrographic networks, seismic sources, and roads. Indeed
IVM values are 1.56 for areas located near river lines with
distance not exceed at 0.1 km to river. IVM value (IVM =
5.12) characterized area situated in circle that the radius is less
than 1 km. For the anthropogenic factors, the IVM value is

more and characterized all areas situated near road with dis-
tance not exceed at 0.5 km.

For the MRL model, the results in Table 2 shown that the
coefficient linked to the hydrographic network has very strong
dependence (Cr = 0.208). This indicates that the distance from
the river corresponds to a high positive Cr which confirms a
higher dependence between the banks and the landslides.
Earthquakes have a clearly positive coefficient (Cr = 0.189).
Indeed, landslides are largely triggered by earthquakes all over
the world which can greatly increase the destructive impact of
earthquakes especially in mountainous regions. These trig-
gered landslides represent a significant proportion of the total
earthquake damage due to the destruction of buildings and the
impacts of landslides on lifelines and roads traffics that can
been used in case of the rescue efforts.

Rainfall effects are more represented with MLR models.
Indeed, Cr values are negative where Cr = − 0.048. The spatial
distribution of rainfall has a secondary effect on the triggering
of landslides; however, it should be noted that the rainwater
joins the main rivers along the slopes, and it is the flood waters
which are responsible in triggering landslides.

Analysis of final maps

The LSI landslide calculated using the FR and IVM model
was summarized in all factor classes as shown in the equation
(Eq. (2) and Eq. (5)), then we ranked the LSI values at an
equal interval. The high LSI value is closely related to the total
combination of factors controlling landslides. We then pro-
duced a raster map by assigning the value FR to each class
of factors. We proceeded in the same way to establish the LSI
map using the IVM model.

To predict the possibility of landslide, the probability was
calculated from Eq. (8) then converted to raster format
(Table 2).

Figure 7 shows the raster maps of LSI (FR), LSI (IVM),
and LSI (MLR). These maps are represented by values rang-
ing from 0.0245 to 1.931, and between − 0.004 and 89.25
respectively for the FR and IVM.

The values of the susceptibility map calculated by theMLR
model show a range from 3.44 to 122.16. These values ranges
were divided into five classes of susceptibility to landslides of
equal intervals for the three models Very Low (VL), Low (L),
Middle (M), High (H), and Very High) (VH) (Fig. 7).

The map produced using FR model shows a very important
zone characterized by Very high landslide susceptibility located
especially in the central zone of the Fergougwatershed especially
around the Fergoug River (Fig. 7a). MLR model shows almost
the same characteristic of susceptibility zone; however, the very
high is less significantly compared to the LSI_FR map (Fig. 7b).

The very high and high susceptibility classes are well rep-
resented in the two maps produced by the FR and IVM
models. Indeed, the very high susceptibility class presents a
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percentage of 58% for the Fr model and 47% for the IVM
model (Fig. 7d). Although this percentage is less significant
for the MLR model and is characterized by only 27% of the
total area. However, the four classes are almost equal with
percentages not exceeding 26% (Fig. 7d).

For the MLR model, the map produced shows the biggest
zone represented by the Very low susceptibility class related
to FR and IVMmodels (Fig. 7c). Indeed, 20% of the total area
is represented by very low susceptibility; however, it is almost
10% for two models cited above.

For three models used in this study, the Fergoug River is
considered as a very active in which almost the majority of the
listed landslides are located along this zone.

The susceptibility map produced by the three models FR,
IVM, and MLR shows very good spatial similarity. Indeed, the
highest susceptibility classes are very important, and are listed on
slopes greater than 40°, and along the main line of the river. The
greatest probability is reported in this corridor located between
the Mohamadia road and the Fergoug River. Towards the south
of thiswatershed, the high density of landslides is located on both

sides of the perched syncline of Sidi Daho where two factors
have been combined. This combination represents the steep slope
associated with soft geological rocks represented mainly by
Miocenemarls. This observation proves that the good correlation
between conditional factors such as slope and hydrographic net-
work as well as a landslide was illustrated by the three models
(FR, IVM, and MLR).

Validation

Choosing an adequate model to map landslide susceptibility
(LSM) and determining its accuracy is an important aspect of
research on landslide sensitivity. Checking landslide susceptibil-
ity maps is very important. Consequently, three commonly used
statistical parameters, the receiver operating characteristic curve
(ROC) and the area under the curve (AUC), the standard error
and the 95% confidence interval are introduced to check the
susceptibility maps of landslides. AUC and ROC curves have
also been developed using the Excel-based (Xstalt) extension
(Lee and Pradhan 2007; Pourghasemi et al. 2012).

Fig. 7 Susceptibility maps produced using three models a: Frequency Ratio (FR) b: Information Value Model (IVM) and c: Multiple Linear Regression
(MLR). The histogram in (d) represent the porcentage of each susceptibility class relating to (FR), (IVM) and (MLR) models
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The results show that the FR, IVM, and MLR models used
in this study give satisfactory results and show a very good
precision in the prediction of the landslides susceptibility in
the Fergoug area. Indeed, the AUC value is greater than 0.80
which means that the rate curve contains more than 80% of
landslides in the three models (Fig. 8).

Results show that the FR model acquired the highest
AUC value (0.87), followed by the IVM model (0.83) and

MLR model (0.81). The highly susceptible area with the
prediction rate curve recognized by the FR model also
includes more than 87 % of landslides, which illustrates
that the precision of the FR model is the highest and that
the FR model is the best model that can been used in this
study.

It appears from this study, that during torrential rains, an
intense runoff develops in the region of Fergoug. The tribu-
taries discharge a large quantity of water and solid matter
(soils, mixture of blocks and gravel uprooted upstream) to
the main stream of Fergoug (Fig. 9a). Given the morpholog-
ical aspect of this area, the materials transported by the flood-
waters permanently erode the river bed. This erosion phenom-
enon occurs in two ways:

(i) A vertical erosion causing a deepening of the river bed
and thus leads to an increase in the gradient of slope
release of forces thus leading tomass movements towards
the bed of the river (Fig. 9b, c).

(ii) A horizontal erosion resulting in the meanders erosion of
this river leading to destabilize the slope (Fig. 9a). When

Fig. 8 Area under curve (AUC) of the ROC curve for the landslide
susceptibility map produced by FR, IVM and MLR models

Fig. 9 Image showing the relationship between the Fergoug river and
thelandslide triggering, a: the disposal of landslide along the river,
especially in the meanders causing locally the change of the
streamcourse b: scheme showing the initial stage in a failure slope, c:

the deepening of the Wadi bed leading to the increase of the slope
gradient,d: the triggering of landslides under the soil weight effect
leading to the filling of the river bed by the mobilized land. For the
symbols 4a, 4b please see the figure 4
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the soils are slipped, this movement causes the widening
of this river on the one hand and the modification of the
flow of the fluvial network on the other hand (Fig. 9d).
Along the Fergoug River, all these erosion products are
transported to the Fergoug dam thus leading to its silting.
This damworks with 5% of its total capacity. As a result,
over 70% of the total surface area of citrus fields irrigated
from dam is currently dry. Consequently, it is a real
desperation for the local population that all of their eco-
nomic activity is based heavily on the exploitation of
water from the dam.

Conclusion

Like all areas of northern Algeria, the Fergoug watershed has
strongly affected by landslides phenomenon. Indeed, during
our trip field, we noticed that several infrastructures, such as
roads, rivers and dams, even bridges, and houses have been
affected by this phenomenon. It seems that many factors acted
together on the slopes and leading to the triggering of land-
slides. In the case of our study area, landslides are mainly due
to factors classing into two types: (i) predisposing factors in-
cluding aspect, slope, the curvature, faults, soft geological
rocks, land cover, and (ii) aggravating factors represented by
aggressive precipitation, earthquakes, stream network and
roads. Two research steps were followed in this process.
Firstly, the realization of the hazard maps was carried out by
applying the FR, IVM, and MLR models chosen for their
performance and their simplicity, then, the results obtained
were tested using AUC curve These tests show that our results
show very good accuracy for all three models. Indeed, our
results reveal that the frequency ratio model (87%), the IVM
model (83), and the MLR models (81%) have been highly
accurate and can be classified in the category of very good
precision (> 80). Despite its simplicity, the FR model shows
more precision than IVM and MLR models.

In the FR model, the biggest class of landslide susceptibil-
ity is represented by high to very high class, accounting for
more than 80% of the area, compared to 60% in the IVM
model and 41% for MLR.

The multiple linear regression equation allows us to con-
clude that landslide causal factors (distance from faults and
stream network, curvature, slope and earthquakes) have a sig-
nificant influence on landslides.

The landslide susceptibility maps obtained as part of this
study also showed that an area with significant landslide risk
was located in the central part of the Fergoug watershed. The
results also show that the lands most likely to cause this type
of instability are spread around the Fergoug River bed.

The road that connects the Mascara town and the
Mohamadia is used by thousands of car drivers every month.

This road has a high susceptibility to landslides, while
more than 5% of the inhabitants are distributed along
the edges of this road and on extremely sensitive lands.
To this end, the models used in this study have shown that
susceptibility mapping is an essential tool for delimiting
areas prone to landslides. These maps can be considered
an important piece of information for decision makers.
They have to be the basis for future plan decision and
they are in line with the government’s desire to improve
landslide hazard documents by being easy to implement
and easily understood by practitioners.
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